
Distributed
 Computing

Parallel Computing with DNA

Semesterproject

Jan Schulze

schulzej@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Sebastian Brandt, Jochen Seidel

Prof. Dr. Roger Wattenhofer

19.06.2015

Abstract

In this thesis we present a DNA strand displacement binary division algorithm for
a dividend a and a divisor b based on the Domain Replacement Model introduced
in [1] that uses O(log(a) · log(b) − log(b)2)) rules. Further we introduce two
adapted divisibility algorithms. In the first one we reduce the number of steps
for the calculation in exchange to using more rules and in the second one we use
another representation of the binary numbers so that the algorithm uses O(b2)
rules independent of the size of the dividend.

We discuss two algorithms to solve the 3SAT problem with l clauses and a
variables. The algorithms uses O(al) respectively O(l!) rules.

For pattern matching of large strings we present an algorithm to estimate
the occurrences of patterns in a string that uses a constant amount of rules. At
last we introduce a new model that improves the Domain Replacement Model.
With this new model we are able to design algorithms to create palindromes and
strands of anbn while using a constant amount of rules.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 2

2 Model Section 3

3 Binary Division 5

3.1 Long Division Algorithm . 5

3.2 A Parallel Long Division Algorithm 9

3.3 Single Strand Division Algorithm 12

4 3SAT 15

4.1 One of Each Clause Algorithm 15

4.2 Clause Choosing Algorithm . 16

5 Pattern Matching 17

5.1 Matching a Single Pattern in a String 17

5.2 Estimating the Number of Occurrences of a Pattern in a String . 18

5.3 Estimation of Occurrences of a Pattern p in a String s 19

6 The Inclusion Model 22

6.1 Inclusion into a Strand with the Domain Replacement Model . . 22

6.2 The Inclusion Model . 22

6.3 Developing an Inclusion Algorithm 24

6.3.1 Creating Palindromes . 26

Bibliography 28

ii

Chapter 1

Introduction

We present a binary division algorithm based on the long division. To analyse
the algorithms, we use the rule complexity, which state how many rule strands
an algorithm uses, and the speed complexity, which states how many steps an
algorithm needs to give back a positive result. The Long Division Algorithm has
a rule complexity of O(m · n− n2)) for a m+ 1 bit long dividend a and a n+ 1
bit long divisor b and a speed complexity of O(m− n) · n).

We adapt the Long Division Algorithm to compute more steps simultaneously
to reduce the speed complexity. With the Parallel Long Division Algorithm we
get a speed complexity of O(m−nk · n) with a speed up factor k ≤ m

n . The speed

up is achieved at the cost of rule complexity which is with O(2
m−n

k k
m−n

k · n)
larger than in the basic Long Division Algorithm.

We then introduce a new way to represent a binary number with a single
DNA strand. We present an algorithm that checks divisibility with the new
representation. The algorithm that uses this representation reaches a rule com-
plexity of O(b2) that is independent of the dividend. The speed complexity is
O(log(a)− log(b)).

In the next part we suggest two algorithms to solve the 3-Satisfiability prob-
lem with rule complexities of O(al) and O(l!) with l being the number of clauses
and a being the number of variables.

In the third part of this thesis we discuss some basic pattern matching algo-
rithm with the Domain Replacement Model and present how to estimate number
of occurrences of a pattern in large DNA strands.

At last we introduce a new model that improves the Domain Replacement
Model. With this new model we are able to design algorithms to create palin-
dromes and strands of anbn with constant rule complexity.

1

1. Introduction 2

1.1 Related Work

The Domain Replacement Model which we mainly use in this work to design the
algorithms, was introduced in [1]. It uses strand displacement rules for domain
replacement. Further it uses the more powerful collapsing and composition rules,
which allow the concatenation of strands and the replacement of several strands
by another. In the last part of this thesis we extend the Domain Replacement
Model to be able to design more powerful algorithms.

In [2] a division algorithm for DNA computing is introduced. It bases on
the Newton Method whereas we build up our algorithm from the long division.
For dividing a m bit numbers it needs O(log(m)) steps and uses O(m2) DNA
strands.

In [3] the satisfiability problem was solved for 20 variables and 24 clauses,
but using a gel based DNA computer in which the DNA molecules are moved
through different modules whereas we use in the Domain Replacement Model
only DNA strands in a single soup.

[4] and [5] give a deep insight and analysis in the aspects of branch migration
and hairpin-loops which has only been a side note in this thesis and is not
necessary to understand this thesis. The important aspects of those papers
are the following which inspired the newly introduced Insertion Model. Branch
migration is the process in which a bound DNA strand is replaced by another.
Hairpin-loops are loops of DNA that arise if some domains of a DNA strand bind
to other domains of itself.

Chapter 2

Model Section

In this thesis we use the Domain Replacement DNA model introduced in [1]
which we summarize in the following. A DNA strand consists of a sequence of
the nucleotides Adenine (A), Guanine (G), Cytosine (C) and Thymine (T). The
extremities of a strand are different, one is called 3’ end and the other 5’ end.
The chemical and biological aspects of the extremities are not further important
for this model, except that they give the strands a direction from the 5’ towards
the 3’ end. The direction is represented by an arrow over each strand.

A C G A

Nucleotides can bind together if they are Watson-Crick complementary. A
and T as well as G and C are WK complementary. Complementary sequences
are also WK complementary if they have opposite directions

A A G C T A C
T T C G A T G

It is not necessary that whole strands bind together. Also parts of a strand
can bind which is called domain replacement.

