m Institut fiir
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

David Salvisberg

An Adaptive Hardware/Software
Interface for EmbedNet

Semester Thesis SA-2015-09
March 2015 to June 2015

Tutor: Dr. Markus Happe
Supervisor: Prof. Dr. Bernhard Plattner

Abstract

The static nature of the current Internet architecture increasingly proves to be a limiting factor
for the always increasing diversity in use cases on end nodes. Dynamic protocol stacks aim to
solve this shortcoming and hope to be a pillar of future networking architectures. EmbedNet
is an adaptive end node implementation of such a dynamic protocol stack for FPGAs which
utilizes their partial reconfigurability for dynamic hardware acceleration of functional blocks in
the protocol stack.

EmbedNet unfortunately currently suffers from low throughput performance in its hard-
ware/software interface. This thesis aims to improve this performance and to provide an
interface that can adapt to the needs of the current application so that future work on EmbedNet
may reach more promising results.

Acknowledgments

I'd like to thank my project advisor Dr. Markus Happe for his help and invaluable feedback
during the course of this thesis. | would also like to thank Prof. Dr. Bernhard Plattner and the
TIK Communication Systems Group for the opportunity to work on this semester thesis. It was
a highly interesting project and it was a privilege to be working on it.

Contents

1 Introduction

2 Background and Related Work
2.1 ReconOS e
22 EmbedNet.

3 Methodology

4 Design
4.1 Hardware to Software (H2S) Interface
411 Hardwarepart
41.2 Softwarepart
4.2 Software to Hardware (S2H) Interface L.
421 Softwarepart
422 Hardwarepart

5 Evaluation
5.1 Experimental Setup
5.2 High TrafficLoad e
53 Low TrafficLoad e
5.4 Dynamic TrafficLoad
5.5 Resource Consumptionon FPGA

6 Conclusion and Future Work
6.1 Conclusion e e e
6.2 Future Work e

A HowTo
A1 Hardware e,
A2 Software

B Task Description
C Declaration of Originality

D Timetable

11
11
12

13

15
15
16
17
18
18
19

21
21
22
23
25
27

29
29
29

31
31
31

35
41

45

List of Figures

1.1 Static vs Dynamic Protocol Stack, 9
2.1 EmbedNet FPGAdesignasin[2] 12
3.1 Increasing throughput by buffering multiple packets 13
41 H2SDesign e 15
4.2 H2S Buffer Manager FSM 16
4.3 S2HDesign e 18
4.4 S2H Buffer Manager FSM 19
5.1 Experimental Setup 21
5.2 H2S Throughput Evaluation, 22
5.8 S2H Throughput Evaluation 22
5.4 H2S Latency Evaluation 23
5.5 S2H Latency Evaluation 24
5.6 S2H Latency Evaluation 24
5.7 Dynamic traffic throughput on original H2S 25
5.8 Dynamic traffic throughputonnew H2S 25
5.9 Effect of small timeouts on dynamic trafficloads 26
5.10 Effect of large timeouts on dynamic trafficloads 26

Chapter 1

Introduction

The Internet as we know it today is being expanded every day by thousands of devices a sizable
portion of which are mobile devices. These devices have to change their connection parameters
several times a second in order to adapt to varying channel conditions. The main reason they
have to do that is the ever increasing number of devices competing on the same channel for
the same resources, the channel conditions change so drastically every second due to the in-
terference of the other devices that they could not function properly if they did not adapt to them.

As the Internet of Things keeps expanding we can expect similar situations developing in
all forms of communications. However, the architecture of the Internet as it stands today would
make it difficult for communications to adapt to varying conditions, since the protocol stack of
the Internet is static. While there are all kinds of extensions for the protocols we use today, they
do not allow for the kind of on the spot multiparameter adaption we see with mobile devices
talking to cell towers.

Another thing we see in wireless communications is the development and deployment of
new and improved protocols on the physical layer at a much higher rate than we see it with the
Internet architecture as whole which faces very little innovation, especially on the transport and
network layers, the slow and painful introduction of IPv6 is one of the biggest changes we've
seen on that front and the transition is still ongoing even though IPv6 was formalized well over
a decade ago.

This is the main motivation behind exploring
Dynamic Protocol Stacks as a clean-slate
networking architecture. Dynamic Protocol
Stacks would allow both for easier, on-the-fly
adaptions of the stack to the conditions of
the network as well as easier extendability
of said stack by new functionality, such as a
different method of encryption. In Figure 1.1
you can see that dynamic protocol stacks
feature the same top and bottom layer i.e.
the physical and MAC layer on the bottom
and the application layer on the top as their
static counterpart but the middle of the stack
is being built dynamically with the available
functional blocks. To build such a stack end - -
nodes would talk to each other on a base static dynamic
protocol to negotiate an optimal protocol
stack with the functional blocks available to
both.

Figure 1.1: Static vs Dynamic Protocol Stack

One of the advantages of a Static Protocol Stack however is that most of the stack could be
completely hardware accelerated, which is important for intermediary routers in the Internet
since they will be able to handle a lot more traffic at a much lower cost while still making
smart routing decisions with the information provided by higher level protocols. But hardware
acceleration is also interesting for end nodes as we continue to shift our daily use of technology
to mobile devices which rely on batteries. This is why the implementation explored in this thesis,
namely EmbedNet, is based on FPGA technology which allows for hardware acceleration
of arbitrary functional blocks which can be updated at any time by providing a new partial
bitstream for the FPGA.

Unfortunately the current implementation is seeing low performance numbers which makes
it difficult to determine if this could be a viable solution for the future. The design is being
bottle-necked by the interface that allows for communication between the functional blocks
residing in hardware and the functional blocks residing in software, this interface is necessary
since the distribution of the functional blocks across software and hardware could change at
any time, so the implementation has to be indifferent to whether any given functional block
resides in hardware or software.

The goal of this thesis is to increase the performance of the design by improving the
aforementioned interface, this should hopefully allow further research topics utilizing this design
to gather more relevant data.

This report will continue with the following sections: First there will be an elaboration on
the background of this work showcasing related work (Section 2), followed by a description of
the methodology (Section 3). After that the design of the interface will be discussed in detalil
(Section 4). Next we present the results of our evaluation (Section 5) and finally a conclusion is
drawn and an outlook on further research topics involving this design is given (Section 6).

