
Distributed
 Computing

Is the Price Right

Bachelor thesis

Christopher Signer

signerc@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Laura Peer, Philipp Brandes

Prof. Dr. Roger Wattenhofer

March 23, 2016

Acknowledgements

I thank Laura and Philipp for supporting me with this project. They took their
time to meet up regularly and discuss the findings and especially gave input on
how to progress when I struggled or the results were unsatisfactory. I would
also like to express my thanks to Prof. Dr. Wattenhofer, who has built up a
diverse research group which also tackles everyday problems. He held a course
on distributed programming which inspired me to look into projects of his group.

i

Abstract

While some people go to car dealerships when they are interested in buying a car,
other people prefer to comfortably browse countless car listings on a number of
available Internet platforms, for example autoscout24, car4you or autoportal24.
At the time of writing, the online car portal autoscout24 boasts over 150’000
car offers. The users who visit these online car marketplaces can narrow their
search by applying specific criteria, for example brand, model, make or year,
but finding outstanding offers in this large collection of results is a tedious task,
which is currently done manually and by the user’s own recollection.

The goal of this thesis is to crawl car offers from online resources and use
the gathered data to develop a model that estimates the price of a car based on
several key indicators. The result of this thesis is a web application that allows
the user to specify a car with specific attributes and returns a selection of similar
offers and an estimated price.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

1.2 Objective . 2

2 Price checker 3

2.1 Dataset . 3

2.2 Car Features . 4

2.3 Model . 8

3 Web Application 12

4 Implementation 13

5 Results 14

5.1 Determining the parameter bucket match 14

5.2 Determining the parameter minimum bucket size 14

5.3 Determining the nearest neighbor weight parameters 17

5.4 Determining the parameter nearest neighbor filtering 18

5.5 Filtering outliers . 18

5.6 Price checker accuracy . 18

5.7 Correlation of price and the time that an offer is online 22

6 Summary & Outlook 26

6.1 Possible problems and improvements 26

Bibliography 28

iii

Chapter 1

Introduction

Switzerland has about 5.9 million registered civilian vehicles[1]. Many of these
cares are resold and find a new owner. To prevent car dealerships from taking
a percentage of the selling price, online platforms and other publications allow
or even promote advertisements of private car listings. The prices are set by
the seller, which can potentially be a private person who does not have much
experience selling cars. How can an inexperienced seller figure out a reasonable
price, and how can a potential buyer check if the suggested price is appropriate?

In both situations, the other car listings provide a lot of information. See
another five listed cars which are similar? Compare their prices and set yours
accordingly. But what makes the cars comparable? Does the color matter? Or
can less mileage make up for being a year older? Especially with cars that are
not too common, it might suddenly take a lot of time or even prove impossible
to find similar cars according to the price deciding factors.

1.1 Related Work

Comparis[2] has a car search tool with listings from multiple Swiss websites.
They host them on their website and give a calculated market value as compar-
ison to rate the price. They also offer estimating the price of a car based on a
set of basic information that includes mileage, licensing date and information to
identify the car. Either the type number (manufacturer number) or car brand,
model and car type (an accumulation of multiple factors as for example horse
power, number of doors) can be provided. The estimated car price is based on
a statistical model, credited to a former ETH scientist Andreas Keller[3]. There
is no more detailed information given besides that they are actively collecting
more data and that they cannot take into account special conditions and optional
equipment in detail.

The Kelley Blue Book[4], autotrader.co.uk[5], carsales[6] and a variety of
other websites offer to estimate the value of a car. Some base it on a set of basic
information and others on detailed forms that include optional equipment, color

1

1. Introduction 2

and more. Some websites (for example eurotaxglass[7]) even offer their price
estimation as a paid service. None of the mentioned services go into detail on
how their price estimate was derived.

1.2 Objective

The objective of this thesis is to create a tool that can estimate the prices of cars
and return similar cars based on the features found in car listings to help buyers
and sellers. At first information on existing car listings is collected. In a second
step, the information is evaluated to create a price estimator based on features
and parameters which also returns similar cars. As final product of this thesis
we integrate the estimator into a simple user interface.

Chapter 2

Price checker

2.1 Dataset

We were unable to find a publicly available list of secondhand car purchases.
Therefore, car offers from people who intend to sell their cars are the most obvious
and easiest accessible sources for data on cars. There are many online platforms
where secondhand cars can be sold in Switzerland. The largest among them are
Ricardo[8], car4you[9] and autoscout24.ch[10]. They offer a choice of 60’000 to
almost 120’000 cars. We collect data from the largest portal: autoscout24.ch.