A A A G G G + A A A

G
G
G

C
C
C

B B B ≡C C C B B B A A A B B B

In the example above the GGG part of the the first strand is replaced by the
BBB of the second strand. The resulting strand has the same properties of the
strand AAABBB. Therefore AAABBB is called the effective effective strand
of the strand above.

To implement a computation with DNA, we mix the DNA strands together
in a soup, e.g. a solution. The strands then react with each other and we can
observe the resulting strands.

3

2. Model Section 4

Each strand is in the form of +X∗, where +,∗ are domains used as delimiters
that are not part of the alphabet

∑
of X. We assume that domain replacements

can only occur if a delimiter is part of this replacement.

The Domain Replacement Model consists of three strand types: Input strands,
rule strands and output strands. Input strands are the strands that carry the in-
formation of the input. They are represented underlined, e.g. +X∗. Rule strands
do not depend on the input and implement the steps of the algorithm itself. Note
that because domain replacements can only take place if a delimiter is involved,
a delimiter has to be part of the rule strands, e.g. the rule A∗ → B∗, which is
another way of writing the strand ∗̄ĀB∗. Output rules take complete strands
and replace them by a strand, e.g. the rule +A∗ → +B∗ which is implemented
by the strand +A∗+B∗.

The alphabet Σ for the domains has to hold the following conditions, (taken
from [1], page 7)

1. a ∈ Σ⇔ ā ∈ Σ̄

2. +, ∗ 6∈ ΣΣ̄

3. Σ ∩ Σ̄ = ∅

Another rule in the Domain Replacement Model is the collapsing rule. It
merges two strands e.g. +AX∗ and +Y B∗ by using rules like X∗ +Y . This
collapsing rule can be also written as X ∗BC +Y .

We can use the collapsing rule with an output rule to create a composition
rule in the form of +A∗++B∗ → +C∗ by collapsing the strands +A∗ and +B∗ with
the collapsing rule strand A∗AB+B. Then we use the output rule +AB∗ → +C∗.

Chapter 3

Binary Division

In this chapter we demonstrate how to use DNA in the Domain Replacement
Model to divide two binary numbers and to check divisibility. In [2] a division
algorithm is proposed that bases on Newton’s Method. For dividing a m bit
numbers it needs O(log(m)) steps and uses O(m2) DNA strands.

We present an algorithm based on the long division and analyse its perfor-
mance. To measure the performance of an algorithm we use two main criteria
. The speed complexity states how many steps an algorithm needs to return a
result. The rule complexity states how many different rule strands are necessary
for an algorithm to work. Based on the results of the analysis we present an
algorithm with an improved Speed Complexity and an algorithm that uses a
different representation of the binary numbers.

Let a be a m + 1 bit number and b a n + 1 bit number, both in two’s
complement and positive. The numbers are in two’s complement because it is
possible that they become negative during the algorithm.

Every bit is represented by a single strand (like in [1]) and such a bit strand
looks like this: +0∗ or +1∗ where + is the starting, ∗ is the ending delimiter. For
every different number and every different bit of the number we use a unique
delimiter to be able to distinguish the bits. Each delimiter has two labels. One
superscript to allocate a bit to a number and one subscript to determine the
position of the bit in the number. The delimiter of the nth bit of number a e.g.
looks like ∗an.

3.1 Long Division Algorithm

This division algorithm is a straightforward adaptation of the long division to
the binary DNA model. The algorithm can divide a number a by a number b if
a has at most m+ 1 bits and b at most n+ 1 bits. The result is the number r.
There is only one difference of the algorithm to the long division. The difference
is that in the long division a subtraction only takes place if the result of the

5

3. Binary Division 6

subtraction is a positive number, whereas in our algorithm the subtraction takes
place every time and afterwards the algorithm selects the right values to continue
with. If the result of the subtraction is positive it continues the calculation with
the result of the subtraction, if it is negative it continues with the values before.

The algorithm consists of three basic steps that are repeated until the algo-
rithm finishes. First we subtract the divisor b bitwise from the first n + 1 bits
of a. Then we check if the resulting number is positive. If the resulting number
is positive, the algorithm continues with the bit values of the result of the sub-
traction, if the resulting number is negative, the algorithm selects the initial bit
values of a from before the subtraction took place. The algorithm repeats these
three steps until a < b then it finishes. If and only if a = 0 a is divisible by b.

Let αi and βi be the bit values of either 0 or 1 of a and b. As described in
the introduction of this chapter the input strands look like:

+0∗am,+αm−1∗am−1, . . . , +α0∗a0
+0∗bn ,+βn−1∗bn−1 , . . . , +β0∗b0

Every time we make a calculation in which we change a, we cannot save the
result with the same delimiters as a because then we would mix up the bits from
a before and a after the calculation. We have to use a new variable with new
delimiters. Let a be treated as a0. After each subtraction from an ai the interim
result is saved in the variable at(i+1) (t for temporary). Then the algorithm
decides whether to continue with either ai or at(i+1) (depending whether at(i+1)

is negative or positive). The variable the algorithm continues with is then saved
in ai+1.

The formal rules for the first bitwise subtraction are the following, where
the delimiter ∗CA

i+1 marks a carry bit (a detailed explanation of these kind of
subtraction rules can be found in [1].). Again we use αi and βi as the bit values
0 or 1 for a and b. γi and αt

i are bit values of the carry CA and at1 and depend
on the strands on the left side of the rules so that the subtraction is correct.