Chapter 2

Background and Related Work

Dynamic Network Architectures have been a topic in research for several decades now, already
in the early 1990s researchers were interested in developing dynamic network architectures to
provide better reliability, scalability, security and extensibility. One of the earliest approaches
was called Active Networking [1], in which users could inject custom code into the network. This
approach has even seen some experiments on FPGAs. There won’t be any further mention
of these earlier approaches to dynamic networking in this section as most of them have not
proven to be commercially successful, although they may have seen success in research.
Active networking e.g. acts as the foundation for Software-defined networking [3]. More details
on dynamic network architectures can be found in [2].

This chapter will instead focus on the research laying the foundation for this work, namely
ReconOS which is a Linux based operating system enabling threads to dynamically reside in
hardware or software on modern FPGAs and EmbedNet which is an FPGA based architecture
leveraging ReconOS to implement Dynamic Protocol Stacks with the ability to have each
functional block reside either in hardware or software at run time depending on the current
network conditions.

2.1 ReconOS

ReconOS started out as a real time operating system based on eCos supporting both hard- and
software threads i.e. allowing hardware threads to access the same operating system functions
as the software threads. It has since been revised twice, first to allow for Linux and a common
virtual address space shared by both hard- and software threads and then a major revision to
streamline the whole design and make it more lightweight and modular. It has been covered
by several academic publications extending its multithreading capabilities involving Hardware
Threads. A lot of the work has been driven by innovations in FPGA technology allowing for
partial reconfiguration of the hardware at run time, as such focus has shifted towards providing
scheduling of hardware threads i.e. letting them go to sleep and be replaced by a different
thread at run time.

Perhaps one of the most interesting of these works for software developers is “Preemp-
tive Hardware Multitasking in ReconOS” [5] which allows hardware threads to be treated in
the same way as software threads on the user level without restricting the scope of scheduling
techniques. As such it turned ReconOS into a much more familiar environment for most
software developers, allowing them to incorporate hardware accelerated threads that could
be preempted and as such behave the same as software threads. Preemption is achieved by
reading out partial regions of the hardware thread containing the state i.e. registers and local
RAM with their current contents and storing it as part of the partial bitstream that will be used
to put the thread back into hardware in the same state once it is to resumed.

Hardware threads need delegate software threads to utilize OS services but have their
own interface for accessing main memory [4]. The blocks designed in this thesis are imple-

2.2 EmbedNet 8

mented as such hardware threads and utilize the ReconOS library to access shared memory
and to communicate with software threads.

2.2 EmbedNet

EmbedNet is an FPGA based architecture utilizing ReconOS allowing for adaptive dynamic
protocol stacks, as in the functional blocks could be shuffled around between hardware and
software as required to make optimal use of the given hardware resources. The architecture is
covered in detail in [2].

e 7R LN

AN .

—»{ ETH ‘ l H2$ | l S$2H | ‘ PR |
Sysembus | 1
i If

) Memory .
SDRAM 4’|¢omml]er ‘ i | ‘ s |

FPGA

Figure 2.1: EmbedNet FPGA design as in [2]

The design of EmbedNet is depicted in Figure 2.1 and consists of a NoC' which in its minimal
implementation uses two switches to let four hardware blocks communicate with each other,
three of them are fixed, namely the Ethernet Block ETH, and the two blocks forming the
interface between Hardware and Software, the Hardware to Software (H2S) and the Software
to Hardware (S2H) block. The fourth block is reconfigurable and as such can be assigned to
any FB?. The ICAP block handles the execution of the preemption of the dynamic FB, which
involves reading out the current thread’s state on preemption and reconfiguring the hardware
region on resumption. Incoming packets will enter through the physical interface into the ETH
block which replaces the Ethernet header with the NoC header to send the packet to the first
FB in the chain via the Noc, this FB will in turn pass it on to the next FB. In each step the packet
might leave the hardware through the H2S interface or enter it again through the S2H interface.
Outgoing packets will enter the ETH block through their corresponding FB chain through the
NoC eventually and be outfitted with the appropriate Ethernet header.

All of this showcases a minimal implementation of the architecture featuring one of each
required block. The implementation could be scaled up to more FBs in hardware by increasing
the number of switches in the NoC.

Keller et al. [2] concluded that their approach to networking can improve the performance of
communications with regards to several aspects, such as the required number of packets,
packet loss and CPU usage.

There have been a few theses by fellow students implementing parts of EmbedNet, the
most relevant of which is the thesis that developed the NoC and the H2S/S2H blocks[6] since
our thesis aims to improve upon this original H2S/S2H design. Beyond that there have been
theses that implemented FBs like a Huffman Compression FB and a CRR reliability FB [7], an
AES encryption/decryption block [8], an Intrusion Prevention block [9] and finally a generic FB
used to evaluate EmbedNet[10].

"Network on Chip
2functional block

Chapter 3

Methodology

Since this work’s focus is to improve upon an existing implementation we need a frame of
reference to judge the new solution versus the old one. This section will elaborate on the design
and performance parameters chosen to give that frame of reference.

The current implementation’s Hardware/Software interface is bottle-necked by its low through-
put caused by invoking the overhead of moving packets between a hardware core and the main
memory and hardware/software synchronization for every single packet. As such buffering
multiple packets and moving them all at once is a good way to distribute that overhead and
increase throughput as a whole at a latency penalty for packets entering the buffer first.

Figure 3.1 visualizes this concept of making better use of the memory bandwidth, to the
left you see the old approach which moves one packet at a time and to the right the new
approach which moves many packets.

HW SW HW SwW
B = = o]
-] (-]
local RAM main memory local RAM main memory
(a) Before: single packet buffering (b) This thesis: multiple packet buffering

Figure 3.1: Increasing throughput by buffering multiple packets

Because of that throughput and latency are considered as good performance measures for
this work. Beyond that there are a few parameters one could think of that would result in
differing performance results. Immediately obvious is the size of the packets, which is an
inherent variable in Ethernet protocols and can vary from 64 Bytes to 1500 Bytes in frame
sizes and should significantly impact the throughput in the old implementation, but even in a
buffered approach we can expect some variance due to fragmentation i.e. some packet sizes
might get closer to the hard limit boundary in memory where the hardware has to flush the buffer.