Since Germany has a large secondhand car market, we considered using their
online platforms as another source to gather a larger number of car data. The
large data set would allow to price check German cars and could perhaps offer
more data on uncommon cars and help with cross validation. Among the largest
with about 1 and 2 million offers are mobile.de[11] and autoscout24.de[12], re-
spectively.

Unfortunately, autoscout24.ch and autoscout24.de do not offer an API which
lists car offers and mobile.de sells access to their API for commercial use only.
Crawling the websites to extract the car offers from the HTML pages is thus the
chosen approach.

For each of the three car selling platforms, we implemented a crawler which
finds the car offers by searching for cars of all models and traverses the search
results. This provides a definite classification of the brand and model of each
search result on the granularity used by the websites. Search results, among other
things, consist of links to car detail pages. For each car detail page we store the
vehicleID, a unique value given to every car listing on each website, which later
allows access to the car offer for as long as it is online. All the information given
on the detail websites for car offers is then checked for possible user input errors
and then stored in a database. The database schema is given in Figure 2.1 and
shows all of the car properties stored. Notably, every time we find a preexisting
car, we add an entry to the table times. This provides a time window for every
listed car to determine how long it was online, until it is either sold or taken

3

2. Price checker 4

down due to being unsuccessful. The buckets table stores group names of car
model versions as will be explained in more detail later.

2.2 Car Features

The car features can be separated into two types: Categorical features and con-
tinuous features. Categorical features contain boolean features which are ”all
or nothing”. A car has for example either a navigation device or it does not.
The car’s equipment (navigation, ISOFIX, xenon headlights, etc.), is thus trans-
formed into categoric features. The brand and model are also considered to be
categories. The equipment features are sorted by their number of occurrence in
Figure 2.2.

The continuous features are numerical columns in the database which theo-
retically have an infinite number of possible values each, for example the mileage,
car price and fuel consumption or the licensing date, which is turned into the
number of months since the current date to get a value that can be processed
well. The logarithm is taken for licensing date and mileage as the price decreases
non-linearly for these values.

The car model is arguably one of, if not the most important feature. There is
a huge variety of car types from luxury cars, sports cars, family vans, to station
wagons and more. The model describes the car type, car brand and often many
features such as approximate production year and engine. A car model is given
in the search form of car selling platforms but only at a coarse granularity. A
VW Golf with a licensing in 2008 could be any of about sixteen versions (e.g.
1.4, 1.4 TSI, GTI, 2.0 TDI, etc.) and this is only out of the then current sixth
generation of this specific car model. The VW Golf in question might still be a
car from the 2007 product generation. A search box for the edition allows the
user to narrow it down more, but it is a text search on whatever description the
seller deemed important. More often than not, it might include irrelevant words
to advertise the car.

The mileage of a car is a good indicator for the condition of a car. A more
used car can potentially require more repairs and is more likely to break down
and often shows more signs of use like dents, scratches and general uncleanliness.
Figure 2.3 shows a log-log plot of the mileage and price, in comparison to 2.4
which is a semi-log plot but with the logarithm of the mileage on the x-axis. The
mileage also correlates strongly with the licensing. The licensing date indicates
the age of a car and as such is shown as relevant in Figure 2.5. An older car
once again is more costly to maintain. Generally, the licensing date correlates as
mentioned with the mileage but also with the car model and thus indirectly with
many other features. Electric cars were only introduced in recent years, and as
such are not contained in cars that are for example over twenty years old. The

2. Price checker 5

Figure 2.1: Database schema storing the car offers

2. Price checker 6

Figure 2.2: Equipment occurrences in car descriptions

Figure 2.3: log-log plot of price vs mileage

2. Price checker 7

Figure 2.4: semi-log plot of price vs the logarithm of the mileage

Figure 2.5: semi-log plot of price vs the logarithm of the mileage

2. Price checker 8

Figure 2.6: Price vs horse power

listed horse power of a car is an alternate indicator for the engine type, besides
the seller’s description of the model version. Many car models are sold with a
variety of engines which usually do not have the exact same horse power. Usually
more horse power also correlates with a higher price as can be seen in Figure
2.6. The fuel consumption behaves analogous in that it is greatly dependent on
the type of engine and thus has a similar impact on the price. Figure 2.7 shows
the car price vs fuel consumption.

2.3 Model

Figure 2.8 shows an overview of the process described in this chapter.

