
Distributed
 Computing

Classify the News

Bachelor’s Thesis

Dominik Bruggisser

dominibr@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Klaus-Tycho Förster

Prof. Dr. Roger Wattenhofer

April 12, 2016

Abstract

There is simply too much information around us to digest all of it. There should
be a simple method to classify news pages in order to filter the irrelevant parts
out. This paper introduces methods based on which such a tool can be built.
The introduced methods allow searching for subjects on Twitter and clustering
them based on meta data. Furthermore, some basic ideas about detecting a
filter bubble are described, implemented using a dendrogram and deployed in a
website.

i

Contents

Abstract i

1 Introduction 1

1.1 Filter Bubble . 1

1.2 Problem statement . 2

2 Data Source 3

2.1 Twitter . 3

2.2 Crawling . 4

2.2.1 Search and REST API . 4

2.2.2 Stream API . 4

3 Concept 5

3.1 Data Model . 6

3.2 Clustering . 7

3.2.1 Approaches . 7

3.2.2 Dendrogram . 10

3.3 Problems . 10

4 Implementation 11

4.1 Crawling . 12

4.2 Dendrogram . 13

4.3 Website . 14

5 Results 15

5.1 Swiss Votation . 16

5.2 American Elections . 16

ii

Contents iii

6 Conclusions 24

6.1 Future Work . 24

Bibliography 25

Chapter 1

Introduction

In the era of the internet, news is omnipresent. The consumers are exposed to a
huge amount of information out of which they are supposed to build their opinion.
While intuition gives the impression that this leads to a better understanding
of the world and well-grounded opinions, in reality people tend to prefer articles
that accredit the opinion they already have. This phenomenon is known as
selective exposure: An article that confirms the own opinion is taken as fact,
other articles that disprove it are believed to be implausible. The effect is that
people with certain views prefer certain news sites and rather to talk to people
with similar opinions than to those opposing them. With the advent of the
Web 2.0, companies started to use this matter of fact in order to attract users
to their websites and to make them stay longer. Facebook has introduced the
custom news feeds to present content it believes the user prefers. Google presents
personalized search results based on guesses about what pages the users would
like, even if a user is not logged in [1]. Figure 1.1 an extreme example of such
personalized results. These personalized results lead to a phenomenon called
filter bubble.

1.1 Filter Bubble

The term filter bubble was coined by Eli Pariser. It refers to an artificial envi-
ronment in which contradicting viewpoints are suppressed to give the reader a
simplified impression of his surroundings. The environment is generated through
algorithms which selectively filter the results based on the user’s behaviour. Ac-
cording to Pariser, the result of such a constructed world is ”a world in which
there’s nothing to learn” [2].

Filter bubbles are computer generated, but also desired by the user. Sources
that show other opinions and views are avoided and so in order to stay relevant,
information providers are often forced to present selective contents. Knowing
about the concept of filter bubbles raises the question whether there is a way to
visualize or even evade them and to reach content which extends one’s opinions.

1

1. Introduction 2

Figure 1.1: An example of a filter bubble [3]

1.2 Problem statement

Users prefer spending time reading news which support their personal views
and beliefs. This leads to a self-inflicted filter bubble. The combination of self-
inflicted and algorithm based filter bubble strengthens these beliefs. Considering
the diverse possibilities a single user has to redistribute his opinion over the
internet, the impact of wrong news spreading can be dangerous, for example
considering elections. Yet there is too much information around for a single user,
even if there was nothing like a filter bubble, to digest all of it. There should be
a way to analyse all the information presented in a simple and effective way.
To avoid filter bubbles and selectively sort the contents of news sites, looking
at meta data should be enough to present news in a well-arranged way in order
to stay well informed. To do so, it should be enough to visualize a user’s filter
bubble and show connections to other users with similar interests. With this
information, a user can follow others and get a better overview about the whole
topic.
Tests with the resulting tool described below showed that up to 75% of users
that are clustered end up in a reasonable cluster. The testing is described in
Chapter 5.