Another variable that comes to mind, since we aim to buffer multiple packets, is the size
of that buffer. We can expect to get big performance gains at first but with diminishing returns
as we keep increasing the buffer size. Since increasing the buffer will increase the maximum
latency as well as the occupied hardware area we want to find a good trade off here.

To combat starvation due to semi-full buffers while the network sees low traffic we also
want to introduce a timeout into the design. Finding a good value for this timeout is important,
so we will have to observe the latency behavior of the design at high traffic loads as well as low
and dynamic traffic loads.

10

To summarize: we want to measure latency and throughput figures for...
e multiple packet sizes
e multiple buffer sizes
e multiple timeout durations

at high, low and dynamic traffic loads and draw conclusions based on these figures to find a
good set of design parameters that improve the throughput significantly while invoking minimal
penalties in latency.

The hardware/software interface should also be adaptive so that these parameters can
be tweaked during synthesis or even at run time depending on the needs of the application.
Low latency applications might prefer to never buffer multiple packets or only few to keep
the latency figures as low as possible, whereas other applications might only care about raw
throughput.

Chapter 4

Design

The design of the hardware/software interface for EmbedNet is split into two logical units based
on the direction of the communication. There is a unit handling communications from hardware
FBs' to software FBs called H2S and a unit handling the communications in the opposite
direction called S2H.

Each unit consists of two parts, one of which is implemented in hardware and the other
in software, since it forms an interface between hardware and software. In the following
sections we will look at the design of each unit and both their hardware and software parts.

4.1

Figure 4.1 shows the design of the H2S interface as a whole, the thin arrows between hardware
and software signify synchronization signal issued through the ReconOS mbox? library. The big
arrow signifies the packet path.

Hardware to Software (H2S) Interface

HW SW

base address

ReconOS FSM

3

local buffer

1

main memor

1

buffer
manager

2 2

3 3

A
receive packet
FSM

Figure 4.1: H2S Design

num packets |
>

packet in >

The hardware part contains three FSMs® and a local RAM buffer:

e ReconOS FSM is responsible for synchronization (arrows between HW and SW) with the
software part of the unit and initiating the copy of the local buffer to a selected region in
main memory.

e buffer manager manages the local buffer to ensure the unit will stop receiving packets
and flush the buffer to main memory as soon as the timeout is reached or the buffer is too
full to fit another packet of maximum size.

e receive packet FSMis responsible for receiving the packets from the NoC.

Tfunctional block
2message box to pass information between hardware and software thread
Sfinite state machine

11

4.1 Hardware to Software (H2S) Interface 12

Furthermore we have chosen to store all our packets word aligned* to simplify reading from
and writing to these buffers. Although this means we won’t make optimal use of the space, we
lose at most 5% of the space to fragmentation with small packets and much less than that in
the average case.

The software part is simple by comparison. As an initial setup it allocates a buffer in
main memory large enough to fit the the hardware buffer and sets up the hardware thread. After
this initial setup, for each iteration it will pass the base address of the buffer in main memory
to the hardware and then read out the buffer after receiving the number of packets that were
copied from the hardware buffer.

4.1.1 Hardware part

Figure 4.2 displays the buffer manager which is the central unit of the hardware design
managing most of the new functionality added over the old one.

buffer_manager

"y WAIT ‘/-/ buffer can fit another packet h
— enable receiving_packet INCREMENT
wait for receiving_packet base_addr += [packet_size/4]
. / packet_count += 1 DONE
receiving_packet done — reset receiving_packet b -
uffer manager remains
buffer cannot fit anymore in this state until reset
L or reached timeout) — signal reconos_fsm

Figure 4.2: H2S Buffer Manager FSM

The buffer manager keeps track of how many packets there currently are in the buffer and
how much space they are taking up, so it can decide whether it can store another packet. All
of this happens in just two states, first in WAIT it will enable the receive packet FSM and wait
until it is done receiving a packet, after that in INCREMENT it will increase the base address by
the word size of the packet written last and increase the packet count and reset the receive
packet FsM. If at this point the buffer cannot store another packet of maximum size or the
timeout for this iteration has been reached the FSM will enter its DONE state in which it will
remain until the Recon0OS FSM initiates the next iteration.

To add the timeout functionality a timer has been added that gets started as soon as the
interface is ready to accept the first packet of the current iteration and will stop at the timeout
given in cycle counts and starts emitting a timeout signal until it gets reset. The timeout signal
gets checked by the receive packet FSM during its idle time as it is waiting for the next
packet on the interface as well as on each iteration of the buffer manager.

In order for the interface to be adaptive at run time the Reconos FsM will first receive
two initializing signals through the delegate thread to configure buffer sizes smaller than the
synthesized one and a timeout given in milliseconds, after that it will enter its main loop of
receiving a base address in main memory, intializing the buffer manager, waiting for it
to conclude, copying the local buffer to main memory using the local base address from the
buffer manager as an upper memory boundary, and sending out the number of packets
copied until the thread gets terminated.

The original design consisted of only a ReconOS FSM and a receive packet FSM.
Since the Recon0s FsM didn’t really care how many packets it was transferring or in fact that
it was a packet at all, since it is just copying a memory segment, it seemed apparent to insert
the buffer manager as a third state machine between the two. This way a good portion of
the original design could be reused with small modifications.

4a word is 32 bits on the microblaze architecture [11]

4.1 Hardware to Software (H2S) Interface 13

The changes to the Recon0OS FSM have been covered in the paragraphs above, as for
the receive packet FSM: In its original design it would always write the packet to the start
of the local buffer, this was changed to work off the local base address provided by the buffer
manager.

4.1.2 Software part

After setting up the delegate thread for the H2S hardware block and configuring the buffer size
and timeout duration to be used using ReconOS synchronization messages the software will
allocate a buffer and pass its base address to the hardware block using the same method after
which it will in turn wait on the message containing the amounts of packets written from the
hardware.

Packets get read out of the buffer much like you may deserialize complex, variable size
data structures. The first packet, and as such also its header is placed at the start of the buffer,
the header contains the size of the payload, allowing the software to read out the rest of the
packet and then advance to the next word boundary for the next header until the packet count
received from the hardware has been reached, at which point the software will signal the
hardware that the buffer is ready for the next wave of packets. This process could be optimized
yet by preparing a second buffer in main memory in advance to receiving the first one, so the
hardware could start receiving packets again immediately into the second buffer, while the
software processes the packets in the first one.

