
Distributed
 Computing

Convenient Password Manager
Group Project

Manuel Eggimann, Christelle Gloor
meggimann@student.ethz.ch cgloor@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Pascal Bissig, Philipp Brandes

Prof. Dr. Roger Wattenhofer

January 10, 2016

Abstract

This paper describes an application approaching password manage-
ment in a different manner than what is popularly used by a lot of
people at the moment. The application works with multiple devices
communicating via Bluetooth to increase security of password man-
agement. It uses Shamir’s secret share algorithm instead of locking
passwords behind more passwords while still keeping the convenience
of a password safe. The implementation reached a bottleneck con-
cerning the possibilities to establish more than two stable peer-to-peer
connections via Bluetooth.

1

Contents

1 Introduction 3
1.1 Improvement proposal . 3

2 Secret sharing 4
2.1 Basic idea . 4
2.2 Invalidation of shares . 5
2.3 Upgrading and downgrading of the threshold 6

3 Concept 7
3.1 Communication . 7

3.1.1 Pairing . 8
3.1.2 Encryption . 8

3.2 Password generation, distribution and recovery 8
3.3 Attack countermeasures . 9

3.3.1 Man-in-the-middle attack 9
3.3.2 Message replay . 9
3.3.3 Denial of service attack 10
3.3.4 Compromised client 10

3.4 Mesh synchronisation . 11
3.5 Message routing . 13

4 Implementation 13
4.1 Architectural overview . 13
4.2 User interface . 14

4.2.1 Mobile application . 14
4.2.2 Android Wear application 25

4.3 Encryption . 28
4.4 Transport channels . 28
4.5 Data storage . 29

5 Conclusion and outlook 29

2

1 Introduction

The management of passwords plays an important role in our highly digi-
talized world. Passwords protect our data, secrets, and even our identities.
In the past few years we have witnessed a rise in hackers targeting our pass-
words. Too many people use a few simple passwords and pins for all their
services. One leak can lead to a disaster. In this paper we propose to change
that.
Password safes are the most common applications managing the world’s
passwords. Apps like Efficient Password Manager[1], 1Password[2] , Dashlane[3]
and KeePass[4] are some popular examples. The idea is to keep all of the
users passwords locked behind a master key (one password which unlocks
all the other passwords) thus avoiding to have to remember all of them indi-
vidually. If used properly, this can lead to strong passwords being used for
the services. But more often than not, the average user will just keep his
existing unsafe passwords out of convenience, not using the full potential of
these applications. In this case leaks (passwords unveiled through a security
hole) will still be potentially as dangerous as before. The possible revelation
of the master password is an additional security hazard.

1.1 Improvement proposal

Our approach is a different one. First of all, we want to eliminate easy pass-
words. Every password, used by our application is random. No password is
ever reused for different services. A leak now means that only one service
is compromised instead of many. We do not want to lock all the passwords
with one master key as it is cumbersome to use long master passwords with
smartphone keyboards. We chose a multi-device approach. The passwords
will be split between any number of devices depending on a security level
the passwords get assigned to. Only if enough devices are physically nearby,
a password can be recovered and shown to the user.
The amount of devices needed to recover one specific password should be
adjustable. For example the user might want to have a password category
for his social media services. Since those might not be as important to the
user he could choose a security level of two. This means that at least two of
his devices need to be in reach to recover any passwords inside this group.
A different category could be used for various banking services like PayPal
or the Online-Banking service of the users’ bank. For this category the user
might want to choose a higher security level since this service will not be
used as often as the social media ones and some inconvenience will be ac-
cepted for increased security.
The passwords themselves are never saved anywhere except if the user
chooses to export them when all devices are present.
This would typically not happen very often. When starting to use our

3

application the desire to keep a backup somewhere safely locked is under-
standable. This backup would be updated only at a point when a lot of
passwords have been added.
With this approach we eliminate the risk of hackers spying out the users
devices at the very moment when he enters his master password (this kind
of malware is called keylogger). Using our solution, a device on its own is
information-theoretically not able to recover a password of a higher security
level.

2 Secret sharing

Secret sharing is the very basis of our application. The idea is to split a
secret to several shares and distribute them to different participants so that
at least k of them have to cooperate in order to recover the secret. It does
not matter which shares one uses to recover the secret as long as there are
enough of them.
In our approach we use Shamir’s secret sharing scheme [5][6]. The passwords
are generated by salting a 256-bit secret with the service- and the login
name and hashing them with SHA-256[7]. In our application the threshold
parameter k is called Security Level.

