
Institut für
Technische Informatik und
Kommunikationsnetze

Real-Time Field Bus systems with
Linux

Semester Thesis

Fabian Dalbert
dalbertf@ethz.ch

Computer Engineering and Networks Laboratory
Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:
Pengcheng Huang

Georgia Giannopoulou
Tonio Gsell

Gert Brettlecker (Ergon Informatik AG)
Prof. Dr. Lothar Thiele

Thesis ID:
SA-2015-21

January 13, 2016

mailto:Fabian Dalbert<dalbertf@ethz.ch>

Acknowledgements

This thesis was written under the supervision of Pengcheng Huang (pengcheng.
huang@tik.ee.ethz.ch), Georgia Giannopulou (ggeorgia@ee.ethz.ch) and
Tonio Gsell (tgsell@ethz.ch) at the Computer Engineering and Networks Lab-
oratory lead by Professor Dr. Lothar Thiele (thiele@ethz.ch) at ETH Zurich
and Gert Brettlecker (gert.brettlecker@ergon.ch) at the Ergon Informatik
AG. I would like to thank my supervisors as well as the industry team at Ergon
for their incredible patience, their supervision and support and Professor Thiele
for the opportunity to write this thesis in his research group.

i

(pengcheng.huang@tik.ee.ethz.ch)
(pengcheng.huang@tik.ee.ethz.ch)
(ggeorgia@ee.ethz.ch)
(tgsell@ethz.ch)
(thiele@ethz.ch)
(gert.brettlecker@ergon.ch)

Abstract

Can the timing constraints of a soft real-time field bus protocol be met on a
microcontroller running a real-time Linux framework without additional hard-
ware? This semester thesis implements and evaluates the MP-Bus protocol, a
proprietary field bus protocol developed by the Belimo AG, with a preempt-RT
patched Linux operating system. It concludes that software solutions can replace
dedicated hardware modules for bus control in soft real-time environments. Dif-
ferent real-time capable Linux frameworks and the BACnet MS/TP protocol
were additionally assessed in the theoretical part. A kernel module bit banging
the UART port using pin multiplexing at runtime to change pin modes to GPIO
was implemented to comply with the MP-Bus’ collision avoidance scheme. The
requirements were tested with a test setup specifically designed for this semester
thesis and a range of measurements on the protocol implementation.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contributions . 2
1.4 Outline . 3

2 Background 4
2.1 Linux with Real-Time Capabilities 4
2.2 Real-Time Frameworks . 5

2.2.1 Preempt-RT . 5
2.2.2 Xenomai . 6
2.2.3 L4/Fiasco with DROPS 7
2.2.4 FreeRTOS . 7
2.2.5 Xen . 8

2.3 The MP-Bus and BACnet Protocols 9
2.3.1 MP-Bus . 9
2.3.2 BACnet MS/TP . 13

2.4 The Belimo Shared Logic Platform 14

3 Design & Implementation 16
3.1 Architecture Overview . 17

3.1.1 Hardware . 17
3.1.2 Software . 18

3.2 Linux with the Preempt-RT patch 18

iii

Contents iv

3.3 Bit Banging UART — The Driver 20
3.3.1 User Space — Kernel Space Communication with Ioctl . . 20
3.3.2 Bit Banging Functionality 23
3.3.3 Pin Multiplexing . 24
3.3.4 KThread . 26

3.4 Real-Time Scheduling . 26
3.5 Outlook: BACnet MS/TP . 27

4 Evaluation 28
4.1 Test Setup . 28
4.2 Measurements . 30

4.2.1 Byte and Roundtrip Times 30
4.2.2 System Latency . 32

5 Conclusion and Future Work 35

Bibliography 36

Chapter 1

Introduction

1.1 Motivation

This semester thesis seeks to evaluate the capabilities of Linux in a soft real-time
environment, more specifically, when using field bus systems in embedded con-
trol. It was conducted in collaboration with Ergon Informatik AG and based on
embedded control systems programmed for Belimo AG. Belimo is a major devel-
oper and manufacturer of actuators and valves for HVAC (heating, ventilation
and air conditioning) control. The control software on the embedded systems
runs in a Java virtual machine on top of a light-weight Linux distribution. Com-
munication between actuators, valves and control modules uses the MP-Bus and
BACnet MS/TP protocols. Additionally, the control module can be addressed
over IP. MP-bus, short for multi point bus, is a proprietary serial communication
protocol developed by Belimo, frequently used in the HVAC sector. BACnet, an
abbreviation for building automation and control networks, is a widely used
standard in building automation. Here the MS/TP (Master-Slave/Token Pass-
ing) protocol defined by the BACnet standard will be considered, however the
implementation focuses on the MP-Bus protocol.