Chapter 2

Data Source

Social media has evolved from simple newsgroups into complex information net-
works. Every day, millions of user created content is uploaded to social net-
works. The content differs from conventional media in two major ways: Content
is unreliable since everyone can create content. At the same time, this prevents
one-sided, media-monopoly based information. On the other hand, reputation
is no longer measured by the name of the publisher, but rather by the count
of followers the publisher has. This has again advantages and disadvantages for
the user. Partly, it leads to a more diverse media landscape, partly the focus
changes from producing good content to gaining as many followers as possible,
sometimes even with bought followers as outcome [4].
Other than conventional media, social media adapts fast to changes, presenting
news updates usually within minutes of an event. This makes social media an
optimal source to stay up to date.

2.1 Twitter

Twitter is a good source for data mining and analysis. Twitter is an easy to
use microblogging service that offers huge amounts of data. Its users can post
statuses (tweets), like and share (retweet) other user’s tweets and follow other
users to receive their contributions in realtime. Within tweets, other users can
be mentioned using the ”@” sign, or tweets can be in response to other tweets.
Published content is versatile and covers everything from pointless babble to
world news, images, videos and even polls. Twitter can be accessed through
the web browser, apps and even SMS, which leads to a large amount of user
contributions. Currently, over 7100 tweets are posted every second [5]. Unlike
on other platforms, on twitter users can generate meta data on their on by
adding keywords (hashtags) to their tweets. Twitter links tweets with the same
hashtag together to categorize tweets by topics and to give best possible search
results when a certain topic is queried. Twitter recommends to its users who
they could follow to get more content. Again, these recommendations are based
on algorithms that find similar content and thus create a filter bubble.

3

2. Data Source 4

2.2 Crawling

Twitter offers an API through which all data, enriched with meta data, can be
crawled. Unlike other social platforms like Facebook, Twitter allows access to
every user and every tweet except so called protected tweets. This means that
no follower relation is required in order to access the data.

2.2.1 Search and REST API

The search API and REST API allow developers to search for topics and users,
crawl for social relations (like followers) and get status updates. It also offers a
lot of options to update user profiles, statuses and follower relations.

2.2.2 Stream API

The stream API lets developers receive real-time data based on keywords, users
or geotags. This is especially useful to analyse demographic data or to track live
events.

Chapter 3

Concept

In this chapter, I will give a brief overview of the ideas behind the application
and discuss the applied concepts behind it. For technical details about the
implementation, see Chapter 4.
The goal was to create a website which allows the user to cluster content about
a specified subject. Such a website should crawl Twitter and show the resulting
information in a well-arranged way. The easiest way to do so is to present data
as a graph. There exist already such graphs, as shown in Figure 3.1 [6]. This
graph was constructed from Instagram hashtags. It shows used co-tags about
the Israeli-Palestinian conflict with yellow tags indicating pro-Palestinian posts,
orange tags indicating pro-Israeli posts and purple tags representing religious
and Muslim contributions. The application should produce similar results, but

Figure 3.1: Instagram hashtag graph, 1) pro-Israeli (Orange), 2) pro-Palestinian
(Yellow), and 3) Religious / Muslim (Purple)

5

3. Concept 6

unlike the given example, the application should allow user input, i.e. the user
can decide what subject he wants to analyse. In the following Sections, the basic
concepts of such an application are discussed.