2.1 Basic idea

The idea behind Shamir’s secret sharing scheme is to encode the secret in
the coefficients of a polynomial over a finite field. A polynomial function of
the form a0 + a1x

1 + a2x
2 + ... + anx

n is exactly defined by n + 1 points
on this curve. In our application the polynomial of the desired order is
randomly generated and the coefficient a0 is defined as the secret. As many
points on the polynomial-curve as there are devices using the application
are evaluated. Each device receives one point ((x,y) value). This means
that the security level is limited to the number of added devices because
if there were not enough points the secret would be lost. After the shares
were distributed, the coefficients of the polynomial and therefore the secret
is destroyed. To recover it, one must gather as many points as the order of
the polynomial was in the first place and solve a system of linear equations
to interpolate a0. Hence it does not matter which devices are present at
the time of the recovery attempt. If we further operate over a finite field
by choosing a prime number which is larger than the largest value we allow
the secret to be, the secret sharing scheme is proven to be information
theoretically secure. [5]

4

Figure 1: Polynomials of the order two, three and four with the same a0
coefficient (bright red dot)

2.2 Invalidation of shares

One problem that may very well occur while using our password manager
scheme is the loss of one device that holds one of the shares. Although this
is not necessarily a problem as a thief would have to steal at least as many
devices as the security level of the least secure password requires, it would
be preferable to render a stolen share useless without altering the password.
However the problem is that it may be impossible to signal the stolen device
to delete its share as one no longer has control over it.
Shamir’s secret sharing scheme provides a very simple solution that does
not even require the secret to be recovered by the remaining devices. One
trustworthy device generates a new random polynomial with the same order
as the one used for the creation of the secret shares. The coefficient a0
however which normally would define the secret is set to zero. Now the
device evaluates this polynomial at the same x-values used for the creation
of the shares in the first place (the x-value of each share does not have to be
kept secret). The newly created y-values are now distributed individually
to all the devices except the one that was stolen in such a way that each
device receives only the y-value of the new polynomial corresponding to
the x-value of the share the device already owns. Each device updates its

5

share by adding the received y-value to the y-value of its share. Because the
polynomial interpolation over a finite field is linear, the recovery using the
updated shares leads to the same secret. If the old shares and the polynomial
are deleted after the update procedure, the stolen share is rendered useless
as the thief will not be able to recover the secret in combination with some
of the updated shares. The old shares are incompatible with the updated
ones.
As long as a thief is unable to steal several devices together at once or
without the owner noticing it the passwords stay safe; even if the thief is
able to decrypt any data stored on the stolen device.

Figure 2: Original polynomial (blue) used for share generation and a new
polynomial of the same order (red) used to generate update material.

2.3 Upgrading and downgrading of the threshold

It is possible that the user may wish to change the security level after the
creation of a password. Our application makes this possible without the
necessity to change the password. We have to distinguish two cases: If the
user wants to downgrade the security level, there is no possibility other than
recovering the secret and splitting it again with a new polynomial with a
smaller order that has the same secret encoded in its a0 coefficient.
If the user instead wishes to upgrade the security level, we use the same

6

technique as described in Section 2.2 with one small change. Rather than
using a polynomial with the same order as the original one to update the
secret, we use a polynomial with a higher order to produce the update
values (Figure 1). This approach allows to increase the security level without
recovering the secret. The used polynomial and the update material has to
be deleted after it served its purpose.

Figure 3: Original polynomial (blue) and a new higher order polynomial
(pink) used for the upgrade.

3 Concept

3.1 Communication

The whole communication of the clients in our App does not solely rely on
the security features of the transport channel (e.g. Bluetooth SSP[8]). The
platform independent core introduces another layer of security that consists
of our own protocol to ensure transport channel independent security. In
order for stateless transport-channels (e.g. Android Wear messages) to work
seamlessly with other protocols we use small messages that consist of plain-
text data like routing information for the mesh-synchronisation or sequence
numbers for connection multiplexing and encrypted data that contains sen-
sitive information.