+αm−n+i∗am−n+i + +βi∗bi + +γi∗CA
i → +αt

m−n+i∗a
t1

m−n+i + +γi+1∗CA
i+1 ∀i = 0, . . . , n

If the value of the most significant bit (MSB) of the result of the subtraction
is equal to zero, the algorithm continues with the interim result at1. If the MSB is
equal to one, the result of the subtraction is negative and the algorithm therefore
continues with the values of a. The result of the division is saved in the variable
r in the following way. Every time when the algorithm decides if it continues
with ai or at(i+1) the value of the ith bit of r is set to 0 or 1.

3. Binary Division 7

The formal rules for selecting the values for a1 and saving the result is:

+0∗at1m + +0∗at1m−n+i → +0∗a1m−n+i + +1∗rm−n
+1∗at1m + +0∗am−n+i → +0∗a1m−n+i + +0∗rm−n
+0∗at1m + +1∗at1m−n+i → +1∗a1m−n+i + +1∗rm−n
+1∗at1m + +1∗am−n+i → +1∗a1m−n+i + +0∗rm−n

∀i = 0, . . . , n− 1

Because the next subtraction takes place at the bits am−1 . . . am−n−1 the
current MSB is not needed for the next step. Therefore ai + 1 is always one bit
shorter than ai.

To improve readability the following rule is used in this script. The rule
makes all bits of the interim result have the same delimiter. The rule is not
necessary for the algorithm itself to work.

+0∗ai → +0∗a1i ∀i = 0, . . . ,m− n− 1

+1∗ai → +1∗a1i ∀i = 0, . . . ,m− n− 1

These rules give back the variable a1 with the length m. The steps have to
be implemented for all interim results aj so that they give back the according
results aj+1, ∀j = 1, . . . , (m− n). If all bits of the variable am−n equal zero a is
divisible by b.

The formal positive output rule for the divisibility is:

+0∗a(m−n)

n−1 + . . . + +0∗a(m−n)

0 → +valid∗

The result is with ρi as the bit values or r

+ρm−n∗rm−n . . . +ρ0∗r0

If necessary the following rules can be used for a negative output if a is not
divisible by b:

+1∗a(m−n)i → +invalid∗ ∀i = 0, . . . , n− 1

This algorithm only works if bn−1 = 1. Otherwise it is possible that b can
be subtracted on the same position of a twice without resulting in a negative
number. The algorithm above can not subtract twice at the same position there-
fore the algorithm has to be adapted to this condition. There are several ways
to circumvent a complicated adaptation of the algorithm. One is to extend the
input number a by the bits am+n to am+1 which are initially zero. Then the
values of a and b are simultaneously multiplied by two (left shifted by one bit)
until bn−1 = 1.

3. Binary Division 8

Example

As an example we divide the number a = 01001 by the number b = 011. The
input strands are therefore:

+0∗a4, +1∗a3, +0∗a2, +0∗a1, +1∗a0, +0∗b2, +1∗b1, +1∗b0

The subtraction takes place at the first three bits of a. To subtract the bits of a
and b we add −b = 101 to the bits of a. In the first step we subtract b from the
first three bits of a: 010.

+0∗a2 + +1∗b0 → +1∗at12 + +0∗CA
1

+1∗a3 + +1∗b1 + +0∗CA
1 → +1∗at13 + +0∗CA

2

+0∗a4 + +0∗b2 + +1∗CA
2 → +1∗at14 + +0∗CA

3

Because the result of the subtraction is 111 is negative the algorithm selects
the bits of a to continue the calculation.

+1∗at14 + +1∗a3 → +1∗a13 + +0∗r2
+1∗at14 + +0∗a2 → +0∗a12 + +0∗r2

The following rules to change the delimiters for the readability are executed
independently of the subtraction.

+0∗a1 → +0∗a11
+1∗a0 → +1∗a10

At this point we have +0∗r2 as a part of the result and the interim variable a1

as:
+1∗a13 +0∗a12 +0∗a11 +1∗a10

In the next step we get the subtraction 100 + 101 = 001 which gives us the
result bit +1∗r1. Here the result of the subtraction is positive therefore the rules

+0∗at23 + +0∗at22 → +0∗a22 + +1∗r1
+0∗at23 + +1∗a1 → +1∗a21 + +1∗r1

are executed. The variable a2 is

+0∗a22 +1∗a21 +1∗a20

3. Binary Division 9

And we get +1∗r0 and a3 with 011 + 101 = 000:

+0∗a31 +0∗a30

We get a positive result for the divisibility with the output rule:

+0∗a31 + +0∗a30 → +valid∗

The result of the division is 011

+0∗r2, +1∗r1, +1∗r0

Rule and Speed Complexity Analysis

For a complete division with the Long Division Algorithm, the three steps pre-
sented above are executed (m − n) times. Because the interim results all use
different delimiters the algorithm uses (m − n) different subtraction rules and
(m − n) different rules for selecting the bits to continue with. “Each subtrac-
tion rule consists of 32n strands (eight composition rules each consisting of four
rules)” [1] and the rules for selecting the bit values to continue consists of 16(n−1)
strands. With the output rule that uses n strands the algorithm uses a total
amount of rule (m− n) · (32n+ 16(n− 1)) + n strands.