3.1 Data Model

Twitter offers a whole range of meta data. Figure 3.2 shows the resulting data
model used for the application (figure 4.2 shows a more detailed version of the
data model). Based on the model, there is a natural way to construct a graph:
Each user (twitter user) represents a node. Edges between the nodes are created
as a result of common characteristics of the nodes. The most obvious character-
istic is the follower relationship, where a user following an other user implies that
there are common interests. Mentioned users or replies allow a similar argument.
The other edges are based on retweets, common hashtags and websites that both
users share in their tweets. In addition to these edges, a connection between two
nodes is established based on the number of common followers divided by the
maximum number of followers of both users, i.e. #commonfollowers

max
user i

(followersCounti)
.

follower

hashtag

retweettweet

twitter_user

user_mention website

Figure 3.2: relations between tables: Users are stored in the table twitter user.
Each user has followers, i.e. users who follow them. Posts of users are stored in
the table tweet. Each tweet can conatin user mentions (user mention), hashtags
and websites. If a tweet gets retweeted, the relation is stored in the table retweet.

There are no edges based on the actual content. Comparing the user’s profile
descriptions and analysing the subjects of their tweets could improve the quality
of the clustering. Conversely, it opposes the hypothesis that clustering is pos-
sible based on meta data. And there is an other issue: Simply comparing the
text is not enough, as the examples in Figures 3.3 and 3.4 show. More elaborate
algorithms would be required to analyse the semantic meaning of each user’s
tweets. Even then the quality of results may vary because tweets are limited to
140 characters. Other information offered by Twitter, like geographic data, is
not used to create a graph.

3. Concept 7

Figure 3.3: Tweet of a Hillary voter Figure 3.4: Tweet of a Trump voter

A different approach to create a graph is to create a node for each hashtag.
To define edges, users are distributed over the different nodes based on the
hashtags they used in their tweets. In addition to the edges mentioned above,
an additional artificial edge indicates that two hashtags are used by the same
user. This approach has a big drawback: While hashtags like ”#ImWithHer” or
”#TrumpTrain” have a clear connotation, other hashtags like ”#election2016”
are used in multiple contexts, so a resulting graph is incomplete.

3.2 Clustering

Given a clustering algorithm as described below, the data is clustered in the fol-
lowing way: First, the graph is clustered based on following relationships, user
mentions, replies and retweets. The resulting clusters represent users that are
”socially” close to each other. The hypothesis states that these users have similar
opinions. In a next step, in order to find similar interests, the resulting clusters
are clustered again, but this time based on used hashtags and websites. That
way filter bubbles become visible: Users that end up in the same cluster in the
second clustering process tend to be caught in a filter bubble, users that end up
with those of different clusters presumably evaded it.
In a further step, opinions can be visualized by extracting hashtags from each
cluster. The graph topology between clusters stays the same, within each clus-
ter common hashtag nodes are joined. That way the closer in the middle a
node is, the more commonly is it used. This does not directly contribute to the
problem statement, but gives a further insight into prevalent opinions and fre-
quent subjects (also, hashtags that appear in every cluster indicate more popular
subjects).

3.2.1 Approaches

In a first approach, I applied hierarchical ”bottom up” clustering in a simple
fashion by joining clusters until a certain similarity threshold was reached. The
similarity is measured as the proportion of the edges inside the cluster to the

3. Concept 8

edges that go outside of the cluster. The threshold is the value below which two
clusters are not joined anymore because these are considered too different. In
order to cluster, every node is viewed as a small sub-cluster. The edges between
these clusters are inherited from the nodes contained in it, which are created
as stated above. Then, each cluster is compared with all others. The clusters
are merged based on the result from this comparing. In the comparing process,
the relation between nodes inside the cluster and those going outside of it are
compared. In order to compare, the average function is used, that is, each node
of one cluster is compared with all nodes of the other cluster. Then, the average
represents how similar the two clusters are. The higher the fraction of edges
within, the better.