7

3.1.1 Pairing

To add a device to an existing setup, it has to be paired with another de-
vice that is already part of the given setup. We do not mean paring in the
sense of Bluetooth SSP, which takes place independently on first connection
attempt but our own protocol to exchange a Public-Private key pair for
asymmetric encryption.
Each client has its own Key-Pair. During the pairing process both de-
vices exchange their public key. After the user confirmed that he wishes to
proceed, both devices independently generate a hash of the concatenation
of both, their own and the other device’s public key to produce some short
human readable code for comparison on both devices to prevent man-in-the-
middle attacks. If the devices were not subject to an attack, they calculate
the same code. Now the device that was already part of the setup sends the
Public-key of the new device to the other devices of the setup and will try
to recover all secrets to redistribute them.

3.1.2 Encryption

Each message sent to other devices that contains sensitive data is encrypted.
We use hybrid encryption by combining an asymmetric and a symmetric
encryption algorithm. The asymmetric encryption scheme is used to encrypt
a session key, that is used to encrypt all the sensitive data during one session.

3.2 Password generation, distribution and recovery

Each password managed by our Application must belong to one so called
password group. Each password group has its own secret that is shared
among the devices. Furthermore, each password has a service name, which
describes where the password is used e.g. www.google.com and the login
name. In order to generate the password, we recover the group’s secret,
concatenate the service and the login name, and hash the whole string.
This makes it impossible to deduce another password of the same group
even if one password of the group was uncovered. The safety against data
loss is improved as well because the user does not have to create and hide
away backups of his password every time he adds a new password. As long
as the user does not lose more devices than necessary to recover the secrets,
he will be able to restore every password.
The reason we do not use one secret for each password was to make it
easier for the user to backup his passwords. If the user keeps a copy of
the group secret hidden and safe, he does not have to create a new backup
every time he changes or adds a new password. The only thing the user must
remember is the service name, the login name, and to which password group
the password he wishes to recover belonged to. No backup of individual
passwords is necessary if no password groups are added.

8

3.3 Attack countermeasures

Our application was designed to withstand a few common attacks. By design
we tried to minimize the possibilities of interaction between the user interface
and the part of our program that stores, manages, and recovers all the
secrets.

3.3.1 Man-in-the-middle attack

The man-in-the-middle attack is an attack in which the attacker tries to
place herself in between of two clients that try to communicate with each
other. If both devices already shared a key in the past to encrypt each mes-
sage this would be impossible. If, however, an attacker replaces the key sent
by each device to the other during the important phase of asymmetric key
exchange with her own public key, she will be able to read and manipulate
any message she wants.
In our application this critical phase takes place during device pairing where
the public keys are exchanged. To prevent this kind of attack we hash the
concatenation of both public keys and derive a short alphanumeric public-
key verification word by using the first few characters of the result. Each
device must show this verification word to the user and the user must con-
firm whether the words on both devices are identical. An attacker that tries
to replace the public key sent by one device with her own will therefore
change the verification word on the receiving device as well. If we assume
that the attacker is unable to produce collisions for cryptographically strong
hash algorithms, she will not be able to alter the messages during public key
exchange phase without the user noticing it.

3.3.2 Message replay

If an attacker is unable to decrypt messages or produce messages that will
be accepted by the victim, she may still generate harm by using an attack
called message replay. The message replay attack is executed by recording
valid messages sent by one of the victims and sending the recorded message
again at a later time to the same or another receiver. Although the attacker
should not be able to decrypt the message, she still may be able to guess
what the message was intended for e.g. that during the synchronisation of
device a command to delete a password the user removed on another de-
vice may be sent. If the attacker replays this or other sorts of messages at
another time to the wrong receiver, one may get scenarios for which this
results in unintended behaviour.
To prevent message replay attacks in the first place, we use a challenge-
response system. Each message we send during a session contains a random
number chosen by the sender. The message for session key negotiation at

9

the beginning of each session is no exception. We call this number the chal-
lenge. Each message also contains another number, the so called challenge-
response. In order to be accepted by the receiver, each message must contain
the challenge number of the preceding message as the challenge response
number in the message to be sent. The sender simply copies the challenge
of the last message received and adds a new random number by its own as
the new challenge for the receiver should he wish to answer. As each mes-
sage, with the exception of the public key negotiation during device pairing,
is either symmetrically or asymmetrically encrypted, the attacker is unable
to send messages that will be accepted by the receiver because no message
will be considered valid a second time again (if we neglect the chances that
the 32-bit random number is chosen by the victim as the current challenge
at just the right moment again).

