
Institut für
Technische Informatik und
Kommunikationsnetze

Roman Trüb

Generic Functional Blocks for

FPGA-based Network Nodes

Semester Thesis SA-2015-08

March to May 2015

Advisor: Dr. Markus Happe, markus.happe@tik.ee.ethz.ch

Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch



Acknowledgements

I would like to thank my project advisor Dr. Markus Happe for his support and his valuable feed-

back during the semester thesis. Furthermore I would like to thank Prof. Dr. Bernhard Plattner

for giving me the opportunity to write this semester thesis in his research group.

2



Abstract

At ETH an FPGA-based prototype platform called EmbedNet has been developed which im-

plements a flexible protocol stack architecture for network devices. The functional blocks of this

protocol stack can be dynamically interconnected and individually mapped to either hardware

or software. This new approach allows to adapt the protocol stack to current communication

requirements and networking conditions. This leads to more efficiency in terms of processing

time and energy consumption compared to today’s static protocol stack architecture of the In-

ternet.

Because even a single functional block requires a quite high implementation effort not many

functional blocks have been implemented so far. Therefore it wasn’t possible to evaluate the per-

formance of larger dynamic protocol stacks on the EmbedNet platform so far. In this semester

thesis a generic functional block is developed which emulates the forwarding behavior (pro-

cessing delay and drop rate) of real functional blocks. With multiple instances of this generic

functional block it is possible to emulate the forwarding behavior of arbitrary protocol stacks.

This thesis presents the first performance evaluation of the EmbedNet platform which uses up

to six functional blocks.

3



4



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methodology 11

2.1 Generic Functional Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Evaluating using Generic Functional Blocks . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation 13

3.1 EmbedNet Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Hardware Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 Addressing & Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 ReconOS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Data FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Randgen FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Drop FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.5 Timer FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.6 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Receive Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Generic Functional Block Thread . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Stats Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Main Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.5 Interconnection of the Threads . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Validation 21

5 Evaluation 23

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Accuracy of the Generic Functional Block . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Maximum Packet Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Two Competing Protocol Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.1 No congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2 Congestion at the H2S Block . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.3 Congestion at the Software Generic Functional Block . . . . . . . . . . . 28

5.4.4 Different Packet Generation Intervals . . . . . . . . . . . . . . . . . . . . . 29

5.4.5 Drop Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Shortcomings of the EmbedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion and Future Work 33

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



6 CONTENTS

A HowTo 35

A.1 EmbedNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1.2 How to start the EmbedNet . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.1 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.2 Structure of the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.3 Program Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.4 Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Time Schedule 41

C Project Description 43

D Declaration of Originality 47



Chapter 1

Introduction

1.1 Motivation

Nowadays the requirements of network devices vary heavily. For some applications the through-

put is the biggest issue, whereas for other applications security is the main concern. For mobile

devices high battery consumption is a key problem. Nevertheless the static protocol stack ar-

chitecture (depicted in Figure 1.1 on the left) is still widely used even though it lacks flexibility to

adapt to these needs. A packet in a static protocol stack needs to pass all protocol layers even

if some of them aren’t used in a certain scenario. This results in inefficient implementations in

terms of throughput and energy consumption.

That’s why there is a new approach using a dynamic protocol stack (DPS) architecture (depicted

in Figure 1.1 on the right). In the DPS architecture the network functionality is split into so called

functional blocks (FBs). A functional block for security could for example implement an encryp-

tion [7]. Another functional block providing reliability could for example implement a continuous

repeat request protocol [2]. The functional blocks can be dynamically linked to form an arbitrary

protocol stack. This reconfigurable protocol stack is continuously adopted to the current needs

and therefore reduces the overhead. For example if a connection is known to be reliable anyway

one can omit the functional block for reliability.

Furthermore each functional block can be dynamically mapped to hardware or software. For

many functional blocks the processing in hardware is faster by orders of magnitude compared to

software. But in most implementations the area for hardware is limited. In software the number

of functional blocks is nearly unlimited but on the other hand the processing is slow and all

functional blocks have to share one or a few processors whereas the functional blocks mapped

to hardware run in parallel and can process the packets in a pipelined fashion.

The EmbedNet prototype platform is an FPGA-based implementation of the dynamic protocol

stack architecture. It is designed to evaluate functional blocks and dynamic protocol stacks in

different scenarios. The main drawback of the EmbedNet platform is the large implementation

effort for a single functional block. A new functional block needs to be implemented in hardware

and software separately since there is no automatic conversion process. In addition each func-

tional block needs to be evaluated thoroughly in order that it doesn’t introduce any instabilities

in the EmbedNet system. These reasons explain why there exist only a few implementations

of functional blocks up to now. Therefore it’s not feasible to investigate larger more complex

dynamic protocol stacks on the EmbedNet platform.

One possible solution to this problem is the use of a generic functional block. A generic func-

tional block emulates the forwarding behavior (in time and drop rate) of an arbitrary functional

block. Multiple instances of a generic functional block can then emulate a complex dynamic

protocol stack. This allows for a performance evaluation without the need to implement more

functional blocks.

7



8 CHAPTER 1. INTRODUCTION

Application

Transport

Network

MAC

PHY PHY/MAC

Application

Static Protocol Stack Dynamic Protocol Stack

Software

Hardware

FB

FB

FB
FB

FB

FB

Figure 1.1: Static and Dynamic Protocol Stack Architecture

1.2 Goal

The goal of this thesis is to first implement a generic functional block and then to use this

functional block to evaluate the performance of the EmbedNet platform. The functional block

should be implemented in hardware and software featuring the same functionality.

1.3 Related Work

This thesis evaluates the EmbedNet platform [5]. The EmbedNet implements the DPS archi-

tecture and proposes a way to continuously adapt the protocol stack and the hardware/soft-

ware mapping to the environment by using a self-aware network node architecture. In addition

it shows how two network nodes negotiate a common protocol stack. An important part of the

hardware implementation of the EmbedNet is the Network on Chip (NoC) which has been devel-

oped by Huber [4]. The NoC is used to forward packets inside the EmbedNet between different

functional blocks mapped to hardware.

Other related work are implementations of application specific functional blocks for the Embed-

Net. Deragisch [2] developed two functional blocks. One implements a computationally expen-

sive Huffman compression algorithm and the other one implements a reliability protocol which

is exemplary for flow control. For both functional blocks Deragisch compares the execution time

in hardware and software. Furthermore he implemented a state transition mechanism, which

is necessary to move the functional blocks between hardware and software. Kronig addresses

security in his thesis [6] and presents an implementation of a functional block featuring an in-

trusion prevention system (IPS). Yang [7] implemented a functional block which provides AES

encryption. In contrast to the described functional blocks my generic functional block does not

provide any functionality useful for an application. Instead it’s designed to emulate the forward-

ing behavior (processing delay and drop rate) of an arbitrary functional block.

An application of the DPS architecture is presented by Happe et. al. in [3]. A smart camera

network represents the Internet of Things. In two case studies it is shown how to track an

object over multiple views of cameras and that an adaptive hardware/software mapping can

save hardware resources. However the protocol stacks are limited to a single AES functional

block, an AES encryption/decryption module. In this thesis I propose a generic functional block

which can be used to form a protocol stack of arbitrary complexity. This allows for an extensive

evaluation of the underlaying EmbedNet platform.



1.4 Outline 9

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 describes the concept of a

performance evaluation using a generic functional block. Chapter 3 gives an overview of the

EmbedNet platform and explains the design and implementation of the generic functional block.

Chapter 4 shows results of the validation of the generic functional block in action. The results

of the evaluation of the EmbedNet are presented in Chapter 5. Chapter 6 concludes the thesis

and discusses future work. Appendix A describes how to use the generic functional block which

has been developed in this thesis. The time schedule of the thesis can be found in Appendix B.

The original project description is included in Appendix C.



10



Chapter 2

Methodology

2.1 Generic Functional Block

The generic functional block is implemented in hardware as well as in software. Both versions

provide the same basic functionality. The generic functional block emulates the forwarding be-

havior of a real functional block in terms of delay and drop rate as shown in Figure 2.1. A generic

functional block receives a packet, then stores the packet and forwards the unchanged packet

after a certain time interval. This emulates the processing of a real functional block. A generic

functional block can also drop an arriving packet with a predefined drop rate. This is useful for

example to emulate the behavior of a functional block that implements an intrusion prevention

system (IPS).