Figure 3.5: Plot of used parameters for simple bottom up clustering

The advantage of such an approach is its simplicity. Figure 3.5 shows the re-
sult of multiple runs, where each time the same data was used, but the threshold
was changed, which leads to more sub-clusters being joined into bigger clusters.
The x-axis represents the threshold. The quality of the resulting clusters depends
on the density and the difference (in the figure called comparence) between the
clusters, that is how much are nodes connected within a cluster, and how many
connections are there in between the clusters. The goal is to find an optimal
threshold at which the least amount of edges between the clusters exist, while
inside the cluster, nodes are connected well, i.e. there are no nodes that are only
connected loosely. Experimental data with different datasets showed that such a
threshold does not always exist. Also, performing search for the correct threshold
is expensive because results are arbitary so that algorithms like binary search are
not applicable. That is, the qualitative outcome of changing the threshold cannot
be predicted. An example outcome of the algorithm is shown in Figure 3.6. The
graph shows three clusters based on the search for NFL teams. Grey edges indi-
cate edges between the clusters. Blue edges indicate connections within Seattle
Seahawks related tweets, red ones stand for Denver Broncos and green ones for
Philadelphia Eagles. The quality of the resulting graphs vary strongly depending
on chosen parameters, namely the threshold, the level of dropping clusters and
the expected amount of clusters in the result. For some subjects, the amount of

3. Concept 9

Figure 3.6: The resulting hashtag graph of bottom up clustering. Edges within
clusters are coloured red, green and blue, edges that connect the clusters with
each other are coloured grey.

3. Concept 10

resulting clusters is important, as it would not make sense to create two clusters
for three sports teams. Other subjects require a very small threshold to avoid
one huge and one tiny cluster. This requires manual fine tuning of parameters
for each new dataset, so the clustering process becomes cumbersome.

3.2.2 Dendrogram

A dendrogram is a tree diagram that illustrates the arrangement of clusters.
Each leaf corresponds to a user, each node corresponds to the merging of two
sub-clusters. The root of the tree is the union of all clusters. Contrary to the
hierarchical clustering described above, no threshold is defined, but the clustering
is continued until the root is reached, i.e. only one cluster containing all data is
left. This allows multi step clustering as described above, which also solves the
problem statement. In addition, to the user it is more obvious how clusters were
created. No further measures or analysis is required, so the algorithm is only
applied once. The results of this approach are described in Chapter 5.

3.3 Problems

Full automated perfect clustering is impossible with Twitter data for a few rea-
sons:

• Trolls
• Pointless babble
• Indetermined users
• Passive users

The internet is full of trolls. Twitter is no exception. Tweets from trolls are
impossible to cluster because their opinion does not represent a real view and,
even worse, their followers often represent an opposing group in respect of their
expressed opinion. The same problem arises from users who post a lot of pointless
babble, which, according to a study conducted by pearanalytics.com, account for
up to 40% of the overall tweets [7].

Chapter 4

Implementation

Figure 4.1: Component relationship

In this chapter, implementation technolo-
gies and some implementation details are
described.
The whole project was implemented in
Java with the program structure shown
in Figure 4.1. Note that the data collec-
tion and data analysis are completely sep-
arated, making it easier to extend or alter
the project. There are four main packages:
The package twitter handles all interac-
tions with the Twitter API and schedules
new tasks, the package datamodel contains
classes to manage all data, the package graph contains the graph logic as de-
scribed above, and the package controller handles requests from the website.
In addition there is a util package which offers functionality for networking (e.g.
looking up web domains), preprocessing edges and accessing the file system. The
full data model is shown in Figure 4.2. To allow parallel processing of more than
one subject, to each subject a unique id (twitter query.id) is assigned. Related
subjects are combined in the table dataset. Within the project, the following
technologies were used:

• Eclipse: Eclipse offers an easy to use environment for programming. It
has a lot of extensions and built-in tools for development.
• Maven: Apache Maven helps integrating external modules and configur-

ing the project information using the POM (Project Object Model) and
supports the whole development cycle of the project.
• MySQL: All collected data is stored in a relational database using MySQL.

The complex DBMS carries out all data related operations and takes care
of issues like parallel access and query optimization which leads to a perfor-
mance increase. The connection is established through the JDBC driver.
This allows full control over the executed operations (like projections) and
received data.