3.3.3 Denial of service attack

Denial of service attacks intend to make a service unavailable for normal
use. Our application clearly is unable to prevent DoS attacks aimed at the
connection channel. A Bluetooth jammer of course may prevent the devices
from communicating with each other. Nevertheless, it is not possible to
prevent the system from working over a longer period of time and without
close physical proximity to the victim. Every message that is not encrypted
with the private key of a valid user of the system will be discarded upon
decryption attempt, long before the message is going to be interpreted. In
the current version of our application it is though possible to flood a device
with pairing request thus effectively preventing connections from other de-
vices. Because only one Bluetooth connection is possible at a time and only
one incoming request is processed at any time it should not be possible to
make the application crash through multiple pairing requests during a short
amount of time. Another obstacle for an attacker is going to be the fact that
he has to find out the Bluetooth MAC-address as the devices are normally
undiscoverable.

3.3.4 Compromised client

The most severe gateway for attacks against the whole system are com-
promised devices. If an attacker manages to gain control of a device that
is paired and can communicate with other devices of the set up, she has
much more possibilities to attack the whole system. However, the attacker
must gain access to the database where all the sensitive data is stored. The
database by itself is not encrypted as a hard coded encryption key would
not be much of a hindrance and using a password to encrypt it would oppose
the whole idea of master-password-less access to the user passwords.
If we assume an attacker to be able to send malicious messages without the

10

owner of the compromised device being aware of it, the most dangerous op-
erations on the data is still prevented. A hacker may be able to alter, add,
and delete login names and service names but as recovering the password
requires user interaction on all devices to send their shares it is not possible
to gain access to the passwords or group secrets (assuming the user does not
accept every request that pops up on his device without any wariness). Dele-
tion and updates affecting groups and therefore the group secrets are not
processed on any device without user interaction. As we already mentioned
in Section 3.2, as long as the user remembers the login name and group the
passwords belonged to he will be able to recover the passwords even if an
attacker deleted this information from all devices. The choice to not require
user interaction for these type of changes was a trade-off between security
and convenient background synchronisation we considered reasonable.
There are a few attacks against our system we are aware of. If the device
that executes the splitting of the secrets or calculation of the update ma-
terial mentioned in Section 2.2 and 2.3 has already been compromised, we
have a severe problem. First of all the attacker may have access to the secret
as it was generated on the compromised device. Furthermore, she can re-
place the correctly calculated update material with random data, effectively
destroying the secrets if the unsuspecting user accepts the updates on the
other devices. The most critical situation for this kind of attack arises if
the attacker has remote access to a device on which a user just initiated the
paring of a new device as it is necessary to recover every single secret to
produce a new share for the newly added device. There are algorithms pre-
venting the latter of these two scenarios considered. These counter measures
are covered under the term of verifiable secret sharing but we do not yet use
these algorithms in the current version of our program. Another scenario
we cannot prevent consists in an attacker that spies out the device at the
moment the user recovers a password and uses it to login into the service.
At this moment the password, and in the current version of the program the
group secret as well, is available in the volatile memory of one single device.
An attacker with unlimited access to the device, possibly with the help of a
trojan installed on the device that the victim is unaware of, will gain access
to the password just recovered and every other password belonging to the
same group. Passwords of other groups however stay safe.

3.4 Mesh synchronisation

Synchronisation of all the devices is an important an non-trivial aspect of our
application. Login names, shares, share-updates and public keys of newly
added devices have to be synchronized between all the devices. We did not
want to rely on one device that acts as a central server for synchronisation.
Our goal was to synchronize the devices in such a way that each device has