Usually, the dataset used for a single price estimation consists of all cars of a
certain model (see Chapter 3 for some exceptions). At this point, after the fea-
ture processing, a linear regression still leads to relatively bad price estimations,
which is why we split a car model into buckets of car model editions. The cars
are initially sorted into natural buckets based on the model and exact matches
on the the user given model name, which is often more descriptive as it contains
the car edition. Since many of these buckets tend to be too small for any further
evaluation, the smallest buckets are merged with larger ones based on whether all

2. Price checker 9

Figure 2.7: Price vs fuel consumption

words of one bucket name are contained in the other if and only if the minimum
number of words that is equal in both names is above a set threshold bucket
match (see Section 5.1). This threshold is in place to prevent really vague model
names such as ”Golf” to be merged with practically any other bucket of ”VW
Golf” cars. Cars are merged into buckets until no buckets smaller than a cer-
tain minimum bucket size (see Section 5.2) can be matched with larger buckets
anymore, as merging is generally undesirable if it can be avoided to keep a more
precise distinction of car models.

Within the bucket, we might still find cars that differ too much in age, equip-
ment or engine. We therefore use a nearest neighbor rating on a select few fea-
tures with numerically determined weight parameters (see Section 5.3). For a
price check of some car A we compare it to all cars in the bucket it belongs to.
The following Equation 2.1 shows the calculation for the rating of a car com-
pared to A. The difference d of a categorical cat. feature feat. is 1 if the cars do
not belong to the same category and 0 otherwise. The difference of a continuous
cont. feature is a value in the range of 0 to 1, derived by normalizing the absolute
value of all differences of that feature between all cars in the bucket and A. The
weight parameter w expresses the weight for each feature.

R = (
∑

∀cat.feat.
wcat. ∗ dcat.) +

∑
∀cont.feat.

wcont. ∗ dcont. (2.1)

2. Price checker 10

Figure 2.8: Processing an estimation

2. Price checker 11

The smaller the rating, the more similar a car is to A. A perfect match in all
features would thus be rated with a 0.

As described in Section 5.4, the bucket is reduced to the most similar 24 cars
according to the nearest neighbor rating and further reduced by removing any
cars which have a price that varies more than 3.5 times the standard deviation
from the mean price as detailed in Section 5.5. This is the list of cars returned
on the web application as similar (except for cars which are known not to be
listed anymore). Finally we estimate a price using a multiple linear regression
based on the price, horse power, mileage and licensing.

Chapter 3

Web Application

The price checker is integrated in a web application as final result, as searching
listed cars, comparing and also buying or posting new cars to be listed is usually
done on a computer. A computer offers better possibilities to do visual side by
side comparison than mobile devices.

The web application provides a simple user interface where the user can paste
an autoscout24.ch vehicleID or URL, or enter car features manually. On submit,
the input is processed by the web app, which returns the estimated price and
similar cars.

The user can choose a brand, car model and a model bucket, to specify best
what car he is looking for. Only large enough buckets are shown. If a bucket
is picked, the procedure is as described in Section 2.3. If no bucket is picked,
the web application will estimate the price using all cars of the specified model
as if it was one bucket which can produce a less accurate result. Suppose no
car model is picked either or there are not enough cars of that model (less than
the minimum bucket size), then all cars of the specified brand are used as if it
was one bucket. And lastly, if there are not enough cars of the brand (less than
the minimum bucket size) or no brand is specified, all cars in our database are
used to estimate the car price. These generalizations are provided so that we
can always return a result, even if the estimates and car similarities can be less
accurate.

12

Chapter 4

Implementation

Python 2.7 is generally the programming language of choice for this project due
to the readily available packages on machine learning, statistical models, data
processing and model plotting. Jupyter Notebook[13] is used as IDE.

The Scrapy[14] library enables easy crawling to store the data in a MySQL[15]
database. The crawler runs every two to four days as cron job for each of the three
websites and collected over the course of the project data (including incomplete
entries) of nearly 3.5 million cars. The database schema is shown in Figure 2.1.
The column ausrustung notably contains the equipment which was previously
mentioned (see 2.2) as a semi-colon separated list. The data is loaded from the
database into a Pandas [16] dataframe with the Mysql-Python connector [17].
Numpy [18] is used to perform operations on series as such as the logarithm
on a dataframe column and also internally by the Pandas library. The linear
regression is done with statsmodel[19], more specifically using the formula api,
which allows easy differentiating of categorical and continuous features. The web
application uses flask[20]. The library matplotlib[21] is used to plot the graphs.