Generic Func
onal

Block

Parameter: Delay

Incoming

Packet

Outgoing

Packet

Generic Func
onal

Block

Parameter: Drop Rate = 10%

90 packets100 packets

Figure 2.1: Functionality of the generic functional block

To configure the generic functional block there are three main parameters:

• Delay per Packet

• Delay per Byte

• Drop Rate

These parameters can be configured for each instance of the generic functional block sep-

arately. The delay per byte is useful if the processing time of the real functional block to be

emulated depends on the packet length. The drop rate is related to all arriving packets not to a

time interval in which the packets arrive.

Many additional parameters could have been selected to allow for a more realistic emulation of

real functional blocks. Some ideas are described in Section 6.2. The reason why only the pa-

11



12 CHAPTER 2. METHODOLOGY

rameters described above have been implemented is that a bottleneck in the current EmbedNet

prototype implementation would hide most of the details of further parameters.

The interconnection of the generic functional blocks is realized with an address-parameter which

identifies the next generic functional block. Each generic functional block simply forwards the

packets to the generic functional block corresponding to this address. More details about the

addressing can be found in Sections 3.1.4 and 3.3.5.

2.2 Evaluating using Generic Functional Blocks

The generic functional block helps to evaluate the behavior of large complex dynamic proto-

col stacks with many different functional blocks. With this concept it is not necessary that all

implementations of the functional blocks are available. Several instances of the generic func-

tional block can be interconnected to form arbitrary dynamic protocol stacks. The idea is that a

statistical description of the behavior (delay and drop rate) of real functional blocks is used to

parametrize the generic functional blocks. With this a first rough estimation of the performance

of the complex dynamic protocol stack on the EmbedNet can be obtained.

In this thesis I first investigate the maximum packet rates with simple dynamic protocol stacks

consisting of up to one hardware and/or one software generic functional block. This allows to

identify the performance bottleneck of the EmbedNet platform. Afterwards I measure the packet

throughput of more complex settings with two competing protocol stacks as shown in Figure 2.2.

In these scenarios I examine the fairness in allocation of the resources shared by both protocol

stacks.

PHY/MAC

Application

Software

Hardware

FB

FB

FB

FB FB

FB

FB

FB

Test Traffic

Figure 2.2: Two parallel protocol stacks

The generic functional block can also be used to act as an artificial bottleneck or a black hole.

This might be useful for debugging purposes in future work for the EmbedNet but is not covered

in this thesis.



Chapter 3

Implementation

3.1 EmbedNet Platform

The EmbedNet (depicted in Figure 3.1) is a FPGA-based prototype platform which implements

the dynamic protocol stack architecture. For the implementation the Xilinx ML605 evaluation

board with a Virtex-6 FPGA is used. The FPGA is SRAM based, i.e. the FPGA configuration is

lost on power down and needs to be downloaded to the FPGA each time it is powered on. In

the following sections I explain the components of the EmbedNet.

NoC

PHY

SDRAM

Switch 1 Switch 2

ETH H2S S2H FB

System bus

Memory
controller

CPU

FPGA

Figure 3.1: EmbedNet Design ([5], modified)

3.1.1 Communication

The physical Ethernet interface (PHY) provides connectivity to other network nodes.

The network on chip (NoC) connects all hardware functional blocks inside the EmbedNet node.

It is implemented as a unidirectional ring network. The advantage of this topology is the simple

architecture. A major drawback is however that all internal communication is broken if a single

functional block blocks the network on chip.

13



14 CHAPTER 3. IMPLEMENTATION

3.1.2 Hardware Functional Blocks

There are three functional blocks that are always present in hardware: ETH, H2S and S2H.

The ETH functional block interfaces with the physical Ethernet interface and translates the ex-

ternal header of a packet to the internal header and vice versa (for detailed explanation see

Section 3.1.4). The H2S and the S2H block represents the connection between hardware and

software. Every packet that crosses the hardware/software boundary must pass through one of

them. The H2S block is used to forward packets from hardware to software, the S2H block is

used to forward packets from software to hardware. In addition the S2H block acts as black hole

for traffic arriving from the hardware side.

Furthermore there is a varying number of slots for functional blocks (FB). Each FB block can

implement any functional block. Partial reconfiguration allows to reconfigure only the area of the

functional block while maintaining the rest of the FPGA configuration intact. In my thesis I don’t

use this feature because I only use one type of functional block, the generic functional block.

Therefore the FPGA configuration is always generated as a whole.

3.1.3 Software

To run software on the FPGA there is a soft core CPU called MicroBlaze. A soft core CPU is built

from configurable logic blocks (CLBs) from the FPGA rather than it is physically implemented

as a structure in the silicon. The MicroBlaze processor runs with a clock frequency of 100 MHz.

On this soft core CPU an embedded Linux operating system is running. The CPU is connected

to external SDRAM memory as well as non-volatile Compact Flash memory on the evaluation

board. The Compact Flash Memory is used to store the executables of the software and the

collected measurement data.

3.1.4 Addressing & Identifiers

Each packet arriving at the EmbedNet node consists of the payload and an external header

which contains a MAC header and an 8 byte hash. The MAC header is used to address the

network node. The hash identifies the protocol stack which is used to process the packet. At the

ETH block this external header is then replaced by an internal header. The details of the header

translation are depicted in Figure 3.2. The internal header, also called the NoC header, is used

for addressing functional blocks inside the network on chip. It contains the ID of the destination

switch (global address) and the ID of the functional block (local address). In addition a so called

Information Dispatch Point (IDP) is used. Originally each IDP was meant to identify a functional

block. In this thesis the IDP only identifies the protocol stack which shall process the packet. In

the ETH block every hash is mapped to exactly one destination IDP. This mapping is configured

by software.

14 bytes 8 bytes

MAC Header
Hash

src addr dst addr type

6 bytes 6 bytes 2 bytes 8 bytes

12 bytes

NoC Header

global
addr

local
addr

direc-
tion

latency
critical

reserved
payload
length

src IDP dst IDP

4 bits 2 bits 1 bit 1 bit 6 bit 2 bytes 4 bytes 4 bytes

Figure 3.2: Translation of the header in the ETH block



3.2 Hardware Design 15

3.2 Hardware Design

The hardware design of the generic functional block is implemented in VHDL and is trans-

lated into a hardware configuration for the FPGA using the Xilinx Platform Studio (xps) soft-

ware.

The block diagram of the hardware generic functional block is depicted in Figure 3.3. The func-

tional block is built from multiple finite state machines (FSMs), a FIFO and the ReconOS in-

terface [1]. The ReconOS interface allows to set the parameters of the hardware generic func-

tional block from software. Furthermore parameters or statistical data can be queried from soft-

ware.

Figure 3.3: Hardware design of the generic functional block

A packet which is forwarded to this functional block announces its arrival with a control signal to

the data_fsm. If the block is ready the data_fsm queries the drop_fsm for a drop decision.

If the packet should be dropped the data_fsm indicates to the upstream block that the packet

can be sent but does not instruct the FIFO to read in the data bytes. This means the packet

is never stored. If the packet shouldn’t be dropped the data_fsm instructs the FIFO to store

the incoming data bytes and notifies the upstream block that the packet can be sent. Once the

packet is fully stored in the FIFO the data_fsm instructs the timer_fsm to start counting.

When the time interval defined by the parameters has elapsed the timer_fsm notifies the

data_fsm. Then the data_fsm informs the downstream block that the packet is ready to be

sent. If the downstream block acknowledges this signal the data_fsm instructs the FIFO to

send out the packet.

3.2.1 ReconOS Interface

Each hardware functional block which uses an ReconOS interface is visible to other processes

as a so called delegate thread. This delegate thread represents the hardware thread in software.

For the communication with the software a message box (mbox) from the ReconOS library is

used. A mbox is a message queue where multiple threads (in hardware or software) can put or

get messages.

To use the ReconOS interface I implemented the reconos_fsm. In the FSM several commands

are defined in order to set the parameters and to get statistical data to and from the hardware



16 CHAPTER 3. IMPLEMENTATION

generic functional block. If all necessary parameters have been set the reconos_fsm sets a

signal which indicates to the other FSMs that it’s safe to start operating.

3.2.2 Data FSM

The data_fsm implements the LocalLink interface1 to communicate with upstream and down-

stream hardware modules that send and receive packets. It ensures that an arriving packet is

only accepted and stored in the FIFO if the generic functional block is ready. That’s the case if

the parameters are set and no other (partial) packet is currently stored inside the generic func-

tional block. Similar for the outgoing port a ready signal is set when the generic functional block

has finished with emulating the processing of the packet. The packet is not sent until the down-

stream module indicates that it is ready to receive the packet. If that is the case the data_fsm

instructs the FIFO to write the packet to the outgoing port.