With m = log(a) and n = log(b) the rule complexity is

O(m · n− n2) = O(log(a) · log(b)− log(b)2)

To get all ai ∀i = 1, . . . , (m − n), 4n rules per bit for the subtraction and
4(n− 1) rules for selecting the right bits have to be executed. The steps needed
by the algorithm to come to a result therefore is (m−n) · (4n+4(n−1)). Which
results in a speed complexity of

O((m− n) · n) = O((log(a)− log(b)) · log(b))

3.2 A Parallel Long Division Algorithm

The here presented algorithm is therefore a slightly varied version of the Long
Division algorithm that has an improved speed complexity in a trade-off to a
larger rule complexity. In the Long Division Algorithm for every position of a,
the algorithm decides once if b is subtracted at this position or not. To improve
the speed complexity in the Parallel Long Division Algorithm, we can subtract
at k positions at once. Let pi ∀i = 1, . . . ,m + 1 be all positions of a. We now
divide the set P of all pi in disjoint subsets Pj (Pj ∩ Pl = ∅, ∀j 6= l) of size k.

3. Binary Division 10

In every step of the algorithm we take one subset Pj . Then at every pi ∈ Pj

we do two different calculations simultaneously. In one calculation the algorithm
subtracts b at position pi of a and in the other it does not. For all k pi this leads
to a total of 2k different combinations and therefore interim results.

If a subtraction leads to a negative carry, the carry is saved as a 1 at its bit
position in a new number c. For every interim result a different c exists that has
an according delimiter. In the beginning every bit of c is zero. The number a is
divisible by b if and only if at the end of the algorithm there exists an a that is
equal to its corresponding c.

Example

We show the principle of this algorithm with the division of a = 001001 by
b = 011. We define P1 = {1, 3} and P2 = {0, 2}. In the first step the algorithm
computes the following. We select P1 so p1 = 1 and p2 = 3. At position p1 = 1
of a the bits 00 are chosen and extended by the sign bit 0. Then −b = 101 is
added: 000 + 101 = 101. The new bits at position p1 = 1 are now 01 and the in
c a 1 is added at the 4th bit.

Simultaneously the algorithm does the same at position p2 = 3: 001 + 101 =
110. We now have 22 = 4 possible combinations with the respective saved carries.
We distinguish the interim variables with a superscript which includes at which
position a subtraction has taken place.

No subtraction:

a0x0x = 001001, c0x0x = 000000

Subtraction at position p1 = 1:

a0x1x = 001011, c0x1x = 001000

Subtraction at position p2 = 3:

a1x0x = 010001, c1x0x = 100000

Subtraction at position p1 = 1 and p2 = 3:

a1x1x = 010011, c1x1x = 101000

The algorithm now does the same for P2. This results, e.g. in

a0000 = 001001, c0000 = 000000

and
a0011 = 001000, c0011 = 001000

We see that 0011 is the result of the division because a0011 = c0011.

3. Binary Division 11

Implementation

First we explain the implementation for the case that the selected positions pi
for the subtraction are at least n (not n + 1 because of two’s complement) bits
away of each other. In this case no bit is affected by two subtractions at once.
A subtraction at position pi is implemented the following way. We take the bits
api+n . . . api and add a 0 as MSB. This is because of the two’s complement the
n+ 1th bit is the sign bit:

0 aj+n . . . aj

Then we subtract b from the bits. If the result is negative (MSB = 1), we
save the negative carry as a 1 in the corresponding bit in c of the corresponding
path. The interim result are the last n bits of the result (without sign bit).
If the result is positive, this is the same value as the result. If the result was
negative, the value of the interim result equals the negative result added by 2n+1.

The rule strands are equivalent to the Long Division Algorithm only that
in the Parallel Long Division Algorithm more unique delimiters for the different
interim variables are used. Because for every delimiter other rule strands are
used more rules have to be implemented too.

If the some positions pi and pi+1 for the subtractions are less than n bits
away of each other, some bits are affected by two subtractions at once. In
this case we cannot do the subtractions all at once but have to compute the
overlapping subtractions consecutively. Because of this, we cannot improve the
speed complexity any further with this algorithm than by k ≤ dme.

Complexity and Speed Analysis

Without overlapping subtractions the following complexities hold. Again for
every subtraction 32n strands are used. Because for every unique delimiter a

different subtraction rule has to be used
∑m−n

k
i=0 (2k)i = 2

k+m−n
k k

k+m−n
k −1

2k−1 sub-
traction rules are used for k parallel subtraction positions.

O(2
m−n

k k
m−n

k · n)

For each subtraction the algorithm again needs 4n steps, therefore the number
of steps we need in one path to reach a result is m−n

k ·4n. This results in a speed
complexity of

O(
m− n
k
· n)

We get an expected speedup of k in terms of speed complexity. But the rule
complexity increases compared to the Long Division Algorithm.

3. Binary Division 12

3.3 Single Strand Division Algorithm

As we have seen before the representation of the binary numbers by single bit
strands leads to high rule complexities. Therefore we introduce a single strand
representation of a binary number and a Single Strand Division Algorithm that
uses this representation. The advantage of the single strand approach is that
there is no need of special delimiters to determine the belonging of a bit. The
biggest disadvantage is that the further away a bit is from a delimiter the more
complicated it gets to access the bit. The basic idea of the algorithm is again
the long division. The algorithm uses single rules to subtract b from the last a
bits until a equals zero or no more subtraction is possible.