13

Chapter 5

Results

All evaluations are performed with the listed cars from autoscout24.ch. We
mostly used the car model VW Golf, as it is the most frequently listed car on
that platform as can be seen in Figure 5.1. To measure the quality of price
estimates, they are compared to the listed prices. Estimates within ±20% of the
listed price are considered to be ok. The percentage of all cars we have estimated
within that 20% range is used for parameter tuning. It is interesting to note,
that the calculated linear regression parameters do not necessarily correlate to
the features in the way which would trivially be expected. If for example a bucket
by chance contains mainly two car model versions, one slightly older than the
other, it still might be that the older model is a more luxurious and expensive car.
Similarly a car with less horse power might be electric and thus more expensive
than the stronger gasoline-driven car.

5.1 Determining the parameter bucket match

A small model bucket can be merged with a larger bucket if the model names have
three words in common. This number is derived by observing the usual model
name patterns. For a VW Golf an excerpt of the names is shown in Figure 5.2.
Suppose the parameter was two, the name ”Golf 1.6” could be merged with any
bucket as Golf 1.6 Comfortline, Golf 1.6 16V, Golf 1.6 TDI Comformt 4M, and so
on. Figure 5.3 shows the results for values two, three and four together with how
many cars are in buckets for each. Three was derived as compromise between
better results and more cars per bucket.

5.2 Determining the parameter minimum bucket size

The minimum bucket size is set to 50. Due to time constraints and the large
dataset size the parameter is not numerically derived for the best result. Con-
sidering the number of cars per model (see Figure 5.5) it is deliberate though,
as more would lead to more buckets being merged that do not belong together

14

5. Results 15

Figure 5.1: Number of cars of the 30 most crawled car models

Figure 5.2: Excerpt of VW Golf bucket names

5. Results 16

Figure 5.3: The number of cars in large enough buckets for different minimum
bucket match parameters vs the percentage of cars within the 20% range.

5. Results 17

Figure 5.4: Features for the nearest neighbor rating and the 20% range accuracy
they achieve by stacking up from left to right

and less would shrink the number of cars left over for the linear regression to a
concerningly small number.

5.3 Determining the nearest neighbor weight param-
eters

The nearest neighbor rating has a weight parameter for each feature used. The
logarithm of the mileage is given a weight of 1 as baseline, since that and the
licensing date are two features which correlate with the price as seen already in
Figure 2.3 and Figure 2.5. The difference in continuous features from a single
car is calculated against the dataset (usually a bucket) and normalized so that
the largest difference is given a value of one and no difference is a zero. On the
other hand, the categorical features are either the same or not, thus the weight
is either added to the difference or not at all. One by one the parameters are
set by iteratively testing features with a reasonable range of weights, adding the
best and repeating the process with the remaining features. Many of the added
features do not lead to improvements, but the ones which do and their parameter
can be seen in figure 5.4 together with the overall estimation accuracy. Table
5.1 shows the weight parameters for these features.

5. Results 18

Feature Weight Parameter

Mileage 1

Fuel Consumption 0.8

Licensing 0.3

Horse power 0.4

Top 0.6

Xenon headlights 0.1

Automatic 0.1

Aluminium rims 0.3

Cruise control 0.1

Table 5.1: Features and their weight parameter for the nearest neighbor rating

5.4 Determining the parameter nearest neighbor fil-
tering

The 24 most similar cars in a bucket are used for further processing. The size 50
turned out to be best for the VW Golf, but buckets of size 100 as used to derive
that number are unpractical for other car models as too many cars would end
up not in large enough buckets. Figure 5.5 shows for each model how many cars
it has in a log-log plot. The two intercepting black lines mark the model sizes of
50 and 100 for reference. Figure 5.6 shows the car price estimations within the
20% range for the VW Golf with varying parameter size, with 50 as maximum
and 24 as a local maximum.

5.5 Filtering outliers

A car from the list of similar cars is considered an outlier if the difference of
price to the mean of the list is more than a factor times the standard variance.
By iterating over a range of factors and running the price estimator for each the
best is determined. 3.5 is the best factor as can be seen in Figure 5.7.