In addition to the packet forwarding the data_fsm also collects statistical data. It counts the

number of packets that arrived at the generic functional block and the number of packets that

have been forwarded by the generic functional block. These two counters can be accessed by

software via the ReconOS Interface. The difference of these two numbers gives the number of

packets that have been dropped inside the generic functional block.

3.2.3 Randgen FSM

The randgen_fsm gets the seed parameter from the reconos_fsm and continuously gen-

erates 32 bit pseudo random numbers. For this purpose the randgen_fsm implements the

pseudorandom number generator depicted in Figure 3.4. The random number is used by the

drop_fsm to do randomized drop decisions. If the drop_fsm doesn’t currently produce the

drop decision using random numbers the random generator isn’t active and doesn’t produce

random numbers.

Figure 3.4: Block diagram of the pseudorandom number generator

3.2.4 Drop FSM

The the purpose of the drop_fsm is to have a new drop decision ready every time an packet

arrives at the generic functional block. The drop decision simply tells the data_fsm to either

drop or forward the packet. There are two parameters for the drop_fsm: the drop_type and

the drop_value. There are three operating modes of the drop_fsm which can be selected

with the drop_type parameter:

• For drop_type=0 the drop_fsm is disabled and doesn’t drop any packets.

• For drop_type=1 every drop_value-th packet is dropped. This mode doesn’t use ran-

domization and therefore doesn’t only hold for the mean.

1http://www.xilinx.com/aurora/aurora_member/sp006.pdf [accessed 20-May-2015]

http://www.xilinx.com/aurora/aurora_member/sp006.pdf


3.3 Software Design 17

• For drop_type=2 every 232

drop_value
-th packet will be dropped on average. In this mode the

randgen_fsm is used to generate randomized drop decisions. If the random number is

larger than the drop_value the packet is forwarded otherwise the packet is dropped.

For both cases drop_type=1 and drop_type=2 the setting drop_value=0 is not valid and

will disable the drop functionality, i.e. no packets are dropped. To drop every packet the pa-

rameters can be set to drop_type=1 and drop_value=1. With this configuration the generic

functional block acts as a black hole.

3.2.5 Timer FSM

The timer_fsm implements the delay. It consists of two counters which count the number of

clock cycles the packet needs to be delayed. One counter counts the number of bytes, the

other counter counts the clock cycles for each byte of the packet and the packet itself. The two

parameters delay_per_packet and delay_per_byte as well as the packet size in bytes

determines the number of clock cycles to delay the packet:

total_delay = delay_per_packet + packet_size · delay_per_byte

3.2.6 FIFO

The FIFO (First In First Out) queue stores the packet inside the generic functional block. It has

a fixed capacity of 1600 bytes. This is enough for any valid packet since the maximum packet

length is 1500 bytes. The data width is 8 bits because the LocalLink interface has a data width

of 8 bits, too. There are two signals which allows the data_fsm to instruct the FIFO to read

one byte per clock cycle from the input port or to write one byte per clock cycle to the output

port.

3.3 Software Design

The software is written in C and makes use of POSIX threads (Pthreads) and POSIX

semaphores. The software implements a modular design to allow for arbitrary protocol stacks.

Each module is represented by a Pthread. All threads are executed quasi-parallel on a single

soft core CPU. There are four types of threads which are all depicted in the exemplary setup in

Figure 3.5. All the software is implemented in the user space.

Software

Hardware

H2S
receive
thread

generic FB
 thread

stats
thread

main
thread

Figure 3.5: Exemplary setup of the software design with a generic functional block

3.3.1 Receive Thread

The receive thread is used to fetch packets from the H2S block and to distribute them to the

correct software threads. There is exactly one instance of the receive thread. The H2S block

stores the packet in the memory. From the H2S block the receive thread gets the address and



18 CHAPTER 3. IMPLEMENTATION

the size of the packet via the ReconOS interface. The thread then extracts the destination IDP

from the packet. Based on the destination IDP and the configuration the receive thread forwards

the packet to the corresponding software thread. This can be a software instance of the generic

functional block or a stats thread which collects performance statistics.

3.3.2 Generic Functional Block Thread

The generic functional block thread is the software implementation of the generic functional

block. It emulates the forwarding behavior according to a user defined set of parameters.

The main difference to the hardware version is the implementation of the processing delay. To

correctly emulate a real software functional block the CPU must be kept busy while the packet

is delayed. This is implemented using an assembler NOP (no operation) operation which is ex-

ecuted for a certain number of times. The NOP operation has no effect beside that it keeps

the CPU busy for one clock cycle. The advantage of the assembler NOP operation is its small

granularity and that it is not omitted when the code is optimized by the compiler. I made mea-

surements to get the execution time of one NOP loop iteration on the soft core CPU of the

FPGA. In Figure 3.6 the distribution of the execution time for one NOP loop iteration is depicted.

The outliers are most likely due to context switches of the CPU. One NOP loop iteration takes

about 110 ns which corresponds to 11 clock cycles on the CPU which is running with a clock

frequency of 100 MHz (This means 1 clock cycle for the NOP and 10 clock cycles overhead for

one loop iteration). This value is used to convert the requested delay into a number of NOP loop

iterations.

Another small difference to the hardware implementation is the random number generator. To

generate random numbers in the software generic functional block the standard C library func-

tion rand() is used. This random generator is seeded with the system time when the program

is executed by using the function srand(). Therefore in software it isn’t possible to initialize

each instance of the generic functional block with a separate seed.

0.110 0.111 0.112 0.113 0.114 0.115 0.116 0.117 0.118
Execution time per NOP loop iteration [usec]

0

100

200

300

400

500

600

700

800

900

C
o
u
n
t

Figure 3.6: Distribution of the execution time of one NOP loop iteration (98.6% of 1000 measured

samples are displayed)

3.3.3 Stats Thread

The stats thread is used to count and optionally display all arriving packets. There is a sepa-

rate counter for every IDP. The main thread reads and stores these counter values at specific

time instants to generate statistics. Once a packet has been registered in the stats thread it is

discarded.



3.3 Software Design 19

3.3.4 Main Thread

The main thread handles all program arguments and reads the protocol stack configuration

from a file. The program arguments are used to select what to log or to display. The configura-

tion file contains the parameters for the generic functional blocks as well as information of how

the blocks in software and hardware are interconnected (for more information about the config-

uration file see Appendix A.2.4). With these information the main thread initializes all hardware

and software threads.

Furthermore the main thread collects samples of measurements and prints statistics. For this it

stores timestamps and the counter values from different software threads.

3.3.5 Interconnection of the Threads

All instances of the threads except for the instances of the receive and main threads have their

associated shared memory as well as two semaphores which protect the shared memory. The

shared memory consists of a pointer to the packet data in the memory, the packet length and

the packet origin. A scheme of this design is depicted in Figure 3.7a.

In the following I explain the data transfer mechanism between two threads based on the ex-

ample of the interconnection of the generic FB thread and the stats thread for the scenario

depicted in Figure 3.7b. The packet signal semaphore is initialized with the value 0, the done

signal semaphore is initialized with the value 1. The done signal semaphore indicates that the

content of the shared memory is no longer used by the stats thread and therefore can safely be

overwritten with a new packet. The generic FB thread which wants to send a packet decrements

the done signal semaphore of the stats thread. This makes sure no other thread writes to the

shared memory at the same time. The generic FB thread can then safely write its packet and

the associate information into the shared memory. After that the generic FB thread increments

the packet signal semaphore of the stats thread. This tells the stats thread that there is new

data in the shared memory which can be fetched. The stats thread then processes the packet

and then first decrements the packet signal semaphore and afterwards increments the the done

signal semaphore. This allows the next thread to send a packet to the stats thread. With this

concept it is also possible that multiple threads forward the packets to a single thread.



20 CHAPTER 3. IMPLEMENTATION

shared
memory

pkt_signal

done_signal

generic FB
 thread

main thread

(a)

shared
memory

shared
memory

receive
thread

main thread

pkt_signal

done_signal

generic FB
 thread

main thread

pkt_signal

done_signal

stats
thread

main thread

(b)

Figure 3.7: Design of a single thread (a) and a setup of interconnected threads (b)



Chapter 4

Validation

In this chapter I mainly focus on the validation of the hardware implementation of the generic

functional block.