11

equal rights and the unavailability or even the loss of any one of the devices
did not have too much of an impact on the whole system.
We did not want to calculate the difference between two device data sets
and merging the sets together as this would require to exchange the whole
history of the devices during every synchronisation attempt. Even if we
used some sort of hash to identify the changes and only exchanged the list
of these IDs, the amount of data to transmit every time would grow bigger
and bigger, with the additional changes performed by the user over time.
The user could change something on one device and a short time later do
another change on another device. This would result in synchronisation
problems if the devices did not have the chance to communicate with each
other between the changes. An approach for decentralized versioning like
Git[9] would therefore require to much bandwidth.
Our approach was to create a data structure that represents one single
change to the data, contains a time stamp of its creation and information
about the progress of synchronization. If changes affect the same data set
e.g. login name we discard the change with the older time stamp. This
means that during the creation of the change it is already clear which de-
vices have to receive the change. We distinguish two kinds of these objects.
The first kind contains changes that concern all devices in the same way
e.g. changes to login names or deletion of devices. The second kind contains
information that is intended for only one device.
The change objects that are intended for all the devices includes a map of
all devices that were known at creation time and a flag whether the cor-
responding device already applied the change. We provide algorithms to
handle cases were a device gets added to the setup after the change object
was created and before it is fully synchronized. Within reasonable time in-
tervals every device sends these change objects to all the other devices if
there are still devices in the map that are not yet marked as aware of the
change. The devices receiving the objects apply the changes if not already
done and answer with an updated map now containing the information about
synchronization status of all the devices as known to both devices. Every
change object gets exponentially distributed trough the whole mesh-network
and will finally disappear as soon as all devices are aware of the fact that
every device applied the change.
The change objects only intended for one receiver however are handled dif-
ferently. These objects typically contain new secret-shares or updates for
the shares. Because only the intended receiver of the change is allowed to
read the data, the change itself is encrypted by the creator with the public
key of receiver. The metadata like time stamps, intended receiver and type
of change is visible to everyone (the messages are still encrypted as a whole
again as described in Section 3.1.2). The change object is still sent to every
device in the network in order to increase the chances to reach the intended
receiver.

12

Because shares are encrypted with the public key of the receiver as soon
as they are created, neither the secret nor more than one share per device
is ever stored on persistent memory. In order to ensure the authenticity of
the shares and updates, the encrypted data is furthermore signed with the
private key of the creator.

3.5 Message routing

Implementing the application for the Android Wear platform exposed us to
some major problem. The Wear API does not allow the Smartwatches to
communicate via Bluetooth with any other handheld device than the one it
is associated with upon configuring it the first time. To work around this
restriction we had to add message routing to our application.
Our application contains a route table were routes to every single device
available at the moment are stored. In order to populate this table, the
devices exchange small messages with routing information at regular inter-
vals. The messages sent for routing purposes are transmitted in plain text
to decrease network overhead for key negotiation but they do not contain
any sensitive information. Furthermore, it is not possible to route the mes-
sages to any other than the paired devices and maliciously formatted route
configuration messages are filtered out. Every time a message has to be sent
the communication module tries to communicate with the receiver directly.
If this is not possible, the route table provides the communication mod-
ule with the shortest route to the destination according to a cost function,
which evaluates all the information about the network known to the sender.
The message is sent to the next intermediate node of the network and will
travel trough the mesh until it reaches its destination. Our implementation
contains logic to delete routes from the table which repeatedly fail to reach
the intended receiver.

4 Implementation

The user interface is kept as simple as possible. Our main goal was conve-
nience and an intuitive handling of the application. The colours are kept
plain in shades of grey and white with an accent colour of green. Only in the
wearable interface did we allow a more colourful design for the notifications,
which is the event that gets triggered most often.

4.1 Architectural overview

Figure 4 gives a high level overview of the architecture of our architecture.
We emphasised modularity over anything else in order to be able to port
the application as easily as possible onto multiple platforms. This is why we

13

made the clear distinction between platform independent parts of the logic
and the platform dependent ones.

Figure 4: A rough overview of the applications architecture.

The Core is written in native java language and exported as a jar library
that communicates with the other modules through a set of interfaces. The
graphical user interface as well as the communication module has no direct
access to the data module were sensitive information is stored. This adds an
additional layer of security. Our goal was to create software, were every part
of it could be easily replaced should the need arise. For example temporarily
disabling encryption to make some debugging easier. In order to achieve
this each module is further divided in smaller sub-modules, which interact
through well defined interfaces as well.

4.2 User interface

4.2.1 Mobile application

Main Screen
The main screen (Figure 5) directly shows a list of all the passwords grouped
in the different categories which are sorted by security level the lowest and
most easily accessible being on top and the most secure on the bottom.

14

Figure 5: The launching screen of the application. The saved passwords are
displayed already sorted by the categories they belong to. The lowest and
therefore most easily accessible is on top. Touching the password triggers a
password recovery.