Single Strand Binary Representation

To represent the bits in one strand a special binary representation is used. The
bits are all on one strand and are separated by a separating character |. Every
bit can have the following values “ ” (corresponding to 0), “1”, “−1” or “1− 1”.
In the beginning all strands consist only of either “ ” or “1”, e.g.

1||1|1||||1 = 10110001

A number does not have a unique representation e.g.

110 = 1| − 1 = 1− 1|1 = |1

The input strands are the dividend a in the special binary representation
and the divisor b in normal binary representation. For each subtraction with
all possible divisors b and the last n = l(b) possible bits of a, we have rule
strands which are compositions rules and directly return us the right result, e.g.
10 ∗a ++01∗b → 01∗a. If b > a a “−1” is added as a negative carry one digit
left of an. At every position we can only subtract the divisor once. If the last
bit of a is a zero, then the algorithm can delete the last bit. Therefore for some
strands of a, the algorithm subtracts b at the last position and for others it does
not.

Example

We divide a = 100100bin = 1|||1|| by b = 11. In the first step the algorithm
can either subtract b from the last two bits of a or delete a zero at the end of
a. Subtracting b from a leads to the following result 1|||1− 1||1. The algorithm
cannot continue with this number because it can only subtract a number at a
certain position once and because the last bit is not a zero the algorithm cannot
delete the last bit. Let us take a look now on the path that leads to a = 0. After

3. Binary Division 13

deleting twice the last zero the algorithm subtracts b from a: 1|||1−b = 1|−1|1|.
Now again the algorithm deletes a zero and we obtain 1| − 1|1. The algorithm
pushes the negative carry one bit to the left: 1| − 1|1 = 1 − 1|1|1 = |1|1. The
next subtraction with b results in zero therefore a is divisible by b.

A special case occurs if the last bit of b is zero, e.g. if we divide a = 10bin = 1|
by b = 10. For some a the algorithm deletes zero resulting in a = 1. The
algorithm cannot continue with this number. But because simultaneously the
algorithm also subtracts b from a with other strands, the algorithm gives back
the correct result that a is divisible by b.

Implementation

The rule strands look like this:

||| · · · |∗ + +0 · · · 0∗b → ||| · · · |∗subt
||| · · · |1∗ + +0 · · · 0∗b → ||| · · · |1∗subt

...

||| · · · |∗ + +0 · · · 01∗b → − 1||| · · · |∗subt
...

1|1|1|1 · · · |1∗ + +1 · · · 1∗b → ||| · · · |∗subt

With the subtraction rules b is subtracted from a and we add a negative
carry if necessary (” − 1”) to the n + 1th bit from the right. The delimiter
∗subt prevents that the algorithm subtracts twice at the same position. For any
possible an . . . a0 where −1 occurs in an the following rules ensure that the last n
bits only consist of ”” and ”1” so that the subtraction rules can always be used.
Only one negative carry can exist at once :

| − 1||| · · · ∗ → − 1|1||| · · · ∗
|1− 1||| · · · ∗ → |||| · · · ∗

.

The following rules delete a zero at the end of a:

|∗ → ∗
|∗subt → ∗

3. Binary Division 14

The output rule is
+∗ → ′divisible′.

Rule and Speed Complexity Analysis

An advantage of the Single Strand Division Algorithm is that its rule complexity
is independent of the dividend a. For the subtraction the algorithm uses 2n · 2n
rules. In addition the algorithm use 2n rules shift the carry. All together this
leads to a rule complexity of

O(22n) = O(b2)

To reach a positive result the algorithm has to subtract b at most (m − n)
times. After the subtraction the algorithm has to delete a zero at the end and
in the worst case shift the negative carry one bit to the left, which are in total
three steps. The maximum number of steps used by the algorithm to reach a
positive result is therefore (m− n) · 3. Giving a speed complexity of

O(log(a)− log(b))

This algorithm is useful if b is small compared to a because then the rule com-
plexity of the Single Strand Algorithm O(b2) is smaller than the complexity of
the Long Division Algorithm O(log(a) · log(b)− log(b)2).

Chapter 4

3SAT

The satisfiability problem copes with the question whether a certain boolean
equation (e.g. x1 ∩ (x2 ∪ x3)) can be fulfilled or not. If the equation can be
fulfilled, it is called satisfiable. The 3-Satisfiability restricts the problem to the
equations that are represented in the conjunctive normal form with at most three
variables per clause (e.g. (x1∪x2∪x3)∩(x1∪x4∪¬x2)∩ . . .). The 3SAT problem
has been approached several times with DNA computing e.g. in [3] where the
problem was faced with a DNA Computer. We present two possible algorithms
using the Domain Replacement Model that compute if an equation is satisfiable.

4.1 One of Each Clause Algorithm

The idea of the algorithm is to pick one variable per clause that the algorithm
sets to true. The algorithm does this for all clauses. In the end the algorithm
checks if there are not contradictions. If there are no contradictions the equation
is satisfiable.