During the development I validated the hardware implementation of the generic functional block

by simulating the behavior. For the simulation I use the Xilinx ISE Simulator (ISim)1. In Figure 4.1

the simulation of the processing of one packet is depicted. First the packet is read into the FIFO

therefore the filling level (fifo8_s_fill signal) of the FIFO is incremented. Then the drop

decision is used (not shown in the figure). In this case the packet isn’t dropped. Afterwards

the packet is delayed. First the packet is delayed according to the delay_per_byte=2. The

packet size in this example is 6 bytes. Therefore the delay is 12 clock cycles. Then the packet

is delayed according to the delay_per_packet=4 which takes 4 clock cycles in this example.

In the end the packet is written to the output port.

clk 

timer_count_bytes[15:0]

200 ns 250 ns 300 ns 350 ns 400 ns 450 ns

Figure 4.1: Simulation of the hardware generic functional block (ISE Simulator)

Once everything worked in the simulation I generated the bitstream (configuration for the FPGA)

and tested the implementation on the FPGA. To validate and debug the implementation while

running on the FPGA there is the Xilinx tool named ChipScope2. To use this tool it is nec-

essary to add an additional test circuitry to the VHDL code. An exemplary measurement of

the implementation running on the FPGA is shown in Figure 4.2. Again the processing of one

packet is depicted. In this case the packet size is 38 bytes. The parameters are unchanged

(delay_per_packet=4 and delay_per_byte=2).

I tested the hardware as well as the software generic functional block in various scenarios. I

validated the behavior with different packet sizes and with different combinations of parameters.

For the delay parameters I used combinations of the three basic cases: zero, one or more than

one cycle (e.g. eight cycles). For the drop functionality I tested the three cases: drop no packets,

1http://www.xilinx.com/tools/isim.htm [accessed 20-May-2015]
2http://www.xilinx.com/tools/cspro.htm [accessed 20-May-2015]

21

http://www.xilinx.com/tools/isim.htm
http://www.xilinx.com/tools/cspro.htm


22 CHAPTER 4. VALIDATION

Figure 4.2: Hardware debugging of the hardware generic functional block (Screenshot of the

ChipScope Software)

drop every packet and drop a fraction of all packets (e.g. a third). In addition I tested all drop

types to make sure that they work as expected.



Chapter 5

Evaluation

5.1 Experimental Setup

PC

minicom

Packet Generator

ostinato /
 custom C program

dow

ChipScope

USB-UART

USB-JTAG

PHY

H2SETH

HWFB0

HWFB1

HWFB2

receive
thread

stats
thread

Software

EmbedNet

SWFB0

 

Figure 5.1: Experimental Setup

The experimental setup is depicted in Figure 5.1. For the measurements I use the Xilinx Virtex-

6 FPGA ML605 evaluation board. On the FPGA the MicroBlaze soft core processor which is

clocked at 100 MHz and runs an embedded Linux version 2.6.37 is used. In addition I use a

Desktop PC that runs Ubuntu 14.10 with Linux version 3.16.0.

The evaluation board is connected by multiple ports to the PC. The USB-UART port is used

setup a remote serial console on the Desktop PC to access the Linux which runs on the FPGA.

For this the terminal emulation program minicom is used. To download the bitstream (FPGA

configuration) and the kernel image to the FPGA the USB-JTAG port is used. For this I use a

script called dow which calls the Xilinx tools iMPACT and xmd (Xilinx Microprocessor Debug-

ger). ChipScope uses the same USB-JTAG port for the hardware debugging.

To send test network traffic to the EmbedNet the physical interface is used. All packets originate

from the PC and end up in the software on the FPGA (except the packets that are dropped

along the way). To generate the packets for the measurements I use the ostinato software1 as

well as a customized C program to generate packets with the required properties such as size,

headers and packets per second.

23



24 CHAPTER 5. EVALUATION

\

PC

minicom

Packet Generator

ostinato /
 custom C program

dow

ChipScope

USB-UART

USB-JTAG

PHY

H2SETH

HWFB0

receive
thread

SWFB0

stats
thread

Software

EmbedNet

IDP=3

IDP=2

IDP=2

IDP=3

Figure 5.2: Setup to measure the accuracy of the delay in the generic functional block

5.0000 5.0001 5.0002 5.0003 5.0004 5.0005 5.0006 5.0007 5.0008
Time between packets [sec]

0

2

4

6

8

10

12

C
o
u
n
t

Distribution of time between packets
(5 secs delay in hardware generic FB)

(a)

5.00 5.02 5.04 5.06 5.08 5.10
Time between packets [sec]

0

5

10

15

20

25

30

35

40

C
o
u
n
t

Distribution of time between packets
(5 secs delay in software generic FB)

(b)

Figure 5.3: Distribution of the delay of the generic functional blocks in hardware (a) and soft-

ware (b)

5.2 Accuracy of the Generic Functional Block

In order to measure the accuracy of the delay parameter of the generic functional block I used

the setup with two protocol stacks (IDP 2 and IDP 3) depicted in Figure 5.2. The delay param-

eters of the hardware and software generic functional block are set to 5 seconds. The drop

functionality is not used. With the packet generator I flooded the EmbedNet node with a packet

rate larger than 1 packet every 5 seconds. In the stats thread I measured the delay between

consecutive packets that passed through one of the generic functional blocks. I conducted two

separate measurements, one with the hardware generic block only (IDP 2) and another one with

the software generic block only (IDP 3). The distribution of the delay in the hardware generic

functional block is depicted in Figure 5.3a whereas the distribution of the delay in the software

generic functional block is depicted in Figure 5.3b.

The two figures show that the accuracy of the hardware implementation is about 100 times

better than the accuracy of the software implementation. I actually expected a result like this

since the software execution shares the CPU with other system tasks and therefore includes

many uncertainties like context switches. The hardware implementation on the other hand runs

independently of the CPU and is deterministic. The measurements show that both versions

work as expected.

1https://code.google.com/p/ostinato/ [accessed 20-May-2015]

https://code.google.com/p/ostinato/


5.3 Maximum Packet Rates 25

5.3 Maximum Packet Rates

\

PC

minicom

Packet Generator

ostinato /
 custom C program

dow

ChipScope

USB-UART

USB-JTAG

PHY

H2SETH

HWFB0

receive
thread

SWFB0

stats
thread

Software

EmbedNet

IDP=3 or
IDP=5

IDP=2  or
IDP=4

IDP=2 or
IDP=5

IDP=3  or
IDP=4

Figure 5.4: Setup to measure the maximum packet rates for four different protocol stacks

The goal of the following measurements is to measure the maximum packet rates with four

different protocol stacks including up to one hardware generic functional block and/or up to one

software functional block. The setup us depicted in Figure 5.4. The protocol stacks are identified

by their IDP. All delays of the generic functional blocks are set to 0 and the drop functionality is

not used. Each protocol stack is measured by its own (i.e. there where no packets with different

IDPs in the system at the same time). Again the EmbedNet is flooded with more packets than

it can handle. The packet rates (packets per seconds (pps)) measured in the stats thread are

listed in Table 5.1, 5.2 and 5.3 for the three packet sizes 64 bytes, 500 bytes and 1500 bytes,

respectively.

Table 5.1: Maximum packet rates with packets of size 64 bytes

HW FB (IDP 2) SW FB (IDP 3) HW + SW FB (IDP 4) no FB (IDP 5)

pps 996 638 627 994

kbits/sec 510 327 321 509

Table 5.2: Maximum packet rates with packets of size 500 bytes

HW FB (IDP 2) SW FB (IDP 3) HW + SW FB (IDP 4) no FB (IDP 5)

pps 993 634 638 992

kbits/sec 3’972 2’536 2’552 3’968

Table 5.3: Maximum packet rates with packets of size 1500 bytes

HW FB (IDP 2) SW FB (IDP 3) HW + SW FB (IDP 4) no FB (IDP 5)

pps 991 639 639 992

kbits/sec 11’892 7’668 7’668 11’904

The results show that the size of the packet has no influence on the maximum packet rates.

However the software generic functional block has a quite significant influence. It reduces the

maximum packet rate by 36% from about 990 pps to about 630 pps. That’s remarkable since the

generic functional block is configured with zero delay. Possible reasons for this reduction are ad-

ditional context switches and other overhead (e.g. synchronization with semaphores, conditional

statements) caused by the software generic functional block.

I also measured the packet rates in the hardware generic functional block with disabling the

software. This is interesting because the software generic functional block in the protocol stacks

also reduces the packet rate in the hardware part. The reason for this is that the hardware

version of the generic functional block only sends the packets if the downstream software com-

ponents are ready to handle the packet. To disable the software I redirected all packets from

the hardware generic functional block to the S2H block in the EmbedNet. The S2H block acts

as a black hole for traffic arriving from the NoC. With this setup the hardware generic functional

block is not slowed down by the software. The maximum packet rates of these measurements



26 CHAPTER 5. EVALUATION

for different packet sizes are listed in Table 5.4. I need to add that the packet rate for packets of

the size 64 bytes wasn’t limited by the generic functional block but by the packet generator on

the PC.