From the original software only minor portions could be reused like the general setup of
the delegate thread for the most part the software was written from scratch.

4.2 Software to Hardware (S2H) Interface 14

4.2 Software to Hardware (S2H) Interface

In Figure 4.3 we see the software/hardware design of the S2H interface. Since the packet path
starts on the software side we will present the software part before moving on to the hardware
part.

SW HW
. base addr
e ReconOS FSM
bytes to copy |
local buffer
num_packets num_packets

1

1
buffer manager
2 2
3 3
main memory s
P ACK
< send packet

Figure 4.3: S2H Design

The software part is more involved this time, but still simple by comparison. The packets
are once again stored word aligned, however the first word of the buffer is reserved for the
number of packets stored in the buffer. This way we avoid introducing an additional expensive
synchronization signal to pass that information from software to hardware.

Once again the software part will take care of all the initial setup work. In each iteration
it will then go on to write packets as they come in starting after the reserved word at the head
of the buffer until there is no more space in the buffer or the timeout for this iteration has been
reached. At which point it will write the number of packets written into the buffer and send it off
to the hardware by telling it how many bytes to copy starting at a given base address.

As with the H2S block, the hardware part once again consists of three FSMs and a local
RAM buffer:

e ReconOS FSM synchronizes with the software and copies the buffer from main memory.

e buffer manager keeps track of which packet has to be send out next and how many
packets are left.

e send packet is responsible for sending the packets out to the NoC.

4.2.1 Software part

The software part had to be changed significantly since it now has to manage a buffer instead
of just dropping a packet in at the head of it and initiating the transfer. Additionally the software
has to now respect a timeout to make sure it doesn’t starve out the following nodes in the
network.

Since frequent context switching turned out to introduce a significant performance hit on
the software part on MicroBlaze we decided that each software FB should manage its own
buffer so that context switches don’t get forced with every single packet, which might only have
taken a few tens of cycles to get generated, but rather with each buffer being forwarded.

Tests on an Intel i7 processor suggest however that frequent context switching may be
viable on fast processors, since they will be able to generate packets a lot faster than they can
be sent out, so the wait on the context switch would only result in waiting time you would have
had to wait in the first place. This decision should definitely be revisited when the platform
changes.

4.2 Software to Hardware (S2H) Interface 15

Performance tests have also only been performed with one packet generator and a sin-
gle buffer as part of this thesis so it remains to be seen how much of a win this decision actually
brings in more complex setups.

4.2.2 Hardware part

As displayed in Figure 4.4 the buffer manager works much in the same way as in the H2S
block, but since it has to read out the number of packets from the local RAM it has to spend a
few states on doing just that due to the two cycle delay of a read.

buffer_manager

(GET_ NUM)

L set packet count to (" WAIT A

data read from RAM [) — enable send_packet - packet count above zero A

+ wait for send_packet INCRE[MENT |
4) base_addr += [packet_size/4
INIT2 S send_packet done /—/’ packet_count -= 1
set base_addr to 1) — reset send_packet
+ DONE - packet count at zero
o J
INIT1 buffer manager remains
initiate local read in this state until reset
T from address 0 — signal reconos_fsm

Figure 4.4: S2H Buffer Manager FSM

Apart from that after it has initialized itself with the packet count it performs the same two state
loop of WATIT and INCREMENT as in the H2S version, except the exit condition is decreasing the
packet count down to zero this time instead of checking for overflowing the buffer with another
packet.

The original design once again already had a Recon0S FSM and a send packet FSM.
The solution that was applied to H2S works here as well since send packet FSM will already
inspect the packet header to determine the amount of bytes to be sent out. As such the only
thing that needed to be modified after inserting the buffer manager between the two was
the base address the send packet FSM was working off.

Chapter 5

Evaluation

Before presenting our results in the following subsections we will first discuss the experimental
setup used to collect the data for our evaluation of the design. Section 5.2 will focus on raw
throughput measurements for high traffic loads whereas Section 5.3 will focus on latency mea-
surements to determine a suitable timeout value that promises to make good use of the buffer
in most cases while still preventing exorbitant latencies with tiny bit rates. In Section 5.4 we will
showcase how our design copes with dynamic traffic loads. Finally Section 5.5 will cover the
resource usage on the FPGA of the new hardware designs over the old ones.

5.1 Experimental Setup

Figure 5.1 showcases the experimental setup. The FPGA used in this thesis is a Virtex-6 ML605
board. The board was programmed using the Xilinx ISE toolchain in its 14.7 version. Terminal
output from the FPGA was gathered over the JTAG' connection cable using minicom on a 64
bit Linux machine. A dedicated network card rated at 1 Gbit/s was used in this machine to form
the Ethernet connection with the FPGA board.

64bit Linux Machine Xilinx Virtex-6 ML605 FPGA
| USB JTAG
minicom [¢—» USB Ports [3 L | USB Ports
Xilinx ISE

Ostinato .
I—l_’ Dedicated | Ethernet
m Network Card N

» Ethernet Port

Figure 5.1: Experimental Setup

For evaluating the H2S block packets needed to be generated at a set bit rate by the machine
connected via Ethernet to the FPGA, for these purposes a tool called Ostinato [12] was
employed. To test whether the S2H block was sending packets out properly Wireshark [13] was
used.

All time measurements have been performed by software executed on the FPGA using
the system clock of 100 MHz. These time measurements have been used to calculate both
throughput and latency figures directly on the board itself.

TIndustry standard for testing and debugging integrated circuits

16

5.2 High Traffic Load 17

5.2 High Traffic Load

For evaluating the throughput of the H2S block we generated packets using Ostinato at 1 Gbit/s
so we could measure the achieved throughput on the FPGA. We took measurements for the
old design as well as power of two buffer sizes ranging from 2KB to 64KB, the timeout was
disabled by setting it to a very large value.

In Figure 5.2 you see the results of these measurements for each of the packet sizes
listed in the top left corner of the graph.