The input of the algorithm are the single variables encoded with delimiters
that are both labelled according to its clauses, e.g. a clause (x1∪x2∪x3) yields in
+1x1∗1, +1x2∗1 and +1x3∗1. Either we create the input strands directly like this
or if it is not possible or preferred, then splitting the clauses into its variables
can also be implemented with rule strands. (e.g. +(x1 ∪ x2 ∪ x3)∗1 → +1x1 ∗1
++1x2 ∗1 ++1x3∗1)

We implement the selection of one variable for every bracket the following
way. For all succeeding clauses a collapsing rule exists that joins the content of
both strands. E.g. , the collapsing rule for clause one and two looks the following:
∗̄1+̄2. With the variable strands +arg1∗1 and +arg2∗2 the collapsing of the two
strands looks like:

+1arg1 ∗1 +∗̄1+̄2 + +2arg2∗2 → +1arg1 arg2∗2

This results in a long string of variables (e.g. x1x1x4x6x1x2¬x4 . . .). To
check if the string contains contradictions, all output strands for all possible

15

4. 3SAT 16

strands with a length l (number of clauses) that contain no contradictions have
to be created. With the number of different variables a this results in a rule
complexity of O(al).

4.2 Clause Choosing Algorithm

The second algorithm decides for each variable whether it is true or not. Then it
randomly selects clauses that are true. In the end the algorithm checks whether
the selection contains all clauses. If it contains all clauses the equation is satis-
fiable.

To implement this algorithm, the input strands do not contain the variables
but the number of the clauses. The delimiters are labelled with the according
variable, e.g. +x11∗x1 or +x110∗x1 implicate that in bracket 1 and 10 the variable
x1 occurs. Again we use collapsing rules to stick the strands together. The
algorithm uses collapsing rules for succeeding variables, e.g. the collapsing rules
for the variables x1 and x2 are

∗x1 +x2 , ∗¬x1 +x2 , ∗x1 +¬x2 , ∗¬x1 +¬x2

but also for the same variables

∗x1 +x1 , ∗¬x1 +¬x1

This results in a long string of numbers (e.g. ‘1“17“5“23‘ . . .). To check if the
string contains every clause number at least once all output strands for strands
with a length l (number of clauses) containing every clause number exactly once
are created. This leads to an amount of rules in the order of O(l!).

Chapter 5

Pattern Matching

In this chapter we analyse the search for certain patterns in a string. We have a
string s, a known pattern p that may appear several times in s and the elements
εi in the known alphabet Σ.

5.1 Matching a Single Pattern in a String

There are two ways for matching p in s. Either by deleting elements from the
input strand containing s until the strand only contains p or by adding elements
to a strand containing p until it matches s.

An Example Cutting Algorithm

The algorithm is a very basic example of how the string s can be cut to find the
pattern p. It is not the most efficient way to do so but it points out the idea.
Randomly either the first or last element of s is removed. If s = p the output
rule gives a positive feedback.

The Input strands contain s:

+s∗
The rule strands randomly delete the first or last element of s:

+ε→ +

ε∗ → ∗
∀ε ∈ Σ

The output rule gives a positive result for a strand matching p.

+p∗ →′ matched′

17

5. Pattern Matching 18

An Example Algorithm for Extending p

The example algorithm for extending p is similar to the cutting algorithm. In-
stead of deleting elements in s, the algorithm adds randomly elements at the
front or back of p. If such an extended p equals s the output rule gives a positive
feedback.

The Input strands are the searched pattern p:

+p∗
The rule strands randomly add elements to the front or back of p:

+→ +ε

∗ → ε∗
∀ε ∈ Σ

Output rule:

+s∗ →′ matched′

If s is not well known (e.g. s is a completely unknown DNA strand that we want
to analyse further or s is so long that it takes a non negligible effort to build its
complement) the output rule cannot be created like above because s̄ is not known.
Instead we can create the output rule +s̄∗ →′ matched′ by adding a ′matched′

and the complementary domains of the delimiters to s. The output rule then
looks like +̄s∗̄+′matched′∗. Instead of the input and rule strands introduced
above, we have to use the complement of the input and rule strands.

Additional Approaches

If we want to determine the position of the pattern, the algorithm has to count
the deleted or added elements. If two different patterns p1 and p2 both have
to be found, this can be implemented with an adapted version of the exten-
sion algorithm by adding elements between, in front and after the patterns, e.g.
X1p1X2p2X3 and X1p2X2p1X3 where Xi is a random sequence of elements of
the alphabet.

5.2 Estimating the Number of Occurrences of a Pat-
tern in a String

In this part we want to find out how often p occurs in s. For few occurrences
of p in s we can implement this the following way. An algorithm that can find

5. Pattern Matching 19

a maximum of a patterns p in s is an adapted extension algorithm where ∀i ∈
[1, . . . , a], i patterns are chosen and extended with random elements, between,
in front and after the patterns, to match the string. The output rules of the
algorithm then return positive results for all i ≤ n where n is the searched
amount of patterns p in s. The biggest i is the result. A downside of this
algorithm is that the number of rules increases the more patterns we want to
find. In the next section we present a rule efficient way to estimate the number
n of occurrences of p in s with a constant amount of rule strands needed.

Example

We demonstrate the algorithm with a maximum number a = 3 of rules that can
be found with this algorithm and with the number of occurrences n = 2 of p in
s. Let Xi be a random sequence of elements of the alphabet Σ. Then s has the
form of

X1pX2pX3

For i = 1 we get strands in the form of X1pX2 which result in a positive
output.

For i = 2 we get strands in the form of X1pX2pX3 which results also in a
positive output.

For i = 3 we get the strands in the form of X1pX2pX3pX4 which does not
result in a positive output. Therefore n = 2 patterns p exist in the string s.

For every i, the algorithm uses the number of elements e in Σ times i new
rules. If we want to count a patterns the algorithms uses Σa

i=1i ·e = 1
2 ·n · (n+1).