Table 5.4: Maximum packet rates measured in the hardware generic functional block

packet size 64 bytes 500 bytes 1’500 bytes

pps 429’240a 104’219 33’793

kbits/sec 219’771 416’867 405’516

amaximum packet rate limited by packet generator

The results show that the H2S block and/or the software significantly reduce the packet rates

and therefore represent a bottleneck.

5.4 Two Competing Protocol Stacks

PC

minicom

Packet Generator

ostinato /
 custom C program

dow

ChipScope

USB-UART

USB-JTAG

PHY

H2SETH

HWFB0

HWFB1 HWFB2

receive
thread

SWFB0

stats
thread

Software

EmbedNet

SWFB1

SWFB2

IDP=9

IDP=8

IDP=9

IDP=8

Figure 5.5: Setup with two competing protocol stacks

In the following series of measurements I investigate the behavior of the EmbedNet if two parallel

protocol stacks are used at the same time. For this scenario I use the setup which is depicted

in Figure 5.5. The protocol stack corresponding to IDP 8 consists of one hardware generic

functional block and two software generic functional blocks whereas the protocol stack with IDP

9 contains two hardware generic functional blocks and one software generic functional block.

All the hardware generic functional blocks are configured to delay every packet by δ = 10
clock cycles in all measurements. The software functional blocks of the stack with IDP 8 are

configured to emulate a processing time of ∆/2 for every packet whereas the single software

generic functional block of the stack with IDP 9 emulates a processing time of ∆ for every

packet. The ∆ is varied for the different measurements. The dropping functionality is not used

except for the last measurement. For all measurements only packets with a size of 64 bytes are

used. Therefore there is no benefit in using the delay_per_byte parameter.

The setup implies that both protocol stacks need the same processing time on the CPU for one

packet. If both protocol stacks get the same amount of processing time on the CPU they both

should have the same throughput. Because the protocol stack with IDP 8 consists of 2 software

threads and the protocol stack with IDP 9 only has 1 software thread it could be possible however

that the protocol stack with IDP 8 gets 2/3 of the processing time and the protocol stack with

IDP 9 gets only 1/3 of the processing time on the CPU.



5.4 Two Competing Protocol Stacks 27

5.4.1 No congestion

For the first measurement I configured the packet rates and the ∆ such that there shouldn’t

be a congestion neither at the H2S block nor at the generic functional blocks. The input with

a upper limit of 400 pps per protocol stack is depicted in Figure 5.6. The ∆ is set to 10’000

clock cycles which correspond to 0.0001 seconds and a maximum packet rate of 10’000 pps.

However the maximum packet rate which can be expected is around 630 pps as seen in the

previous measurements (section 5.3). The measured result is depicted in Figure 5.7.

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

600

p
p
s

IDP 8

IDP 9

Sum

Figure 5.6: Generated packet rates with an upper limit of 400 pps per protocol stack (ideal

values)

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

p
p
s

(temporal resolution: 0.400 secs)

IDP 8

IDP 9

Sum

Figure 5.7: Measured packet rates in the stats thread for the setup with no congestion

The results show that for a total packet rate below about 370 pps the EmbedNet behaves almost

ideally. However the EmbedNet seems not to be able to process packet rates above 370 pps

in an ideal manner with this setup. That’s most likely because there are conflicts between the

two protocol stacks in the software. Interestingly once the limit of about 370 pps is hit the total

packet rate continues to grow to about 440 pps. With input packet rates above 370 pps the

distribution of resources is no longer proportional to the input packet rate but is fair in a way

because the system tries to allocate to both protocol stacks the same amount of processing

time. This means that the packet rates of both protocol stacks tend to get to the same level (this

can be seen better in Section 5.4.4). This equilibrium level however doesn’t persist because

both input packet rates are changing heavily and move into different directions.



28 CHAPTER 5. EVALUATION

5.4.2 Congestion at the H2S Block

For the second measurement I configured the packet rates such that there is a congestion

before the H2S block. The generated packet rates with a limit of 2’000 pps per protocol stack

are depicted in Figure 5.8. The ∆ is left unchanged at 10’000 clock cycles. The resulting output

packet rates measured in the stats thread are depicted in Figure 5.9.

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

500

1000

1500

2000

2500

3000

p
p
s

IDP 8

IDP 9

Sum

Figure 5.8: Generated packet rates with an upper limit of 2’000 pps per protocol stack (ideal

values)

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

p
p
s

(temporal resolution: 0.400 secs)

IDP 8

IDP 9

Sum

Figure 5.9: Measured packet rates in the stats thread for the setup with congestion at the H2S

The results of these measurements contain much more variations compared to the measure-

ments without congestion in Figure 5.7. An amount of packets that are too much at a certain

time instant are delayed and processed later. In addition the resources are no longer distributed

in a fair way. The peak of the protocol stack with IDP 9 are significantly higher than the peaks

of the protocol stack with IDP 8 even though only one protocol stack is active at the time of the

peaks. A possible reason for that could be that at the H2S block not the same amount of packets

from both protocol stacks are lost (due to the congestion) because the input packet rates of both

stacks are not symmetrical to each other.

5.4.3 Congestion at the Software Generic Functional Block

For this measurement I configured the software generic functional blocks such that they cannot

process all packets that arrive. This means the software generic functional blocks artificially



5.4 Two Competing Protocol Stacks 29

produces a congestion. The ∆ is set to 2’000’000 clock cycles which equals 0.02 secs and

allows a maximum packet rate of 50 pps if only a single protocol stack is using the CPU. For

the packet generation I used the packet rates depicted in Figure 5.10. It’s the same packet

generation pattern I used in the first measurement (Figure 5.6). The results of the measurement

in the stats thread is depicted in Figure 5.11.

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

600

p
p
s

IDP 8

IDP 9

Sum

Figure 5.10: Generated packet rates with an upper limit of 400 pps per protocol stack (ideal

values)

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

10

20

30

40

50

p
p
s

(temporal resolution: 0.405 secs)

IDP 8

IDP 9

Sum

Figure 5.11: Measured packet rates in the stats thread for the setup with congestion at the

software generic functional blocks

Again the results show a lot of variations which are most likely due to the congestion. The total

packet rate meets the expectation of 50 pps quite well. Also the two protocol stacks seem to get

a fair share of the resources since both stacks exhibit symmetrical packet rate curves to each

other.

5.4.4 Different Packet Generation Intervals

To investigate a more varying time behavior for the two protocol stacks I did a measurement

with two different intervals between the peaks of the packet generation output. The interval for

the protocol stack with IDP 8 is still set to 40 seconds but the interval for the protocol stack

with IDP 9 is set to 60 seconds. The generated packet rates are shown in Figure 5.12. The ∆
is set to 10’000 clock cycles. The result of the measurements in the stats thread is depicted in



30 CHAPTER 5. EVALUATION

Figure 5.13.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time [sec]

0

100

200

300

400

500

600

700

800

p
p
s

IDP 8

IDP 9

Sum

Figure 5.12: Generated packet rates with different intervals between the peaks (ideal values)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time [sec]

0

100

200

300

400

500

p
p
s

(temporal resolution: 0.400 secs)

IDP 8

IDP 9

Sum

Figure 5.13: Measured packet rates in the stats thread for the setup with different packet gener-

ation intervals

In this measurement again the packet processing limit of about 370 pps is identifiable. Above

that limit at around 90 seconds (in Figure 5.13) the packet rate of the protocol stack with IDP

9 suddenly decreases whereas the packet rate of the protocol stack with IDP 8 still increases

even though the input packet rates of both protocol stack increases. It seems that the packet

rate of both protocol stacks tend to the same equilibrium level. This is in a way fair since both

protocol stacks get the same amount of processing time on the CPU. However packet rates that

are proportional to the input packet rates (which is not the case here) could be considered better

in terms of fairness.

5.4.5 Drop Rate

In this last measurement I test the drop functionality of the generic functional block. For this I

configured the software generic functional block SWFB1 in the stack with IDP 8 to drop every

second packet. All other generic functional blocks are configured not to drop any packets. For the

packet generation the packet rates depicted in Figure 5.14 have been used. It’s again the same

packet generation pattern used in the first measurement (Figure 5.6). The result is depicted in

Figure 5.15.