1000.0 MBit/s T T T T T

64 Bytes
128 Bytes
256 Bytes —
512 Bytes ~ Fmmm
1024 Bytes
100.0 MBit/s F1500 Bytes L T s | | (0 N | [[DR 3
i
) LY - | 1m0 e | D R - E
e
'.E ‘
1.0 MBit/s SR 1 [w0 B (] ‘ """"" I B] E
0.1 MBit/s
single packet 2KB 4KB 8KB 16KB 32KB 64KB

Buffer size

Figure 5.2: H2S Throughput Evaluation

These results are especially encouraging for small packets, as we can achieve a 10x speed up
already at small buffer sizes and can go up to more than 100x with the largest buffer size that
was tested. Even with large packets we can achieve 10x speed ups with a large enough buffer.
Small packets seem to result in lower performance across the board which indicates that there
is a part of the overhead per packet that cannot be reduced by buffering multiple of them, like
e.g. initiating the transfer from the NoC for each of them or the inter-packet-delays introduced
by the Ethernet device.

For the S2H block both generation of the packets and measurement of the throughput
were performed by custom software on the FPGA itself. Wireshark was used solely to verify
that the packets arrived. The same set of measurements have been performed for S2H for
Figure 5.3.

1000.0 MBit/s T T T T T

64 Bytes
128 Bytes =
256 Bytes
512 Bytes
1024 Bytes
100.0 MBit/s 1500 Bytes W -ococoooooonniniii e E
2
) LN Y= e | (1 [m ([) B |10 A] — E
I
ﬁ ‘
1.0 MBitls |- - R ‘ """"" | o - E
0.1 MBit/s
single packet 2KB 4KB 8KB 16KB 32KB 64KB

Buffer size

Figure 5.3: S2H Throughput Evaluation

S2H generally seems to achieve lower throughput than H2S but also started at an already
lower base performance in the old design, so the relative improvements are similar for both

5.3 Low Traffic Load 18

blocks across the old design and the different buffer sizes. E.g. from 15 MBit/s to 150 MBit/s
for packets of 1500 Bytes in H2S versus from 9 MBit/s to 120 MBit/s in S2H both of which are
improvements of one order of magnitude.

5.3 Low Traffic Load

The following measurements have once again been performed with the timeout disabled by
setting it to a large value, since we want to evaluate just how much latency we're introducing for
the first packet that enters the buffer.

For H2S the packets were once again generated by Ostinato at the desired transmission
rate and packet size. Latency has been measured on the board as the time between receiving
buffers which corresponds to the maximum amount of time a packet will spend sitting in the
buffer. We took these measurements for the biggest buffer size we tested in Section 5.2 as
well as the old design. In Figure 5.4 you see the results of these measurements for H2S. The
orange line corresponds to the absolute minimum latency achievable at full throughput and
single packet buffering.

1000.00 ms T T T

64B @64KB —a— 64Bold =
128B @64KB — 128B old
256B @64KB 2568 old
512B @64KB 512B old
1024B @64KB 1024B old

|--1500B @64KB — 1500Bold ~—@—

100.00 ms

10.00 ms

Latency

1.00 ms

0.10 ms
120 50 10 5 1

TX rate [MBit/s]

Figure 5.4: H2S Latency Evaluation

As expected with a buffer as large as 64KB you introduce a lot of latency to packets entering
the buffer earliest at lower transmission rates, this reinforces the need of a timeout and the fact
that this gain in transmission rate does not come for free.

You will notice that there’s barely any spread in latencies in the new design across the
different packet sizes whereas the old design has a clear spread between them, this is due to
the fact that the buffer size is constant and as such the amount of bytes sent in one iteration
is roughly constant as well in the new design, whereas in the old design the amount of bytes
transmitted will vary per iteration.

It is also worth mentioning that packets entering the buffer last will possess the same
kind of latencies that they do in the old design, so the measurements from the old design
can also be seen as the corresponding L,,;, to the L,,,, that has been measured here. As
such they showcase the entire spread of latencies packets in the buffer will experience at this
transmission rate and buffer size. So for example packets of 1024 Bytes at 10 MBit/s will see
latencies between 0.7 and 490 milliseconds if you don’t introduce a timeout.

5.3 Low Traffic Load 19

Figure 5.5 shows the same set of measurements for S2H, the latencies have been measured
on the board as the time between being able to send out buffers.

1000.00 ms

T

64B @64KB —a— 64Bold =
128B @64KB — 128B old
256B @64KB 2568 old
512B @64KB 512B old
1024B @64KB 1024B old

I---1500B @64KB — 1500Bold =@

100.00 ms

10.00 ms

Latency

1.00 ms

0.10 ms L L L
20 50 10 5 1 0.5

TX rate [MBit/s]

Figure 5.5: S2H Latency Evaluation

Once again we see very similar results with both interfaces, although the absolute minimum
latency is larger for the S2H block.

Both the graphs in this section are very useful to determine the kind of timeout values
you might want to use, since the the timeout will flatten the curve starting at that value until
it hits the corresponding curve from the old design. Figure 5.6 displays this behavior for an
example timeout of 10 milliseconds and a packet size of 1500 Bytes.

1000.00 ms T T T
new —@—

old —@—

100.00 ms F

Latency

10.00 ms E
l/

1.00 ms

0.10 ms L L L
20 50 10 5 1 0.5

TX rate [MBit/s]

Figure 5.6: S2H Latency Evaluation

As soon as the two latency curves meet the old and new design will behave roughly identical,
since the timeout will occur before a second packet can be received. One might also expect that
there’s more variation in latencies as you approach this boundary, since two packets will take
almost twice as long to be received at transmission rates this low and an ongoing transmission
will never be interrupted. The variation is however only this big if the packets themselves are
being transmitted this slowly which is generally not the case. Usually the low transmission rates
are achieved by having a bigger delay between the packets, while the packets themselves are
still being transmitted at the maximum rate possible.

5.4 Dynamic Traffic Load 20

5.4 Dynamic Traffic Load

In this section we take a look at how our design copes with more dynamic traffic loads with a
predetermined set of design parameters. For the traffic load we have chosen to superimpose
two triangle waves with two different periods, phase and amplitude are the same for both.
A packet size of 1024 bytes was chosen, since the old design can still reach reasonable
transmission rates with it. The traffic was generated using a custom C program.

In Figure 5.7 you can see how the original design copes with this load.