11

4. Implementation 12

• Twitter4J: Twitter4J is an unofficial Java library for the Twitter API.
It is easy to integrate into projects and allows access to all Twitter API
functionality.
• sigmajs: Sigma is a JavaScript library dedicated to graph drawing. It is

used to create the resulting graphs.
• svn tortoise: Subversion is used to avoid data loss.

In the following Sections, the crawling process, clustering and the function-
ality of the website are described.

dataset

id INT(11)

searchterm VARCHAR(255)

tweetcount INT(11)

userscount INT(11)

hashtagcount INT(11)

followerscount INT(11)

type VARCHAR(45)

status VARCHAR(45)

Indexes

follower

id INT(11)

user BIGINT(20)

follower BIGINT(20)

Indexes

hashtag

id INT(11)

statusId BIGINT(20)

text VARCHAR(255)

Indexes

querymap

id INT(11)

sourceQueryid BIGINT(20)

targetQueryid BIGINT(20)

Indexes

retweet

id INT(11)

tweetId BIGINT(20)

retweetId BIGINT(20)

tweet_id BIGINT(20)

Indexes

tweet

queryId BIGINT(20)

id BIGINT(20)

tweetText VARCHAR(256)

createdAt DATE

currentUserRetweetId BIGINT(20)

favoriteCount INT(11)

geoLocation VARCHAR(256)

inReplyToScreenName VARCHAR(256)

inReplyToStatusId BIGINT(20)

inReplyToUserId BIGINT(20)

lang VARCHAR(256)

place VARCHAR(256)

quotedStatusId BIGINT(20)

retweetCount INT(11)

retweetedStatusId BIGINT(20)

source VARCHAR(256)

userId BIGINT(20)

isRetweet VARCHAR(5)

Indexes

twitter_query

id BIGINT(20)

queryPhrase VARCHAR(255)

dataset INT(11)

state INT(11)

dataset_id INT(11)

Indexes

twitter_user

queryId BIGINT(20)

id BIGINT(20)

name VARCHAR(256)

createdAt DATE

description VARCHAR(256)

favoritesCount INT(11)

followersCount INT(11)

friendsCount INT(11)

lang VARCHAR(256)

listedCount INT(11)

location VARCHAR(256)

screenName VARCHAR(256)

status BIGINT(20)

statusesCount INT(11)

timeZone VARCHAR(256)

URL VARCHAR(256)

Indexes

user_mention

id INT(11)

statusId BIGINT(20)

userid BIGINT(20)

twitter_user_id BIGINT(20)

Indexes

website

id INT(11)

statusId BIGINT(20)

text VARCHAR(255)

domain VARCHAR(255)

Indexes

Figure 4.2: The full datamodel used in the application

4.1 Crawling

Twitter offers two APIs to find tweets: The search API, which is part of the
REST API, and the stream API. The search API focuses on relevance of the

4. Implementation 13

result, which means that not all tweets that match the query are returned. The
stream API gives access to tweets in real-time.
Behind the implementations of each interface, a scheduler manages the tasks to
avoid exceeding rate limits. This is crucial because Twitter offers 15 minute
windows to limit traffic. A possible approach to increase program performance
would be to circumvent these limits by using more than one account. However,
Twitter threatens to suspend access if violation is detected (”Use a single appli-
cation API key for multiple use cases or multiple application API keys for the
same use case.”, developer policy, 6.e.i., May 18, 2015). When a user assigns a
new query to the scheduler, the scheduler manages it by splitting it into one or
more of the following tasks:

• Search news: Search for news with a given subject.
• User feed: Read up to 3200 tweets the specified user has posted.
• Listen to stream: Listen to a news stream with a given subject. This

captures all tweets within a given time span together with the tweeting
user.
• Followers: Finding followers is the bottleneck of the application. This is

because some users have far over a million followers. With a rate limit of 15
requests per 15 minute window and a maximum response size of 100 items,
it takes 6 days 22 hours and 40 minutes to query one million followers.
• Retweets: With GET statuses/retweets/:id, retweets can be queried. This

is not necessary this case because the graph represents a closed system, i.e.
only retweets within the graph are sought-after. Each retweeted status
contains a field named retweetedStatusId (see 4.2), so retweets are queried
directly from the database with a simple join operation.
• Analysis: Once all operations for a query are completed, this task iden-

tifies the most used hashtags and invokes a new search for the specified
subjects. This leads to a better coverage of the requested topic.