5.5 Shortcomings of the EmbedNet 31

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

600

p
p
s

IDP 8

IDP 9

Sum

Figure 5.14: Generated packet rates with an upper limit of 400 pps per protocol stack (ideal

values)

0 10 20 30 40 50 60 70 80 90 100
time [sec]

0

100

200

300

400

500

p
p
s

(temporal resolution: 0.400 secs)

IDP 8

IDP 9

Sum

Figure 5.15: Measured packet rates in the stats thread for the setup using the drop functionality

The result shows that the drop functionality works as expected. The packet rate of the protocol

stack with IDP 8 is exactly halved compared to the same measurement without using the drop

functionality in Figure 5.7. The unusual low limit of about 250 pps of the total packet rate at which

the EmbedNet doesn’t process the packets ideally anymore may seem a bit odd at first glance.

But it can be explained by the processing overhead caused by the packets that are dropped and

therefore aren’t counted in the stats thread.

5.5 Shortcomings of the EmbedNet

During the development of the generic functional block and the evaluation of the EmbedNet

platform I noticed several shortcomings.

First of all there is the high implementation effort which is necessary to implement a new func-

tion block. This problem is however not specific to the EmbedNet platform. All platforms for

hardware acceleration implementations suffer from it. There are new approaches which can be

used to implement hardware using high-level development tools. But as of today none of them

can generate efficient implementations without special hints from the person who programs the

hardware implementation.



32 CHAPTER 5. EVALUATION

Another problem which is more specific to the EmbedNet is an "Illegal Instruction" error I en-

countered during the development of the software for the EmbedNet. The error only occurs in

approximately 50% of all executions of the program I implemented. It seems to be connected to

the initialization of the hardware. For this the ReconOS library is used. Until the end of the the-

sis I couldn’t resolve the issue because I don’t have deeper knowledge of the internal structure

of that library. Obviously it must have something to do with a kind of race condition since the

software works in 50% of the executions.

A shortcoming concerning the performance of the EmbedNet is the bottleneck at the H2S block.

This problem is quite severe since it affects all protocol stacks and all implementations of func-

tional blocks. Therefore there is another thesis which treats exactly this problem.

Another limitation is the low clock frequency of only 100 MHz of the CPU on the EmbedNet plat-

form. I think a faster CPU could significantly improve the performance of the functional blocks in

software. As mentioned in the paper of Keller et. al. [5] this problem maybe will be addressed in

the future. They suggest to use a new FPGA evaluation board with more recent hardware.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis I designed and implemented a generic functional block for the EmbedNet. The

implementation consists of a version in hardware as well as a version in software. The generic

functional block is able to emulate the forwarding behavior of a real functional block in terms of

the delay and the drop rate. This allowed me to perform the first performance evaluation of the

EmbedNet with up to six functional blocks.

The evaluation with two parallel protocol stacks showed that the EmbedNet behaves ideally for

a packet rate below a certain limit. In my scenario this limit was at a total packet rate of 370 pps.

With a total input packet rate above that limit the processing is not ideal anymore. Most likely

this is because of conflicts in the software between the different protocol stacks. Above the limit

the packet rates are no longer proportional to the incoming packet rates but are fair in a sense

since all protocol stacks have the same throughput. This indicates that all protocol stacks get

the same share of processing time.

The implementation of the generic functional block developed in this thesis can be the basis

for further performance evaluations of the EmbedNet since it allows to easily build and emulate

complex protocol stacks and to collect measurement data. In addition the generic functional

block can be useful for debugging purposes.

The EmbedNet is a quite advanced platform to test the promising idea of a dynamic proto-

col stack architecture. It has many features that are necessary to implement a self-aware and

self-adaptive network node which can operate more efficiently than today’s network nodes. Nev-

ertheless it also has a few shortcomings. The most important ones are the bottleneck at the H2S

block and the low computing power of the soft core processor.

6.2 Future Work

My implementation of the generic functional block has proved to work quite well during the

evaluation. However there is still a lot of room to improve it. Also the evaluation of the EmbedNet

is by no means complete.

One possible improvement of the generic functional block is a more detailed emulation of real

functional blocks. For example a Gaussian distribution could be used to vary the actually applied

values around the values which are set by the parameters. This would emulate an unpredictable

behavior more accurately. Another enhancement is the choice of different relations between the

packet size and the delay. At the moment the relation is purely linear. Maybe an exponential or

logarithmic relation would be useful to emulate certain real functional blocks. A further improve-

ment is the possibility to store more than one packet inside the generic functional block. This

33



34 CHAPTER 6. CONCLUSION AND FUTURE WORK

could be useful to emulate a functional block which implements an algorithm which needs ac-

cess to more than one packet at the same time. However the effects of the described additional

functionalities might be limited because a bottleneck at another place in the system could cover

some details of the emulation. For example the increase of the number of packets which can

be buffered in the generic functional block would in most situations not change much because

the packets are buffered in other blocks anyway. But especially with low packet rates and the

emulation in software the additional details would be useful.

Another aspect of the implementation of the generic functional block which could be improved

is the user-friendliness. The newly introduced configuration file certainly helps to configure the

generic functional block and the protocol stacks more easily. But there is no complete input

validation. In addition the code contains constructs to allow for more configuration possibilities.

However the additional configuration possibilities weren’t used in this thesis. Therefore they

haven’t been tested extensively.

Also the evaluation of the EmbedNet platform could be extended. There are a lot of additional

scenarios that could be useful to evaluate. For example the fairness of multiple threads on

the CPU could be investigated more deeply. There is a number of features in the EmbedNet

platform that can be used to influence the fairness behavior. For example it is possible to assign

priorities to the software threads as well as to the hardware functional blocks. Another feature

is the option to mark packets as "latency critical". In this thesis none of these features have

been used. Fortunately it is quite easy to obtain further measurement results with the provided

implementation and its configuration file.

Another aspect which has been neglected for simplicity in the evaluation in this thesis is to send

packets from the EmbedNet to another network node. Although it is likely that the behavior is

quite similar to the behavior when packets are received this could reveal undiscovered problems

in the EmbedNet.



Appendix A

HowTo

This appendix explains how to setup and use the generic functional block with the Embed-

Net.

A.1 EmbedNet

A.1.1 System Design

The system design with three slots for functional blocks is depicted in Figure A.1. This informa-

tion is needed to set the options in the configuration file of the software.

Switch 1 Switch 0 Switch 2

ETH H2S S2H FB0 FB1 FB2

00 01 00 01 00 01

0001 0000 0010

4 5 0 1 8 9

NoC

Global Address :

Local Address : 

NoC Address : 

Figure A.1: System design with three FB slots

The NoC address is formed by concatenating the 4 bit global address and the 2 bit local address.

E.g. for the H2S block: 0001 and 01 = 000101 = 5.

A.1.2 How to start the EmbedNet

1. Switch on power of FPGA board

2. Wait until network interface LEDs light up

3. Download the bitstream, e.g.

dow system.bit

4. Download the kernel image, e.g.

dow simpleImage.generic

35



36 APPENDIX A. HOWTO

5. Connect to the FPGA using minicom, e.g.

sudo minicom -D /dev/ttyUSB0

6. Connect the FSLs (Fast Simplex Links) and set up the memory, e.g.

./load_fsl.sh

./load_getpgd.sh

7. Start the software (which sets up the protocol stacks and starts the measurements), e.g.

./generic_fb -f<config file> <other arguments>

A.2 Software

The program generic_fb includes everything that runs in software. All the initialization (hard-

ware and software) as well as the creation of the threads (main, receive, swfb, stats) and also

the measurement is done with this program. The setup which is used for the initialization can be

specified in a separate configuration file which is read by the program. With the program options

it is possible to select what is displayed or measured.

A.2.1 Compilation

The software can be compiled for the MicroBlaze soft core on the FPGA as well as for a desktop

PC. On the desktop PC however there is only a subset of the functionality available because

the necessary hardware is not available. Nevertheless this is useful to debug the software more

efficiently.

make dt Compile for Desktop Ubuntu (FPGA / ReconOS specific parts will be omit-

ted)

make mb Compile for MicroBlaze (FPGA soft core)

A.2.2 Structure of the Software

generic_fb.c/.h contains the main part of the implementation, i.e. it contains all the threads

(main, receive, swfb, stats), the hardware & software initialization, the part

to perform measurements

args_from_file.c/.h contains all parts necessary to read in the configuration from the configura-

tion file

timing.c/.h taken over without modification from the app example software

A.2.3 Program Options

-h <secs> Measures the packet rate in the HW generic functional block (WITHOUT

any software threads running (except the main thread)). The packet rate is

measured over an interval of <secs> seconds.