A short touch of the password triggers a password recovery. If Bluetooth is
deactivated the user is notified to activate it via a toast (little messages at
the bottom of the screen). After completion the password is conveniently
copied to the clipboard ready for use. For security reasons the password is
overwritten with the last clipboard entry after thirty seconds.
This whole process is accompanied by toasts notifying the user about what
exactly the application is attempting to do after each command as a feedback
(Figures 6a, 6b, 6c).

15

(a) Password Recovery (b) Recovery Success (c) Recovery Failure

Figure 6: The launching application with its toasts which appear (a) directly
after a password recovery is triggered, (b) when a password was successfully
recovered and copied to the clipboard and (c) if a password recovery failed.

The service and/or login name are easily deleted or edited by touching the
password the user wants to modify for a longer period of time.

16

(a) Warning Message (b) Editing

Figure 7: The editing process of a service name and login name pair. The
user triggers it with a long touch. First he is warned about the consequences
of the edit (a). If he agrees, the editing window appears (b) allowing him to
directly change the service name and login name.

The action bar (Figure 8) features simple material design icons allowing the
user to add a password or to access the category management and device
management. This manner of action bar design is consistent with the rest
of the application.

Figure 8: The action bar of the launching screen allows access to the category
management, device management and the settings. The first icon is used to
add a new password.

New Password
Touching the New Password icon in the launching screen action bar (Figure
8) generally leads to this screen. If no password category has been created
before adding a new password the New Category screen (Figure 11 on page
20) is shown instead followed by the New Password screen after a group has
been added.

17

Figure 9: This screen provides the means to enter the data needed for a new
password. An intuitive material design save icon is displayed in the action
bar. If some data is left empty the application will not allow the user to
save the password and again notify him with a toast.

Categories
A simple list view of all password groups and their security level is displayed
here. The categories are easily deleted or edited through long touch. (Figure
10)

18

(a) Plain View (b) Edit (c) Delete

Figure 10: A list view of all the password categories and their respective
security levels is found here (a). They can be edited (b) or deleted (c)
through a long touch. A downgrade or upgrade can be performed. For the
downgrade the category secret needs to be recreated. This is communicated
via a toast. The upgrade can be done without the secret recovery. Deleting
a category results in losing all the passwords associated with it. The user is
warned about it.

New Category
This screen is generally accessed by touching the add icon in the Categories
action bar (Seen in Figure 10a).

19

Figure 11: This screen allows to enter the data for a new category. The
security level can conveniently be picked using a spinner, that only allows
values from 0 to the number of paired devices. Here as well the user is not
allowed to leave the name blank.

Devices
This screen is accessed over the launch screen action bar (Figure 8 page 17).
All connected devices are displayed here. This is also where the user can
delete an unwanted or stolen device. This results in the invalidation of the
shares on the deleted device as explained in Section 2.2.

20

(a) Plain View (b) Deleting

Figure 12: A list view of all devices is found here (a). Android material
design icons indicate the type of the paired device. The deletion process is
triggered with a long touch. Before executing it the application warns the
user about the consequences and asks for confirmation (b).

Available Devices
This screen is accessed over the add device icon in the Devices screen action
bar (Seen in Figure 12a on page 21).

21

(a) Initial Scan (b) Rescan (c) Devices

Figure 13: When this screen is opened, the application directly starts scan-
ning for visible Bluetooth devices (a). If Bluetooth is deactivated, the user
is notified to activate it via toast. If the scan returned any results, they are
displayed in the same manner than as in the Devices screen with additional
radio buttons to select the device the user wants to add to his setup (c).

Settings
The settings are accessible from all screens via drop down menu on the top
right corner as is the norm with android applications (Seen in Figure 8 on
page 17).

22

Figure 14: The application settings screen where some general actions may
be triggered. This is also where the user has the possibility to turn the
regular background synchronization (every 90 minutes) on and off.

23

(a) Synchronization (b) Export (c) Clear Data

Figure 15: Synchronize (a) manually initiates the synchronization between
devices. Export (b) exports the data into one of two formats and allows
the user to send it to an external application. The CSV format attempts
to recover all passwords and saves them together with the service and login
name. The XML format does the same but exports a lot more data. This
includes the secret shares of the different groups, public keys, the private
key, algorithms as well as encoding parameters and short descriptions on
how the algorithms play together. If a password could not be recovered at
the time of the export but the secret share is known, a person with some
programming knowledge could still reconstruct the password. Clear Data
(c) clears all the application data after the user confirmed.