After all tasks of are finished, edge creation is invoked. This reduces the costs
of graph creation.

4.2 Dendrogram

Once all edges are stored, the graph becomes available on the website. With all
edges pre-calculated, only user ids and edges are loaded. The clustering algo-
rithm creates a priority queue of each combination of nodes. It then merges node
pairs until a pair cannot be merged and starts again. This results in O(log n)
cycles in the best case, where all cluster pairs are merged, and O(n) cycles in the
worst case, where only one cluster pair is merged each cycle. Each cycle costs
O(m2) where m is the current amount of sub-clusters left as top nodes, because
all sub-clusters have to be compared with each other. As described in Section

4. Implementation 14

3.2, this process is executed twice. There are no mechanisms implemented to
detect trolls, but users with no connection to others are excluded from clustering
to avoid a random combination of nodes.
Each graph is produced and stored in a container, so more than one graph can
be generated at the same time. The container allows access to graph data to
query for hashtags and websites associated with a certain cluster.

4.3 Website

The website inherits the structure from the underlying program, containing one
tab for each program component. Forms to create datasets, search for subjects,
listening to streams and to add a user to a dataset let the user control the crawler.
The dataset tab gives access to the data model. From each, a link leads to the
graph tab where the different graphs are displayed. To avoid SQL injections, two
simple security mechanisms are implemented. Regular expressions are used for
queries and prepared statements are used to insert data. More complex security
measures exceed the scope of the project.

Chapter 5

Results

The result of the project is an interactive tool in form of a website which lets the
user input any current topic and cluster it. The input can either be a live stream
or based on a search term. Once the data is crawled, four different kinds of
visualizations are available. The following descriptions are based on the subject
”#rapefugees” which came up after the New Year’s events in the city of Köln.
The first visualization shows a graph representing groups depending on their so-
cial surroundings. In this graph, the website user can either click on a user node
to see details about the user and see who he is following, or click on clusters
to compare their top hashtags and top websites. This graph is the basis of the
whole clustering process and the other graphs are derived from this one. Figure
5.2 shows an example of such a graph. Each leaf represents a user. The inter-
mediate nodes indicate two joined clusters. Some of these are coloured green,
indicating that the nodes beneath form a cluster as used in the fourth graph.
The second graph contains the same nodes and edges as the first graph, but shows
the distribution of topics by colouring each node with the most used hashtag.
This gives an idea of what users tweeted about. Figure 5.3 is the result based
on the first graph. The algorithm chooses the least used of the top hashtags
so that not all leafs are coloured in the colour of the prevalent subject. In the
given example, 2A is a hashtag introduced pretaining the Second Amendment
and gun rights. TCOT stands for Top Conservatives on Twitter. In this graph
it becomes visible that some groups contain a predominant hashtag while others
have a combination of all hashtags.
The third graph, as shown in Figure 5.4, is the most important one considering
the problem statement. It is the result of reclustering the data, but this time
based on discussed subjects. This allows conclusions about the filter bubble in
which each user is trapped. Each user keeps the colour from the first graph men-
tioned, but is put into a new cluster. From the colour of the surrounding graphs,
conclusions can be drawn about who each user should follow to get the widest
range of information about the subjects of his interests. The better this graph is
mixed, the better are groups with different opinions connected with each other.
The fourth graph displays all hashtags used in the tweets of the clustered users.
The cluster colours are inherited from the first graph as described in Section 3.2.