5.3 Estimation of Occurrences of a Pattern p in a
String s

We use a cutting pattern matching algorithm that searches for p in s. A pattern
p is found only with a certain probability p0 because some of the patterns are
deleted by the algorithm. p0 can be influenced by the concentration ratio between
the rule strands and the output strands in the cutting algorithm. If there are
many output strands compared to rule strands, then it is more probable that a
positive output occurs, thus p0 gets bigger.

If a p is found in s, we give an output, e.g. by fluorescing or by a DNA strand.
At most one output can be created per string s because the other occurrences
of p are deleted by the algorithm. Independent of how we count the matches
exactly, we assume that we get for every match a “+1”. We assume that we
cannot observe all counters but only a sample.

5. Pattern Matching 20

Let h be the number of occurrences of p in s, that we want to estimate. Then
p1 = 1− (1− p0)h is the probability that one pattern in one string is found. To
get h we therefore need p1. We know n that is the number of strings s in the
soup and that is also the maximum amount of “+1”s that we can count (because
at most one pattern p can be matched per string s). We define A as a random
variable that gives back the number of matched ps. It is binomial because for
every string s we have the probability p1 that one pattern is found and (1− p1)
that none is found. The probability mass function of A is:

P (A = a|p1, n) =

(
n

a

)
· pa1 · (1− p1)n−a

We assume that we have y � 1 counters. The probability that an output (e.g. a
”+1”) is counted by a certain counter is p2 = 1

y . We define the random process
X that gives back the number of counted outputs of one counter. It is also
binomial with the probability mass function:

P (X = x|p2, a) =

(
a

x

)
· px2 · (1− p2)a−x

Let c be the number of observed counters. We get c random processes Xi and
the respective observed random variables xi, ∀i = 1, . . . , c. Because we assume
that n and therefore a are very large and p2 is very small the xi can be treated
as being independent.

We get the following conditional probability

P (Xi = xi|P1 = p1) =
n∑

a=0

P (Xi = xi|A = a) · P (A = a|P1 = p1)

with
P (Xi = xi|A = a) = 0 ∀x > a

resulting in

P (Xi = xi|P1 = p1) =

n∑
a=xi

(
a

xi

)
· pxi

2 · (1− p2)a−xi ·
(
n

a

)
· pa1 · (1− p1)n−a

Because the xi can be treated as independent we get for the joint probability
mass function:

P (X1 = x1, X2 = x2, . . . , Xc = xc|P1 = p1) =
c∏

j=1

n∑
a=x

(

(
n

a

)
· pa1 · (1− p1)n−a) · (

(
a

xj

)
· pxj

2 · (1− p2)a−xj)

5. Pattern Matching 21

In this formula the only unknown variable is p1. We can now insert the other
variables and calculate the most likelihood estimator of p1 and its reliability.
Then we can solve the equation p1 = 1− (1− p0)h for h which is the estimation
of the occurances of p in the string s.

Chapter 6

The Inclusion Model

In this chapter we suggest and discuss a varied model for DNA computation.
With the model we are able to create more powerful languages than with the
previously used model. It will allow us to create algorithms to include domains
into strands while using a constant amount of rules.

6.1 Inclusion into a Strand with the Domain Replace-
ment Model

Accessing a position in a strand gets more difficult the further away the position
is from the ends of the strand. Given an alphabet Σ, we have to create the
following rules if we want to replace a character a by a character b at the third
position from the right

∗̄ε̄1ε̄2ābε2ε1∗
∀(ε1, ε2)εΣ× Σ

The further away the position is from the delimiters and the bigger the al-
phabet of the language is, the more rule strands are needed. Implementing a
replacement like above but on the ith position with n elements of the alphabet
yields in ni necessary rule strands for only a single action. In the following we
present a model that allows us to create algorithms for inclusion of strands into
other strands while using a constant number of rules, independent of the position
where the inclusion takes place and of the number of elements in the alphabet.

6.2 The Inclusion Model

The new model bases on the Domain Replacement Model but we make some
assumptions to extend the model. We assume that there exist domains X to

22

6. The Inclusion Model 23

which complementary domains X̄ can bind at all positions of the strand. We
represent such a binding by a “−”, e.g.

X X̄

Next we assume that a binding can dissolve, but only if instantly a new
binding with one of the dissolved domains is formed. In practice this has reasons
regarding the energy of the molecules. Because bound strands have a lower
energy state than unbound strands and are therefore more stable, the bindings
will not dissolve without creating a new binding. Otherwise they would have to
take an amount of energy permanently from their environment which we assume
does not happen in our model.

We assume that it is unlikely for a binding to dissolve. Therefore we assume
that the probability that two bindings dissolve at the same moment close enough
together to swap the bindings like this

X X̄

X̄ X

A A

B B

X X̄

X̄ X

A A

B B

= X X̄X̄ X
A AB B

is so small that we neglect this case in our model. Only if we keep the
bindings together, e.g. like this

. . . a
X X̄

b. . .

X̄ X

S

S̄
A B

a swap of the bindings is possible

. . . a
X X̄

b. . .

X̄ X

S

S̄

. . . a
X X̄

b. . .
X̄

S S̄
+

A B

A
X

B. . . a
X X̄

b. . .

X̄ X

S

S̄
A B

=

The swap of the binding of the first X next to S is a branch migration and is
treated in detail in e.g. [4]. We assume that there do not exist unbound X or X̄
in the soup, therefore a binding between an X and X̄ can only dissolve during
branch migration as shown above.