NOTE: The IDP cannot be selected, all packets that pass through the HW

FB are counted.

[double]

-w <secs> Measures the packet rate in the HW generic FB (WITH the software threads

running). The packet rate is measured over an interval of <secs> seconds.

NOTE: The IDP cannot be selected, all packets that pass through the HW

FB are counted.

[double]



A.2 Software 37

-r <secs> Measures the packet rate in the stats_thread. The packet rate is measured

over an interval of <secs> seconds.

NOTE: The IDP must be selected with the -i argument.

[double]

-p <secs> Measures the packet rate in stats_threads over time. Logs packet count and

timestamp for 2 predefined IDPs (no. 8 & 9) into an array and prints it after

the measurement of all samples is done (in order not to influence the mea-

surement with printf())

<secs> is the interval between two samples. With -n the number of sam-

ples is selected.

Output format: Every line consists of:

<timestamp in usecs>, <packet count idp=8>, <packet

count idp=9>

[double]

-t Measures the time between 2 consecutive packets.

NOTE: The IDP must be selected with the -i argument.

[bool]

-i <num> Selects the IDP for the measurement (works with -r, -t)

[integer]

-n <num> Number of repetitions of a measurement (works with -h, -w, -r, -p or -t)

[integer]

-c Continuously (every second) prints the counter values for all IDPs. The val-

ues are counted in the stats_thread.

[bool]

-d Continuously (every second) prints the counter values of all HW generic

FBs.

[bool]

-v Verbose (print debug infos)

[bool]

-l Logging mode (don’t print anything except the measurements)

[bool]

-f <file> Filename of the file that should be used as config file. Without this option the

default filename "generic_fb.config" is used.

[string]

A.2.4 Configuration File

Every valid line has the following structure:

<command> <option> <value0> [<value1>] [<value2>]

All other lines are ignored (including the lines starting with a #-character).

The lines are grouped into blocks. Each blocks starts with the ’config’ command which is fol-

lowed by zero or more ’option’ command lines which configure the entity described in the previ-

ous ’config’ line. The structure of the line that starts a new entity is as follows:

config <entity name> <entity ID>

Note All IDs of the entities (e.g. config HWFB 0) must start from 0 and must not skip one

number! The order of the blocks with respect to their IDs doesn’t matter. Also the order

of the options within a block doesn’t matter.

Note: The behavior if one of the options below is not explicitly specified is not tested and

therefore the software might not work as expected in such cases.



38 APPENDIX A. HOWTO

Hardware generic FB (Entity name: HWFB)

Example:

config HWFB 0

option delay_per_packet_secs 5

option delay_per_byte_cycles 0

option drop_type 0

option drop_value 0

option randgen_seed 0x74d9a2fb

option dst_global_addr 1

option dst_local_addr 1

Options:

delay_per_packet_<?> In the functional block every packet is delayed by this

value. The delay per packet can be specified either by

a number of cycles (delay_per_packet_cycles) OR

a number of seconds (delay_per_packet_secs). In-

ternally the value is set in number of cycles as a 64 bit

value.

cycles: [decimal integer] (valid range: 0 to 264 − 1)

secs: [double]

delay_per_byte_<?> For every byte the packet in the functional block is de-

layed by this value. The delay per byte can be specified

either by a number of cycles (delay_per_byte_cy-

cles) OR a number of seconds (delay_per_byte_¬

secs). Internally the value is set in number of cycles as

a 64 bit value.

cycles: [decimal integer] (valid range: 0 to 264 − 1)

secs: [double]

drop_type There are three drop types which must be set by speci-

fying an integer value. The three types are:

0: drop disabled: no packets are dropped

1: drop fix: every drop_value-th packet will be

dropped

2: drop random: every ((232)/drop_value)-th packet

will be dropped on average

For both cases drop_type=1 and drop_type=2 the

setting drop_value=0 is not valid and will disable the

drop functionality, i.e. no packets are dropped. To drop

every packet the parameters can be set to drop_¬

type=1 and drop_value=1. With this configuration the

generic functional block acts as a black hole.

[decimal integer]

drop_value The value which is used to for the drop functionality. The

exact meaning depends on the drop_type.

[decimal integer] (valid range: 0 to 232 − 1)

randgen_seed This option is used to specify the seed for the random

generator which is used for the drop random mode of

the drop functionality.

[32 bit hexadecimal integer]

dst_global_addr Specifies the destination switch in the NoC for the pack-

ets that are sent out of the hardware generic functional

block.

[decimal integer]



A.2 Software 39

dst_local_addr Specifies the destination block in the NoC for the pack-

ets that are sent out of the hardware generic functional

block.

[decimal integer]

Software generic FB (Entity name: SWFB_THREAD)

Example:

config SWFB_THREAD 0

option delay_per_packet_cycles 500

option delay_per_byte_secs 0

option drop_type 1

option drop_value 2

option dst_type SWFB_THREAD

option dst_id 1

Options:

delay_per_packet_<?> In the functional block every packet is delayed by this

value. The delay per packet can be specified either by a

number of cycles (delay_per_packet_cycles) OR a

number of seconds (delay_per_packet_secs).

cycles: [decimal integer]

secs: [double]

delay_per_byte_<?> For every byte the packet in the functional block is de-

layed by this value. The delay per byte can be specified

either by a number of cycles (delay_per_byte_cy-

cles) OR a number of seconds (delay_per_byte_¬

secs).

cycles: [decimal integer]

secs: [double]

drop_type There are three drop types which must be set by speci-

fying an integer value. The three types are:

0: drop disabled: no packets are dropped

1: drop fix: every drop_value-th packet will be

dropped

2: drop random: every ((232)/drop_value)-th packet

will be dropped on average

For both cases drop_type=1 and drop_type=2 the

setting drop_value=0 is not valid and will disable the

drop functionality, i.e. no packets are dropped. To drop

every packet the parameters can be set to drop_¬

type=1 and drop_value=1. With this configuration the

generic functional block acts as a black hole.

[decimal integer]

drop_value The value which is used to for the drop functionality. The

exact meaning depends on the drop_type.

[decimal integer] (valid range: 0 to 232 − 1)

dst_type The thread type of the thread to which the packets shall

be forwarded.

[valid values: SWFB_THREAD, STATS_THREAD]

dst_id The thread ID of the thread to which the packets shall be

forwarded.

[decimal integer]



40 APPENDIX A. HOWTO

Stats Thread (Entity name: STATS_THREAD)

Example:

config STATS_THREAD 0

Options:

There are no options available for this entity.

Receive Thread (Entity name: RECEIVE_THREAD)

Example:

config RECEIVE_THREAD

option idp 3 SWFB_THREAD 0

option idp 4 STATS_THREAD 0

Note: For this entity there is no ID required since there is only one instance of this entity.

Options:

idp Specifies the routing of packets with the corresponding IDP. This option can be speci-

fied multiple times.

value0: IDP [decimal integer]

value1: The thread type of the thread to which the packets shall be forwarded.

[valid values: SWFB_THREAD, STATS_THREAD]

value2: The thread ID of the thread to which the packets shall be forwarded. [dec-

imal integer]

ETH Block (Entity name: ETH_BLOCK)

Example:

config ETH_BLOCK

option hash 0xabababa0abababa0 2 TO_FB0

option hash 0xcdcdcdcdcdcdcdcd 3 TO_H2S

Note: For this entity there is no ID required since there is only one instance of this entity.

Options:

hash Specifies the mapping from the 8 byte hash (external header) to the IDP and the NoC

address (internal header) which is used for the header translation in the ETH block.

This implicitly defines the routing of the packets at the ETH block.

This option can be specified multiple times.

value0: hash [hexadecimal integer]

value1: IDP [decimal integer]

value2: NoC address [valid values: TO_H2S, TO_FB0, TO_FB1, TO_FB2]



Appendix B

Time Schedule

See next page.

41



4
2

A
P

P
E

N
D

IX
B

.
T

IM
E

S
C

H
E

D
U

L
E

February March April May June

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Familiarization

FB Specifications

Generic FB (HW)

Generic FB (SW)

[Easter Holidays]

Interim Presentation

Buffer

Evaluation of FB and EmbedNet

Report

Documentation / clean up

Final Presentation

Easter Holidays: 3.4.15 – 9.4.15



Appendix C

Project Description

See next pages.