15

5. Results 16

The resulting graph gives an impression of the intended impact of each hashtag.
Hashtags closer to the middle of the graph are more generally used within the
dataset than those close to the sides. Note that some hashtags appear more
than once in the graph because these are used in more than one cluster. Such
a graph is displayed in Figure 5.5. The colours of the nodes are inherited from
the clusters in Figure 5.2.

Contained in the website are two subjects that are already crawled. More
subjects can be added either to the existing datasets or to a new dataset with
the forms on the create page of the website.

5.1 Swiss Votation

On February 28, 2016, Switzerland voted about four voting proposals. I captured
the whole traffic through the Streaming API. On the website, the dataset is split
into two subsets: The Durchsetzungsinitiative and the overall data.

5.2 American Elections

During the TV debates mid-December 2015, a lot of tweets with the hashtag
election2016 were posted. These, combined with users who publicly endorse the
presidential candidates, were used as a ground truth.

These endorsers build a simple ground truth because we know in advance who
they endorse, so users who endorse the same candidate should lie close together
in the resulting graph. After the crawling, I applied the clustering algorithm to
the data. In the resulting graph, all users except the endorsers as well as all
intermediate nodes were removed from the graph, so the resulting graph only
contains the endorser nodes, as shown in Figure 5.1. The colours of the nodes
indicate who they endorse. The result shows that the clustering works to a cer-
tain degree, as a majority of same coloured nodes lie close to each other. In
Section 3.3, reasons are given why a better clustering is not possible with the
given algorithm.
The example shows that clustering Twitter data based only on meta data is
possible. With the procedure described in Section 3.2.2, clustering works for any
given input. This makes it possible to detect filter bubbles and find the most
discussed themes within it.
Aside from being used as ground truth, the dataset brings some interesting other
results. Figure 5.6 shows the result of clustering the dataset based on followers.
Single nodes are omitted in the graph. In Figure 5.7, three nodes are highlighted.
Of the two big clusters, the one where the node is coloured orange has Trump,
Trump2016 and job as dominant hashtags, the other, coloured in red, contains

5. Results 17

Figure 5.1: Endorsements

5. Results 18

FeelTheBern, immigration and climatechange in the top 10. Out of 133 appear-
ances of the tag Trump, 111 are in the cluster containing half the nodes. A
subcluster (green) of it containing 27 nodes has 68 out of 206 overall mentions
of the tag Trump16.

5. Results 19

Figure 5.2: Data clustered based on user’s followers, nodes below green interme-
diate nodes form a cluster

5. Results 20

Figure 5.3: Data clustered based on user’s followers, colours based on most
common hashtags

5. Results 21

Figure 5.4: Data clustered based on hashtags used by users, colours based on
user’s followers

5. Results 22

Figure 5.5: Hashtags plotted based on connections between users, hashtags close
to the middle of the image have more connections to other nodes. Size depends
on frequency of hashtag (roatated 90◦ counterclockwise)

5. Results 23

Figure 5.6: Cluster of the search results for hashtag election2016

Figure 5.7: Cluster of the search results for hashtag election2016 with highlighted
cluster roots

Chapter 6

Conclusions

Detecting filter bubbles is possible up to a certain degree solely based on the
user’s meta data. Yet it is difficult because content is produced by humans,
so it has a lot of irregularities in it and is unpredictable as well as unreliable.
The tool described in this paper manages to cluster data and visualize filter
bubbles in a simple way, which gives a good basis for future work. The tool
gives an impression of how good or bad informed the users are (based on their
followers), which user groups (based on their used hashtags) prefer what websites
and how hashtags are distributed within a subject. Yet it leaves the question
open whether this is good or bad. It’s up to the reader to decide whether a user
should follow someone or not. Before extending the tool, some basic questions
about the impact of filter bubbles have to be answered, and especially, whether
it could even be appropriate in certain situations.
The concepts introduced allow clustering the data, but leave open the question
of the result’s quality. On the other hand, it showed with the example of the
Twitter API that the huge amount of social data present in the World Wide
Web is not as intransparent as it appears to be and that it is possible to evade
filter bubbles and user fitted content using exclusively the supplier’s own data.