6. The Inclusion Model 24

6.3 Developing an Inclusion Algorithm

To implement an inclusion the domains should not be all on the same single
strand otherwise we face the same problem as shown in 6.1 with a non constant
amount of rules to reach any position. If we want to include a domain between a
domain a and a domain b in the strand + . . . ab · · · ∗, we use the following bound
strands instead

X X̄
+. . . a b. . . ∗

which has the effective strand + . . . ab · · · ∗. If we manage to dissolve the
binding, then a strand X̄?X can be included

. . . a
X X̄

b. . .
X̄ X

?

There are two main problems in this step. How are the strands separated
and how is ensured that both strands bind to the same inclusion strand. For
separating the a- and the b- strand we add a start-symbol S and its complement
to the strands:

. . . a
X X̄

b. . . X̄ X?

S

S̄+

The starting symbols can now bind together and then allow branch migration
with the X and its complement to take place.

. . . a
X X̄

b. . .

X̄ X?

S

S̄

. . . a
X X̄

b. . .
X̄

X?

S S̄ +

The strand X̄b . . . does not necessarily bind to the SX̄?X strand from the
same reaction in this case. The reaction above that does not fit our model
because there are unbound X and X̄ in the strand S̄X̄?X and in the strand
X̄b To make the strands fit into our model, we create a loop strand similar
to hairpin loops covered in [5].

X̄ X

?

S̄

6. The Inclusion Model 25

With this loop strand we can do the reaction to separate a and b from above
without violating our model assumptions:

. . . a
X X̄

b. . .

S
+ X̄ X

?

S̄ . . . a
X X̄

b. . .

S

X̄ X

?

S̄

. . . a
X X̄

b. . .

S

X̄ X

?

S̄

. . . a
X X̄

b. . .

S
X̄ X

?

S̄=

With these strands we can realize one inclusion. To be able to always be able
to include a strand at this position we add a starting domain to the ?-strand:
S̄X̄?XS

. . . a
X X̄

b. . .

S
+ X̄ X

?

S̄ . . . a
X X̄

b. . .

S
X̄ X

?

S̄

S

S

. . . a
X̄
b. . .

X
?

S
≡

The strand on the right of the reaction is nearly the same strand as on the
left but with a ? domain included between a and b. Because we did not restrict
the domain ? in any way, ? can be any domain as long as it fits our model. The
strands on the left and on the right of the equation sign have the same properties
therefore an equality sign is used to express the effective strand on the right.

An even more powerful approach is to create the new inclusion in the ? part
of the included strand

? = X X̄
c d

S

. . . a
X X̄

b. . .

S
X X̄

c d

S
+

X X̄
S̄

. . . a
XX̄

b. . .

S
XX̄

c d

S
XX̄

S̄

. . . a b. . .c d

S
X X̄=

6. The Inclusion Model 26

We denote a strand in which such an inclusion can take place as

. . . a
X X̄

b. . .

S

≡ . . . a b. . .

and the strand that we can include as

X X̄
c d

S

X X̄
S̄

≡ c d

In inclusion then looks the following

. . . a b. . . c d+ . . . a c d b . . .

6.3.1 Creating Palindromes

An algorithm that creates palindromes uses the following rules. We start with
the strands:

+ ∗

and as rule strands where X can be every element in the alphabet of possible
domains.

X X

With these rules we can create strands that are palindromes. If we want to
check if an input strand is a palindrome. We can either use input strands of the
form:

+ P1 P2 ∗

with the rules

X̄ X̄

6. The Inclusion Model 27

and the output rule

+̄ ∗̄ ‘matched’

Another way to check if a string P is a palindrome, is to use +P∗ as input
strand and then create palindromes on the complementary alphabet of the string
we want to check.

X̄ X̄

and then create an output rule with it

+̄ ∗̄ ‘matched’

Strings in the form of anbn can be created in a similar way. Also the gener-
ation of rule strands out of other rules strands gets easier with this.

Bibliography

[1] Mattia, N.: Parallel Computing with DNA (January 2015)

[2] Fukagawa, H., Fujiwara, A.: Procedures for Multiplication and Division in
DNA Computing

[3] Ravinderjit S. Braich1, Nickolas Chelyapov1, C.J.P.W.K.R.L.A.: Solution
of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296(5567)
(2002) 499–502

[4] Panyutin, I.G., Hsieh, P.: The kinetics of Spontaneous DNA Branch Migra-
tion. Proceedings of the National Academy of Sciences 91(6) (1994) 2021–
2025

[5] Bonnet, G., Krichevsky, O., Libchaber, A.: Kinetics of Conformational Fluc-
tuations in DNA Hairpin-Loops. Proceedings of the National Academy of
Sciences 95(15) (1998) 8602–8606

28

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model Section
	3 Binary Division
	3.1 Long Division Algorithm
	3.2 A Parallel Long Division Algorithm
	3.3 Single Strand Division Algorithm

	4 3SAT
	4.1 One of Each Clause Algorithm
	4.2 Clause Choosing Algorithm

	5 Pattern Matching
	5.1 Matching a Single Pattern in a String
	5.2 Estimating the Number of Occurrences of a Pattern in a String
	5.3 Estimation of Occurrences of a Pattern p in a String s

	6 The Inclusion Model
	6.1 Inclusion into a Strand with the Domain Replacement Model
	6.2 The Inclusion Model
	6.3 Developing an Inclusion Algorithm
	6.3.1 Creating Palindromes

	Bibliography