5.6 Price checker accuracy

The results for testing all cars against the implementation if they are within the
+-20% price variation are shown in the Table 5.2, where category 1 refers to
cars tested against all cars of the brand, category 2 are cars tested against the
whole car model and category 3 are cars tested against the bucket only. The
exception are 199 cars which would be tested against all cars. The Table 5.3 is
analogous to Table 5.2. It shows similar results but slightly improved. They are
derived by excluding the initial crawl from the data set. This is likely due to

5. Results 19

Figure 5.5: Number of cars per model as log-log plot with marks at model sizes
50 and 100

Category Number of cars Percentage of cars Percentage in +-20%

1 8308 3.81% 22.75%

2 98546 45.23% 45.78%

3 111017 50.96% 63.94%

Total 217871 100.00% 54.15%

Table 5.2: Number of cars and accuracy of our price estimation model shown
together and separated in the three categories (category 1: cars tested against all
cars of the brand, category 2: cars tested against the whole car model, category
3: cars tested against the model version bucket only).

5. Results 20

Figure 5.6: Car price estimations for the VW Golf with a variable number of
most similar cars and a minimum bucket size of 100. 24, the local maximum
which is in use and 50, the global maximum are marked.

5. Results 21

Figure 5.7: Factor of the standard deviation for cutting off outliers vs the esti-
mation accuracy

5. Results 22

Category Number of cars Percentage of cars Percentage in +-20%

1 8760 6.71% 31.42%

2 73737 56.47% 53.69%

3 48069 36.82% 68.33%

Total 130566 100.00% 57.59%

Table 5.3: Number of cars and accuracy of our price estimation model shown
together and separated in the three categories (category 1: cars tested against all
cars of the brand, category 2: cars tested against the whole car model, category
3: cars tested against the model version bucket only). The dataset used here
excludes the initial crawl.

excluding a group of cars that sell rarely and are online for a long time due to
being overpriced or special in some other way. Considering only a single model
as the VW Golf we can show the amount of cars in the 20% range nicely by
graphing the accumulation of cars in the y-axis and the percentage by which the
estimation is off in the x-axis, as shown in Figure 5.8.

5.7 Correlation of price and the time that an offer is
online

A timestamp is added when a car is crawled and another timestamp entry is
added whenever a car is seen again. We can therefore show how our price estimate
tends to be too high for cars which sell quickly. Figure 5.9 is a density map which
shows on the x-axis how long an offer is online with a variation of plus 0-3 days as
we can only estimate when it is taken offline by not seeing it during the next crawl
process. The y-axis indicates the difference in percent that the price estimate is
higher or lower than the actual price. The density is shown by the color with
white indicating no car, the predominant dark blue that there is only one car
there and the lighter blue to green, yellow and red indicates a gradually higher
density with dark red having the highest. The first instance of crawled cars
is excluded because they might have been placed online long before. It stands
out that many of our estimates are off by multiple 100 or even 1000 percent,
especially also negative values larger than 100%. For the web application any
negative price estimates are displayed as 0.

Figure 5.10 shows the same as figure 5.9 but with an enlarged y-axis. The
highest density is clearly above the y=0 axis, which indicates our too high esti-
mates for fast selling cars.

5. Results 23

Figure 5.8: Price difference of the VW Golf estimates in percent to the listed
price vs the percentage of cars cumulative.

5. Results 24

Figure 5.9: The number of days a car is listed on autoscout24.ch vs the percentage
by which the estimate is off from the listed car price, shown as density map. Dark
red indicates the highest density, white indicates no car to show there and the
dark blue which is shown predominantly indicates only one car there.

5. Results 25

Figure 5.10: The number of days a car is listed on autoscout24.ch vs the percent-
age by which the estimate is off from the listed car price, shown as density map
zoomed in on the y-axis. Dark red indicates the highest density, white indicates
no car to show there and the dark blue which is shown predominantly at the
right border for example indicates only one car there.

Chapter 6

Summary & Outlook

The web application provides users the possibility to look up an estimated car
price and similar cars based on a few features or a link to a car listed on au-
toscout24.ch. 63% of the estimates lie within a range of 20% from the listed
price. The functionality of returning also similar cars can provide better produc-
tivity and for some car models which occur frequently in the dataset, the price
estimates are significantly better. Exactly these car models can bring up also
another use case for this tool, when there are too many search results to get a
good overview and find appropriate offers directly on a platform. Estimating car
prices for models which are rare does not become much easier with this tool.

6.1 Possible problems and improvements

• Fit the parameters for all cars and less for specific popular models.

• Come up with better models possible for the situations where currently
the whole car model, car brand or all cars are used like a bucket. They
would probably use more features to find similar cars across all models and
brands.

• The web application is currently relatively slow on processing an estimate
as it loads most data directly from the database instead of only updating it
in regular intervals. As the data only changes slowly in the database and it
is not important to have live data, caching could improve the performance
significantly without impeding accuracy.