Notifications
The application often has to directly communicate with the user. Whenever
a password with a security level higher than 1 needs to be recreated (Figure
17) or a device is being added or any other event happens which for various
security reasons needs confirmation from the user, notifications are used.

Figure 16: This notification pops up when a password request has finished
successfully. The password is displayed in plain text until the user swipes
away the notification.

24

Figure 17: This notification appears when a different device has triggered a
password request with a security level greater than 1. All reachable devices
will be asked to share their secret. If enough of them accept, the password
is recovered on the device that started the request.

4.2.2 Android Wear application

This application is much more rudimentary than the mobile application. A
watch only has to be able to show what passwords are available to be able
to send a recovery request. A smart watch is less convenient to use than
a smart phone. The small display makes it especially hard to enter text.
Since it can not be used without the associated phone we considered Device
Management, Category Management and Settings to be unnecessary. All of
these things can be accessed and used more easily on the phone.

Main Screen
After a launch screen providing an entry point to the password categories
and possibly more in the future the main screen is reached (Figure 18).

Figure 18: The password cathegories and their security levels are displayed
here. Touching a category opens the Password View.

Password View
After touching a password category on the main screen the application shows
all the passwords in that category (Figure 19).

25

Figure 19: All the passwords associated with the chosen password category.
Touching a password triggers a password recovery.

Password Recovery
After a password recovery is triggered a colourful dynamical loading screen
is shown. (Figure 20). The user is informed about the failure or success of
his request (Figure 21).

Figure 20: Dynamical Loading Screen shown at the start of a password
recovery attempt.

26

(a) Failure Screen (b) Success Screen

Figure 21: On completion of the password request the user is either informed
that it has failed (a) (for example if there were not enough devices around
for the needed security level) or the password is displayed on the screen for
twenty seconds (b). If the user wishes to keep it on screen for a longer period
of time, touching the hourglass resets the timer.

Notifications
Necessary communications with the user are also handled by notifications.

Figure 22: This notification pops up whenever a password is requested with
a higher security level than one.

27

(a) Accept Screen (b) Reject Screen

Figure 23: The answering possibilities are handled with separate screens
to accept (a) or reject (b). The user switches between them by sliding
the screen to one side or the other and accepts or rejects by touching the
appropriate icon.

4.3 Encryption

We use 2048-bit strong RSA public-private key pairs to negotiate a session
key that is used to encrypt the messages through symmetric AES encryption.
The 256-bit key to use for AES encryption of one session is chosen at random
by both, the receiver and the sender of the first message. Both devices
independently combine some random data sent to each other with the XOR-
Operation to obtain the key to use for AES encryption. The random data
to produce the session key is encrypted using each devices’ private key,
whose corresponding public key was exchanged during the paring phase.
We use OAEP for padding the data encrypted with RSA and CBC to pad
the messages encrypted with AES.

4.4 Transport channels

In the current version of the program we solely use Bluetooth for communica-
tion but everything is written in a modular fashion so adding new transport
channels is as simple as adding a new class that implements a certain inter-
face. We use two different APIs for communication through bluetooth.
For data exchanges between handheld devices we rely on low level RFCOMM
sockets using classic bluetooth. The reason why we chose classical Bluetooth
rather than the more modern Bluetooth Low Energy was mostly inexistent
support of most of the current hendheld devices. Although most of the
devices are able to use the so called central mode, very few of them until
now are capable to use the peripheral mode needed to advertise themselves to
other devices[10]. The disadvantage of classic bluetooth however is that con-
nection attempts are quite slow and there is no possibility to detect whether
a paired device is available (unless it is permanently in discoverable mode,
which would be a privacy issue) other than trying to connect to the device.

28

During our own testing we saw that it may take several seconds before the
connection attempt succeeds or fails. Therefore, we decided to use a hy-
brid approach: Devices that are able to advertise their availability with the
Bluetooth Low Energy beacons will constantly advertise themselves. Most
of the devices are able to scan for these small packets very fast. The adver-
tisement beacons do not contain any personal information. A randomized
MAC-address and a specific unique service identifier, that allows scanning
devices to distinguish between devices running our application and other
Bluetooth LE peripherals is advertised. The application now only tries to
connect to devices for which it detected an advertisement packet or to de-
vices that are marked as unable to send these kind of packets. However, the
implementation of the Bluetooth connectivity was the biggest problem of
the project. We did not manage to achieve stable Bluetooth communication
when performing fast connection switches between the devices. Our obser-
vation was that connection failures tended to be more likely if the involved
devices are already connected to other peripherals e.g. smartwatches or
Bluetooth Speakers. Furthermore, the fail rate of the connection attempts
was very unsteady and strongly dependant of the number of clients.
To communicate with Android Wear devices we rely on a high level API
that provides fast availability detection and reliable message transmission.