50 T T T T T
Transmitted
Received
B T RIS PRI .
@
B 30 e N L —
=
2
 20Fkf-\NS N N e -
<
|_
L VTV \/ ””””””” VT 1
0 I I I I
0 20 40 60 80 100 120

Time [s]

Figure 5.7: Dynamic traffic throughput on original H2S

Unsurprisingly the old design plateaus at around the 10 MBit/s mark whenever the incoming
traffic goes beyond that speed, this limit could already be observed in Section 5.2.

Figure 5.8 displays how well our design copes with the same traffic load if it is configured with
a buffer of 64KB and a timeout of 10 milliseconds:

50 T T T T T
Transmitted
Received
QO |-t liiiiiiiiiiiiiiiiieaeoos —
g
i 30N N e N —
=3
Q
S 20/ N[N\-n AN s N -
<
|_
M0 H-e YN e A N
0 I I | I
0 20 40 60 80 100 120

Time [s]

Figure 5.8: Dynamic traffic throughput on new H2S

As shown in Section 5.2: Our H2S interface with a buffer as large as this can easily reach the
transmission rates required by this traffic load, however as you approach the transmission rates

where the maximum latency is in the same range as the timeout our design can’t quite follow
the traffic’s slope anymore.

5.4 Dynamic Traffic Load 21

Figure 5.9 reinforces this observation with a traffic load that fluctuates between 20 and
40 MBit/s and two different timeouts. Packet and buffer size are the same as in Figure 5.8.

45 T T T T T
Transmitted
10ms Timeout
40 = Ams Timeout ———— A .
2
M 35 [g N —
2,
Q
S 30y AN A D P ¥ A . N S, -
x
|_
25 A M M <
20 | | | | |
0 10 20 30 40 50 60

Time [s]

Figure 5.9: Effect of small timeouts on dynamic traffic loads

As you can see with a 10 millisecond timeout our design can’t quite match the slope of the
incoming traffic starting at around the 20 MBit/s mark. At a much lower timeout of 1 millisecond

the interface can follow the slope much more closely but also reaches saturation at around 35
MBit/s.

The effects of large timeouts are invisible for the most part in these traffic traces since

the design will easily achieve the transmission rates, the only visible artifact is a lower resolution
of the trace at low transmission rates.

2.5 T T T T T
Transmitted
100ms Timeout
2 - 4s Timeout ——— """ 777 TR e 7
Q)
B 1.5 gl —
=,
Q
o [TSN SR T A X e e —
X
|_
0.5 ool - —|
0 | | | | |
0 10 20 30 40 50 60

Time [s]

Figure 5.10: Effect of large timeouts on dynamic traffic loads

Figure 5.10 shows that our design is perfectly capable of following a low traffic load with a large
timeout, the stepping in the function is due to the low transmission rates since increasing the
packet rate by one will increase the transmission rate by 8 Kbit/s. Increasing the timeout further
will essentially smooth out the curve and as such act as a low pass filter on the traffic dynamics
at low transmission rates since it will average the incoming traffic over larger periods of time.

5.5 Resource Consumption on FPGA 22

5.5 Resource Consumption on FPGA

Table 5.1 summarizes the resource consumption of the original design after synthesis.

In Table 5.2 on the other hand you will see the resource consumption of the new design with a

64KB buffer.

FlipFlops Used | LUTs" Used | BRAMs? Used
H2S | 364 670 2
S2H | 448 502 2

Table 5.1: FPGA Resource Usage of original design

Flip Flops Used | LUTs Used | BRAMs Used
H2S | 523 782 16
S2H | 484 588 16

Table 5.2: FPGA Resource Usage of new design with 64KB buffer

Both the Flip Flop and LUT counts have increased by amounts that can be regarded as
negligible compared to the kind of speed ups we can achieve. The increase in the amount of
BRAMs is the only figure one might be concerned about when trying to save FPGA resources,
but it is also the one figure you can tweak prior to the design’s synthesis.

As seen in Section 5.2 we can achieve speed ups of one or two orders of magnitudes
with a buffer of 64KB and we take up just under one order of magnitude of additional resources.

"Block RAM
2Lookup table

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis aimed to improve the existing design of the Hardware/Software Interface of Embed-
Net by increasing its maximum throughput to the point where it could no longer be considered
a major bottleneck of the design. Since this increase in throughput is not free and comes at a
latency tradeoff we also set out to make this new design adaptive so that the design parameters
could easily be tweaked both offline as part of the synthesis and online as part of passing some
additional parameters after setup of the delegate threads.

The evaluation of the design showed that we managed to thoroughly increase the maxi-
mum amount of throughput and also significantly reduced the negative impact of small packet
sizes to the throughput. We achieved speed-ups between one and two orders of magnitudes
over the old design at buffer sizes up to 64KB. Furthermore it confirmed our concerns about
the amount of latency our design could introduce to some of the packets as such introducing a
timeout as a limiting factor certainly seems to have paid off.

The improvements achieved as part of this thesis should certainly prove invaluable for
future work on EmbedNet. As Roman Triib concluded in his thesis [10], the Hardware/Software
interface was the most limiting factor of EmbedNet next to the low computing power of the
MicroBlaze softcore. Future work on EmbedNet will hopefully confirm that the performance of
the softcore is now the only limiting element in latency insensitive applications.

6.2 Future Work

While the interface developed as part of this thesis is adaptive and could change its parameters
based on the current traffic profile. The adaptivity we tested was mostly of offline nature i.e.
we decided on parameters before we started receiving traffic, since the logic to make these
decisions online has not been implemented yet. So an interesting project would be to develop
a traffic analyzer that makes decisions on how to tweak the performance parameters of the
interface based on the current conditions.

Furthermore we concentrated our efforts on traffic as a whole and did not yet take into
account that there might be a variety of packets coming in at the same time with different
performance requirements. We might for example expect traffic that consists of high traffic
bursts that we want to push through as fast as possible but mixed in is a constant flow of a
few highly latency critical packets that might now miss their requirements between the bursts
since the interface was set to a high throughput profile. The NoC header features a flag to mark
packets like these as latency critical, at the moment the interface just ignores that flag, it would
be straightforward to add the ability to flush the buffer immediately whenever such a packet
arrives in the interface, but since there was not enough time at the end of the project to ensure
that this feature would function properly it was not yet added.

23

6.2 Future Work

24

Appendix A

HowTo

This section will give a brief overview on how to use the hardware design and software shipped
on the CD-R with this thesis.