6.1 Future Work

To continue with the analysis and clustering of the data, a good measurement
of the results has to be defined. The described ground truth suffices to prove
the functionality of the clustering, but does not allow a universal proposition.
Further, a better way of quantifying and visualizing the results has to be found
to allow a user to draw conclusions quickly and in a more obvious way. With the
algorithm as a basis and the stated enhancements implemented, a tool could be
created which analyses the user’s behaviour on Twitter, or even on other social
platforms, and gives better suggestions about who he should follow.
A special application of the tool would be an extension with which datasets like
the Swiss Votation set can be clustered in multiple passages to detect groups
who have a common opinion about each of the submitted voting proposals.

24

Bibliography

[1] Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You.
Penguin Press HC, The (2011)

[2] : Invisible sieve. http://www.economist.com/node/18894910?story_id=

18894910&fsrc=rss Accessed: 2016-04-01.

[3] : Personalized search and its discontents.
https://blog.nus.edu.sg/is1103grp203/2013/03/31/

personalized-search-and-its-discontents-ii/ Accessed: 2016-04-
01.

[4] : Poultry markets: on the underground economy of twitter followers. http:
//dl.acm.org/citation.cfm?id=2342551 Accessed: 2016-04-02.

[5] : Internet live stats. http://www.internetlivestats.com/one-second/

Accessed: 2016-04-02.

[6] : Israel, gaza, war & data. https://medium.com/i-data/

israel-gaza-war-data-a54969aeb23e#.3159sab1p Accessed: 2016-04-05.

[7] : Twitter study - august 2009. https://web.archive.org/web/

20110715062407/www.pearanalytics.com/blog/wp-content/uploads/

2010/05/Twitter-Study-August-2009.pdf Accessed 2016-04-06.

25

 http://www.economist.com/node/18894910?story_id=18894910&fsrc=rss
 http://www.economist.com/node/18894910?story_id=18894910&fsrc=rss
 https://blog.nus.edu.sg/is1103grp203/2013/03/31/personalized-search-and-its-discontents-ii/
 https://blog.nus.edu.sg/is1103grp203/2013/03/31/personalized-search-and-its-discontents-ii/
http://dl.acm.org/citation.cfm?id=2342551
http://dl.acm.org/citation.cfm?id=2342551
 http://www.internetlivestats.com/one-second/
 https://medium.com/i-data/israel-gaza-war-data-a54969aeb23e#.3159sab1p
 https://medium.com/i-data/israel-gaza-war-data-a54969aeb23e#.3159sab1p
https://web.archive.org/web/20110715062407/www.pearanalytics.com/blog/wp-content/uploads/2010/05/Twitter-Study-August-2009.pdf
https://web.archive.org/web/20110715062407/www.pearanalytics.com/blog/wp-content/uploads/2010/05/Twitter-Study-August-2009.pdf
https://web.archive.org/web/20110715062407/www.pearanalytics.com/blog/wp-content/uploads/2010/05/Twitter-Study-August-2009.pdf

	Abstract
	1 Introduction
	1.1 Filter Bubble
	1.2 Problem statement

	2 Data Source
	2.1 Twitter
	2.2 Crawling
	2.2.1 Search and REST API
	2.2.2 Stream API

	3 Concept
	3.1 Data Model
	3.2 Clustering
	3.2.1 Approaches
	3.2.2 Dendrogram

	3.3 Problems

	4 Implementation
	4.1 Crawling
	4.2 Dendrogram
	4.3 Website

	5 Results
	5.1 Swiss Votation
	5.2 American Elections

	6 Conclusions
	6.1 Future Work

	Bibliography