4.5 Data storage

The persistent data is stored in a relational SQLite database without en-
cryption. All the Public-keys and the devices own Private-key are also found
here. We considered saving those data somewhere else. But considering an
attacker with unlimited access to a device there would not be any security
benefits. The Data module can only communicate with the user interface or
the communication module via the core module making it less susceptible
to various attacks.

5 Conclusion and outlook

The biggest problem during the development phase that is not solved until
now is the unreliability of the Bluetooth stack on newer android devices.
Fast switching or parallel connections are a huge hassle and extensive test-
ing brought us to the conclusion that conventional Bluetooth just does not
work well enough for low latency peer-to-peer communication. Therefore,
the first challenge to tackle in further development on this application will
be the search for a more reliable alternative to RFCOMM-sockets for com-
munication between handheld devices.
Along with the development to further improve the stability, enhancing the
user interface, and supporting more platforms there are a few features we
were not able to implement yet. The fact that all passwords are generated

29

at random and user defined passwords cannot be used with our application
was a design choice to force the user to switch to secure passwords instead of
sticking with the easy-to-remember- and therefore easy-to-hack-passwords
he used before. Still we realize that the complete absence of custom pass-
words is a disadvantage that we would like to address in the future. Another
idea we had in mind since the beginning was to introduce the possibility to
generate and scan QR codes as a substitute for devices. People that do not
use many devices in daily life would benefit from this possibility as a small
QR code printout easily fits into the wallet and a few QR codes hidden
at physically separated places would be a much more secure backup of the
passwords than a plain-text printout. Getting a hold of one QR code would
just be the same as stealing one device.

References

[1] : Efficient password manager.
http://www.computerbild.de/download/Efficient-Password-Manager-
5149949.html (dec 2015)

[2] : 1password - password manager and secure wallet.
https://itunes.apple.com/us/app/1password-password-
manager/id568903335?mt=8 (dec 2015)

[3] : Dashlane password manager & secure digital wallet.
https://itunes.apple.com/ch/app/dashlane-password-
manager/id517914548?mt=8 (dec 2015)

[4] : Keepass a lightweight and easy-to-use password manager.
http://sourceforge.net/projects/keepass/ (dec 2015)

[5] Shamir, A.: How to share a secret. Communications of the ACM 22(11)
(nov 1979) 612–613

[6] Sira Salim, Sruthy Suresh, R.G.R.S.: Application of shamir secret
sharing scheme for secret data hiding and authentication. IJARCST
(2014)

[7] Datenschutz, D.: Passwort sicherer mit hash und salt.
https://www.datenschutzbeauftragter-info.de/passwort-sicherer-mit-
hash-und-salt/ (mar 2013)

[8] Group, U.E.: Bluetooth user interface flow diagrams for bluetooth se-
cure simple pairing devices. Technical report, Bluetooth special interest
group (2007)

[9] Scott Chacon, B.S.: Pro Git. Apress

30

[10] Google: Bluetooth low energy. http://developer.android.com/guide/topics/connectivity/bluetooth-
le.html

31

	1 Introduction
	1.1 Improvement proposal

	2 Secret sharing
	2.1 Basic idea
	2.2 Invalidation of shares
	2.3 Upgrading and downgrading of the threshold

	3 Concept
	3.1 Communication
	3.1.1 Pairing
	3.1.2 Encryption

	3.2 Password generation, distribution and recovery
	3.3 Attack countermeasures
	3.3.1 Man-in-the-middle attack
	3.3.2 Message replay
	3.3.3 Denial of service attack
	3.3.4 Compromised client

	3.4 Mesh synchronisation
	3.5 Message routing

	4 Implementation
	4.1 Architectural overview
	4.2 User interface
	4.2.1 Mobile application
	4.2.2 Android Wear application

	4.3 Encryption
	4.4 Transport channels
	4.5 Data storage

	5 Conclusion and outlook