43



Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

Generic Functional Blocks for

FPGA-based Network Nodes

Roman Trüb

Advisor: Dr. Markus Happe, markus.happe@tik.ee.ethz.ch

Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

1 March 2015 - 31 May 2015

1 Introduction

Nowadays the diversity in networked devices, communication requirements, and network conditions vary
heavily, which makes it difficult for a static set of protocols to provide the required functionality. There-
fore, dynamic protocol stack (DPS) architectures are investigated in which protocol stacks can be built
dynamically. In contrast to the static protocol stacks that are used in today’s Internet architecture, the
DPS architecture splits up the networking functionality into functional blocks, which can be dynamically
linked with each other to form arbitrary protocol stacks. The execution environment called EmbedNet
is an FPGA-based implementation of the dynamic protocol stack architecture that allows for a dynamic
mapping of such functional blocks to either hardware or software.

One major drawback of the EmbedNet platform is the high implementation effort of new functional
blocks that are functionally equivalent in hardware and software. This drastically limits the complexity
of dynamic protocol stacks that can be tested. However, most experiments only evaluate the packet
processing performance of entire protocol stacks. Hence, arbitrary protocol stacks could be formed by
interconnecting multiple instances of generic functional blocks that emulate the processing behavior of
real-world protocols in time. In EmbedNet, such generic functional blocks are then mapped to hardware
and/or to software and process the incoming packets for a specified time and may drop the packet at
a given probability. Hence, an exhaustive performance evaluation of the EmbedNet platform can be
performed using complex protocol stacks using several instantiations of the generic functional blocks in
hardware and software.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

2.1 Objectives

The first goal of this thesis is the development and evaluation of a generic functional block in hardware and
in software. The generic functional block should be able to emulate the processing behavior of real-world
protocols by delaying packets and/or dropping a packet without actually modifying the packet content.
Multiple instances of the generic block (possibly with different parameter sets) have to be combinable in
order to form arbitrary protocol stacks.

1



The second goal is an exhaustive performance evaluation of the current EmbedNet architecture using
one or multiple instances of the generic functional block.

2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization

• Xilinx Design Tools (XPS, SDK, Isim, ChipScope)

• EmbedNet architecture, ReconOS execution environment and VHDL libraries

• In collaboration with the advisor, derive a project plan for your semester project. Allow time for
the design, implementation, evaluation, and documentation.

2.2.2 Architecture and hardware/software design

• Develop a generic hardware function block (in VHDL) with the parameters such as processing

delay per packet, processing delay per packet byte, and packet drop rate. The hard-
ware block should not alter the packet payload, but it needs to keep the packet inside the functional
block as specified by the parameters.

• Develop a generic software function block (in C) with the same parameters as the hardware func-
tional block. The CPU should be busy for the specified processing time. The packet payload should
not be modified.

• Optional: Develop a tool flow that generates an FPGA project (XILINX EDK project) that connects
a user-defined number of functional blocks with each other.

• Optional: Develop a methodology that updates the hardware/software mapping of the functional
blocks using partial reconfiguration.

2.2.3 Implementation

• Determine an appropriate version control system and set it up for further use. You might consider
using git and branch the official ReconOS git repository into your git repository.

• Implement the generic hardware and software functional blocks on a Xilinx Virtex-6 ML605 board.

2.2.4 Validation

• Validate the correct operation of your implementation.

• Check the resilience of the implementation, including its configuration interface, to uneducated
users.

2.2.5 Evaluation

• Do a performance evaluation of your implementation using suitable parameter sets for the generic
block(s). This evaluation should include a stress test, in order to verify that your hardware thread
does not introduce any instabilities into the overall system.

• Perform a performance evaluation of the EmbedNet architecture with at least one hardware and
one software functional block.

• Optional: Experiment with multiple functional blocks in hardware and software, where the packets
have to cross the hardware/software boundary multiple times.

2



2.2.6 Documentation

• Provide appropriate source code documentation.

• Write a step-by-step how to that describes the compilation of your code, the loading of the code
into the hardware and the execution of your code.

• Write a documentation about the design, implementation, validation and evaluation of your work.

3 Milestones

• Provide a project plan, which identifies the milestones.

• One intermediate presentation: Give a presentation of ten minutes to the professor and the advisor.
In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

• Final presentation of 15 minutes in the Communication Systems Group meeting, or, alternatively,
via teleconference. The presentation should carefully introduce the setting and fundamental as-
sumptions of the project. The main part should focus on the major results and conclusions from
the work.

• Any software and hardware modules that is produced in the context of this thesis and its docu-
mentation needs to be delivered before conclusion of the thesis. This includes all source code and
documentation. The source files for the final report and all data, scripts and tools developed to
generate the figures of the report must be included. Preferred format for delivery is a CD-R.

• Final report: The final report must contain a summary, the assignment, the time schedule and a
declaration of originality. Its structure should include the following sections: Introduction, Back-
ground/Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future work.
Related work must be referenced appropriately.

4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

• The student is encouraged to write all reports in English; German is accepted as well.

• The core source code will be published under the GNU general public license.

5 References

[1] Ariane Keller, Daniel Borkmann, Stephan Neuhaus, and Markus Happe. Self-Awareness in Computer
Networks. In International Journal of Reconfigurable Computing (IJRC), Article ID 692076, 2014, Hin-
dawi.

[2] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Plattner, Marco Platzner,
and Christian Plessl. ,,ReconOS – An Operating System Approach for Reconfigurable Computing”. In
IEEE Micro 34(1), Jan/Feb. 2014.

[3] Git Repository: https://github.com/EPiCS/reconos (branch: v3.0 dev)

[4] Xilinx User Guuide 360: Virtex-6 FPGA Configuration (v3.8) http://www.xilinx.com/support/

documentation/user_guides/ug360.pdf

Webpages: http://www.epics-project.eu http://www.reconos.de

3



Appendix D

Declaration of Originality

See next page.

47



 

 
 

Declaration of originality 
 
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, 
Master’s thesis and any other degree paper undertaken during the course of studies, including the 
respective electronic versions. 
 

Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 

__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 

Title of work (in block letters): 

 

 
 

Authored by (in block letters): 

For papers written by groups the names of all authors are required. 

 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information 
sheet. 

− I have documented all methods, data and processes truthfully. 

− I have not manipulated any data. 

− I have mentioned all persons who were significant facilitators of the work. 

 

I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 

   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

Generic Functional Blocks for FPGA-based Network Nodes

Trüb Roman



Bibliography

[1] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, C. Plessl, and M. Platzner. Reconos

– an operating system approach for reconfigurable computing. IEEE Micro, 2014.

[2] F. Deragisch. Network protocols for embedded devices with dynamic hardware/software

mapping. Master’s thesis, ETH Zurich, 2012.

[3] M. Happe, Y. Huang, and A. Keller. Dynamic protocol stacks in smart camera networks. In

Proc. Int. Conf. on ReConFigurable Computing and FPGAs (ReConFig). IEEE, Dec 2014.

[4] R. Huber. A dynamic hardware architecture for future networks. Master’s thesis, ETH Zurich,

2012.

[5] A. Keller, D. Borkmann, S. Neuhaus, and M. Happe. Self-awareness in computer networks.

Hindawi International Journal of Reconfigurable Computing (IJRC), page 16, Jun 2014. Ar-

ticle ID 692076.

[6] S. Kronig. Intrusion prevention for flexible protocol stacks. Master’s thesis, ETH Zurich,

2013.

[7] Y. Yang. Hardware encryption for embedded systems. Semester’s thesis, ETH Zurich, 2013.

49


	Introduction
	Motivation
	Goal
	Related Work
	Outline

	Methodology
	Generic Functional Block
	Evaluating using Generic Functional Blocks

	Implementation
	EmbedNet Platform
	Communication
	Hardware Functional Blocks
	Software
	Addressing & Identifiers

	Hardware Design
	ReconOS Interface
	Data FSM
	Randgen FSM
	Drop FSM
	Timer FSM
	FIFO

	Software Design
	Receive Thread
	Generic Functional Block Thread
	Stats Thread
	Main Thread
	Interconnection of the Threads


	Validation
	Evaluation
	Experimental Setup
	Accuracy of the Generic Functional Block
	Maximum Packet Rates
	Two Competing Protocol Stacks
	No congestion
	Congestion at the H2S Block
	Congestion at the Software Generic Functional Block
	Different Packet Generation Intervals
	Drop Rate

	Shortcomings of the EmbedNet

	Conclusion and Future Work
	Conclusion
	Future Work

	HowTo
	EmbedNet
	System Design
	How to start the EmbedNet

	Software
	Compilation
	Structure of the Software
	Program Options
	Configuration File


	Time Schedule
	Project Description
	Declaration of Originality