A.1 Hardware

Configuration

Since the H2S and S2H interfaces are adaptive and their most interesting parameters can
be changed at run time this section is only relevant if you want to perform tests beyond the
default maximum buffer size of 64KB or want to take up less area on the FPGA with a smaller
synthesized buffer.

The relevant VHDL sources can be found on the CD-R in:
reconos/demos/protocol_graph_h2s_s2h/hw/edk/pcores/hwt_h2s_v1_00_b/
and
reconos/demos/protocol_graph_h2s_s2h/hw/edk/pcores/hwt_s2h_v1_00_b/
respectively.

For both designs the constant c_1.0CA1_RAM_S1ZE determines the size of the local RAM
buffer in words of 4 bytes.

Simulation

If you're interested in simulating the hardware design, testbenches have been provided in
reconos/demos/protocol_graph_h2s_s2h/hw/edk/simulation/ along with a wave
configuration file for ISE.

A.2 Software

All of the source code for software executed on the FPGA can be found in
reconos/demos/protocol_graph_h2s_s2h/sw/ on the CD-R, the sources for self-written
tools can be found in tools/

Compilation

For compilation you need to have the microblaze compiler toolchain in your PATH. After that
it is a simple case of running make in the folder for the corresponding applications. Before
that you will however also need to have the ReconOS libraries compiled via running make in
reconos/linux.

25

A.2 Software 26

Each application also comes with a debug folder which lets you compile the program for
your current machine by running make inside it. Although these debug builds won’t have the
necessary hardware to interact with and as such won’t provide meaningful measurements, they
are nevertheless useful to debug the data and control flow of the program.

app_h2s

This application will receive packets sent to the H2S interface after configuring it with the
specified buffer size and timeout and will print out the measured performance across the
number of packets received.

Calling the application with —h, ——help or help will print out information on the usage
of the application:

Usage: ./app_h2s [buffer_size] [timeout] [num_packets]
buffer_size: buffer size in KB (default value 64)
(note:) 1 turns on single packet buffering.
timeout: timeout in ms (default value: 10)
num_packets: how many packets to receive (default value: 16384)

app_h2s_trace

This application will receive packets sent to the H2S interface after configuring it with the
specified buffer size and timeout and will print out the measured throughput in Kbit/s for each
time step specified across the duration specified.

Calling the application with -h, ——help or help will print out information on the usage
of the application:

Usage: ./app_h2s_trace [buffer_size] [timeout] [duration] [timestep]
buffer_size: buffer size in KB (default wvalue 64)
(note:) 1 turns on single packet buffering.
timeout: timeout in ms (default value: 10)
duration: duration of trace in s (default value: 180)
timestep: timestep between measurements in ms (default value: 500)
app_s2h
This application will send packets using the S2H interface after configuring it with the specified
buffer size and timeout and will print out the measured performance across the number of
packets sent. It is worth mentioning that generally the throttling of the data rate won’t be
accurate if you're throttling close to the actual limit of the hardware.
Calling the application with —h, ——help or help will print out information on the usage
of the application:
Usage: ./app_s2h [buffer_size] [timeout] [packet_size] [data_rate] [num_packets]
buffer_size: buffer size in KB (default value 64)
(note:) 1 turns on single packet buffering.
timeout: timeout in ms (default value 10)
packet_size: packet size in Bytes (default value 64)
data_rate: data rate in KBit/s (default value: -1, unlimited)

num_packets: how many packets to send (default value 16384)

A.2 Software 27

send_pkts_simple

This tool will send packets on the Ethernet interface specified in the constant ETH_INTERFACE
prior to compilation. It will send two super positioned triangle waves with the same amplitudes
but different periods both starting at the lower packet rate specified. It is based on a tool
provided to me by Dr. Markus Happe that sends a single triangle wave.

Calling the application with —h will print out information on the usage of the application:

program usage

-s hash value (64 bit)

-p packet length (in bytes)

-1 lower packet rate (pps)

-u upper packet rate (pps)

-1i interval between lower and upper packet rate for triangle 1 (in sec.)

-I interval between lower and upper packet rate for triangle 2 (in sec.)

Appendix B

Task Description

See following page.

28

m Institut flr
' . Technische Informatik und

Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Semester Thesis

An Adaptive Hardware/Software
Interface for EmbedNet

David Salvisberg

Advisor: Dr. Markus Happe, markus.happe@tik.ee.ethz.ch
Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

23 March 2015 - 22 June 2015

1 Introduction

Nowadays the diversity in networked devices, communication requirements, and network conditions vary
heavily, which makes it difficult for a static set of protocols to provide the required functionality. There-
fore, dynamic protocol stack (DPS) architectures are investigated in which protocol stacks can be built
dynamically. In contrast to the static protocol stacks that are used in today’s Internet architecture, the
DPS architecture splits up the networking functionality into functional blocks, which can be dynamically
linked with each other to form arbitrary protocol stacks. The execution environment called EmbedNet
is an FPGA-based implementation of the dynamic protocol stack architecture that allows for a dynamic
mapping of such functional blocks to either hardware or software.

The hardware/software interface is the major bottleneck of the EmbedNet platform which limits the
packet throughput. The current version of the interface only supports to send single packets across
the hardware/software boundary. This results in a low overall performance for packet processing. It is
the goal of this thesis to improve the packet processing performance of EmbedNet by developing a new
adaptive hardware/software interface.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

2.1 Objectives

The goal of this thesis is to design and implement a new hardware/software interface for the EmbedNet
platform, which can transfer multiple packets at a time. The expected outcome of this semester thesis
is a new version of the hardware-to-software (H2S) and software-to-hardware (S2H) interfaces, which
improve the packet processing performance of the EmbedNet platform.

2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization
e Xilinx Design Tools (XPS, SDK, Isim, ChipScope)
e EmbedNet architecture, ReconOS execution environment and corresponding APIs and libraries
e In collaboration with the advisor, derive a project plan for your semester project. Allow time for
the design, implementation, evaluation, and documentation.
2.2.2 Architecture and hardware/software design

e Develop a hardware architecture for the new hardware-to-software (H2S) interface in hardware and
a corresponding software architecture. The hardware and software blocks should buffer multiple
packets at a time before they forward the packets to software. The packets should be transferred
whenever the buffer becomes full (i.e. cannot store another packet).

e Develop a hardware architecture for the new software-to-hardware (S2H) interface in hardware and
a corresponding software architecture. The hardware and software blocks should buffer multiple
packets at a time before they forward the packets to hardware. Again, the packets should be
transferred whenever the buffer becomes full (i.e. cannot store another packet).

e Optional: The packets should be automatically transferred across the hardware/software interface
after a user-defined timeout to avoid starvation.

e Optional: The packets should be automatically transferred across the hardware/software interface
whenever a time-critical packet arrives.