• The web application could crawl a new car offer right away given an au-
toscout24 vehicle ID or URL to a car which is not in the database, instead
of not being able to provide a result. The list of similar cars could also be
checked to see if they are still online before returning them as result in the
web application.

• Sellers can change the price of a listed car without creating a new listing.
These changed prices should be stored in the database.

26

6. Summary & Outlook 27

• Integrate collected data about German cars to predict not only German
car prices separately but maybe also to make up for insufficient data about
certain rare cars in Switzerland.

Bibliography

[1] : Swiss Statistics, level of motorisation. http://www.bfs.admin.ch/bfs/

portal/en/index/themen/11/03/blank/02/01/01.html Accessed: 2016-
03-18.

[2] : Comparis. https://www.comparis.ch Accessed: 2016-03-18.

[3] : Comparis car value finder by Andreas Keller. https://www.comparis.ch/
carfinder/info/glossar/comparis-bewertung.aspx Accessed: 2016-03-
23.

[4] : Kelley Blue Book. http://www.kbb.com/whats-my-car-worth/ Ac-
cessed: 2016-03-18.

[5] : autotrader.co.uk. http://www.autotrader.co.uk/car-valuation Ac-
cessed: 2016-03-18.

[6] : carsales. http://www.carsales.com.au/car-valuations/ Accessed:
2016-03-18.

[7] : eurotaxglass. http://www.eurotaxglass.ch/ Accessed: 2016-03-18.

[8] : auto ricardo. https://auto.ricardo.ch Accessed: 2016-03-18.

[9] : car4you. https://www.car4you.ch/ Accessed: 2016-03-18.

[10] : autoscout24.ch. http://www.autoscout24.ch/ Accessed: 2016-03-18.

[11] : mobile.de. http://www.mobile.de Accessed: 2016-03-18.

[12] : autoscout24.de. https://www.autoscout24.de/ Accessed: 2016-03-18.

[13] : Jupyter Notebook. http://jupyter.org/ Accessed: 2016-03-22.

[14] : Scrapy. http://scrapy.org/ Accessed: 2016-03-18.

[15] : MySQL. https://www.mysql.com/ Accessed: 2016-03-18.

[16] : Pandas. http://pandas.pydata.org/ Accessed: 2016-03-18.

[17] : Mysql-Python connector. https://dev.mysql.com/doc/

connector-python/en/ Accessed: 2016-03-18.

[18] : Numpy. http://www.numpy.org/ Accessed: 2016-03-18.

28

http://www.bfs.admin.ch/bfs/portal/en/index/themen/11/03/blank/02/01/01.html
http://www.bfs.admin.ch/bfs/portal/en/index/themen/11/03/blank/02/01/01.html
https://www.comparis.ch
https://www.comparis.ch/carfinder/info/glossar/comparis-bewertung.aspx
https://www.comparis.ch/carfinder/info/glossar/comparis-bewertung.aspx
http://www.kbb.com/whats-my-car-worth/
http://www.autotrader.co.uk/car-valuation
http://www.carsales.com.au/car-valuations/
http://www.eurotaxglass.ch/
https://auto.ricardo.ch
https://www.car4you.ch/
http://www.autoscout24.ch/
http://www.mobile.de
https://www.autoscout24.de/
http://jupyter.org/
http://scrapy.org/
https://www.mysql.com/
http://pandas.pydata.org/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
http://www.numpy.org/

Bibliography 29

[19] : Statsmodels. http://statsmodels.sourceforge.net/ Accessed: 2016-
03-18.

[20] : Flask web framework. http://flask.pocoo.org/ Accessed: 2016-03-18.

[21] : Matplotlib. http://matplotlib.org/ Accessed: 2016-03-22.

http://statsmodels.sourceforge.net/
http://flask.pocoo.org/
http://matplotlib.org/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Objective

	2 Price checker
	2.1 Dataset
	2.2 Car Features
	2.3 Model

	3 Web Application
	4 Implementation
	5 Results
	5.1 Determining the parameter bucket match
	5.2 Determining the parameter minimum bucket size
	5.3 Determining the nearest neighbor weight parameters
	5.4 Determining the parameter nearest neighbor filtering
	5.5 Filtering outliers
	5.6 Price checker accuracy
	5.7 Correlation of price and the time that an offer is online

	6 Summary & Outlook
	6.1 Possible problems and improvements

	Bibliography