2.2.3 Implementation

e Determine an appropriate version control system and set it up for further use. You might consider
using git and branch the official ReconOS git repository into your git repository.

e Implement the H2S and S2H hardware blocks (in VHDL).
e Implement the H2S and S2H software blocks (in C).

e Implement the generic hardware and software functional blocks on a Xilinx Virtex-6 ML605 board.

2.2.4 Validation

e Validate the correct operation of your implementation after each implementation step. Use for your
evaluation different packet sizes (short, long, even or odd number of bytes, etc.).

e Quantify the maximum throughput of the H2S/S2H interfaces for selected packet sizes.

e Check the resilience of the implementation, including its configuration interface, to uneducated
users.

2.2.5 Evaluation

e Do a performance evaluation of your implementation. This evaluation should include a stress test,
in order to verify that your hardware thread does not introduce any instabilities into the overall
system.

e Compare the performance of the new hardware/software interface to the old interface.

2.2.6 Documentation

e Provide appropriate source code documentation.

e Write a step-by-step how to that describes the compilation of your code, the loading of the code
into the hardware and the execution of your code.

e Write a documentation about the design, implementation, validation and evaluation of your work.

3 Milestones

e Provide a project plan, which identifies the milestones.

e One intermediate presentation: Give a presentation of ten minutes to the professor and the advisor.
In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

e Final presentation of 15 minutes in the Communication Systems Group meeting, or, alternatively,
via teleconference. The presentation should carefully introduce the setting and fundamental as-
sumptions of the project. The main part should focus on the major results and conclusions from
the work.

e Any software and hardware modules that is produced in the context of this thesis and its docu-
mentation needs to be delivered before conclusion of the thesis. This includes all source code and
documentation. The source files for the final report and all data, scripts and tools developed to
generate the figures of the report must be included. Preferred format for delivery is a CD-R.

e Final report: The final report must contain a summary, the assignment, the time schedule and a
declaration of originality. Its structure should include the following sections: Introduction, Back-
ground /Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future work.
Related work must be referenced appropriately.

4 Organization

e Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

e The student is encouraged to write all reports in English; German is accepted as well.

e The core source code will be published under the GNU general public license.

5 References
[1] Ariane Keller, Daniel Borkmann, Stephan Neuhaus, and Markus Happe. Self-Awareness in Computer
Networks. In International Journal of Reconfigurable Computing (IJRC), Article ID 692076, 2014, Hin-

dawi.

[2] Andreas Agne, Markus Happe, Ariane Keller, Enno Liibbers, Bernhard Plattner, Marco Platzner,
and Christian Plessl. ,,ReconOS — An Operating System Approach for Reconfigurable Computing”. In
IEEE Micro 34(1), Jan/Feb. 2014.

[3] Git Repository: https://github.com/Recon0S/reconos/tree/v3.0_dev

[4] Xilinx User Guide 360: Virtex-6 FPGA Configuration (v3.8) http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf

Webpages: http://www.epics-project.eu http://www.reconos.de

Appendix C

Declaration of Originality

See following page.

32

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

I hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

An Adaptive Hardware/Software Interface for EmbedNet

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):
Salvisberg David

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

— | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Appendix D

Timetable

2015

March

April

May

June

13 | 14

15 |16 | 17 | 18 | 19 | 20 | 21

22 | 23 | 24 | 25

Design -

Implementation HW
Implementation SW
Validation
Evaluation

Buffer

Report

34

Bibliography

[1] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture. Computer
Communication Review, 26, 1996.

[2] A. Keller, D. Borkmann, S. Neuhaus, and M. Happe. Self-awareness in computer networks.
International Journal of Reconfigurable Computing (IJRC), Article ID 692076, 2014.

[38] N. Feamster, J. Rexford amd E. Zegura. The road to SDN: an intellectual history of pro-
grammable networks. ACM SIGCOMM Computer Communication Review, 44(2), Apr 2014.

[4] A. Agne, M. Happe, A. Keller, E. LUbbers, B. Plattner, M. Platzner, and C. Plessl. Reconos
— an operating system approach for reconfigurable computing. IEEE Micro, 34(1), Jan/Feb
2014.

[5] M. Happe, A. Traber, and A. Keller. Preemptive hardware multitasking in reconos. Interna-
tional Symposium on Applied Reconfigurable Computing (ARC) p. 12, Apr 2015.

[6] R. Huber. A Dynamic Hardware Architecture for Future Networks. Master Thesis, ETH
Zurich, Jun 2012.

[7] F. Deragisch. Network Protocols for Embedded Devices with Dynamic Hardware/Software
Mapping. Master Thesis, ETH Zurich, May 2012.

[8] Y. Yang. Hardware Encryption for Embedded Systems. Semester Thesis, ETH Zurich, Feb
2013.

[9] S. Kronig. Intrusion prevention for flexible Protocol Stacks. Master Thesis, ETH Zurich, Sep
2013.

[10] R. Trib. Generic Functional Blocks for FPGA-based Network Nodes. Semester Thesis,
ETH Zurich, May 2015.

[11] Xilinx, Microblaze soft processor core, 2013. http://www.xilinx.com/tools/microblaze.htm
[12] Srivats P., Ostinato traffic generator and analyzer. https://code.google.com/p/ostinato/

[13] The Wireshark Foundation, Network protocol analyzer. https://www.wireshark.org/

35

	Introduction
	Background and Related Work
	ReconOS
	EmbedNet

	Methodology
	Design
	Hardware to Software (H2S) Interface
	Hardware part
	Software part

	Software to Hardware (S2H) Interface
	Software part
	Hardware part

	Evaluation
	Experimental Setup
	High Traffic Load
	Low Traffic Load
	Dynamic Traffic Load
	Resource Consumption on FPGA

	Conclusion and Future Work
	Conclusion
	Future Work

	HowTo
	Hardware
	Software

	Task Description
	Declaration of Originality
	Timetable