Can all constraints of the MP-Bus and BACnet protocols be met with a
real-time capable Linux framework? The control modules by Ergon and Belimo
have, as of today, dedicated microcontrollers in the control module to handle
bus communication. These microcontrollers ensure reliability, predictability and
compliance with all timing constraints (see Figure 1.1a). Some parts of the MP-
Bus protocol, namely the PPX communication mode and dominance arbitration,
are however not currently implemented in the control modules. If a framework
manages to provide the same reliability and meet all soft real-time constraints
imposed by the bus protocols, the physical layout can be reduced to the target
configuration (see Figure 1.1b). From a manufacturing standpoint, this allows for
significant cost reductions, from the programming standpoint, for reduced com-
plexity of the control development and from a research standpoint, for assessing
the time predictability of real-time Linux kernels.

1

1. Introduction 2

(a) Current configuration (b) Target configuration

Figure 1.1: Configuration of the Belimo Shared Logic module

1.2 Related Work

Real-time Linux environments have received quite some attention in recent years,
mainly focused on scheduling and worst-case latency (see for instance Emde and
Gleixner [10] or Bertolotti and Manduchi [13]). Some of this research will be
tapped into in the background chapter. Fieldbus systems have also been in
researchers’ focus (an overview is given by Mahalik [25] for example), BACnet as
one of the main protocols used in building automation among them (for instance
Merz et al. [26]). No research could however be found on the MP-Bus, being a
proprietary bus protocol, or its integration with real-time Linux.

1.3 Contributions

This thesis’ contributions are a theoretical overview of selected real-time frame-
works and the MP-Bus and BACnet MS/TP communication protocols as well
as a practical implementation of the MP-Bus. As the software, called Belimo
Shared Logic [7], on the control modules is written in Java, it needs a Linux
environment capable of running a Java virtual machine (jvm). A regular Debian
Linux with the preempt-RT patch has therefore been chosen for implementation.
For the MP-Bus a proof of concept that all timing requirements can be fulfilled
without any dedicated hardware is sought. The practical part of the project con-
sists of the setup and configuration of a Beaglebone Black development board
with Debian Linux with the preempt-RT patch. Furthermore the current MP-
Bus implementation done by Ergon in the Shared Logic framework is extended
to meet all real-time constraints. Scheduling in the real-time Linux system as
well as tests and measurements round out the practical part.

1. Introduction 3

1.4 Outline

After this introduction the second chapter will present the background of this
semester thesis. Its first part gives an overview over five real-time frameworks
that can be used with Linux and the implementation choice for this thesis will
be explained. In the second part the MP-Bus and BACnet MS/TP protocols
will be presented and their real-time requirements explored. The practical con-
figuration of the real-time Linux framework on the Beaglebone Black and the
implementation of the MP-Bus protocol are presented in detail in chapter three.
The fourth chapter presents an evaluation, the test setup and measurements
for the implementation. Finally there will be some concluding remarks and an
outlook on possible future work on the topic.

Chapter 2

Background

2.1 Linux with Real-Time Capabilities

In the embedded world, real-time capabilities can be achieved through a variety
of frameworks. Five of these have been selected for more detailed analysis here
(see Table 2.1).

Name Type Open Hard Real- Full Linux
Source Time Capable OS

preempt-RT Linux kernel patch Yes No Yes
Xenomai Kernel addition Yes Yes (Yes)1

FreeRTOS Real-time OS Yes Yes No
L4/Fiasco Microkernel Yes Yes (No)2

Xen Hypervisor Yes Depends3 (Yes)1

Table 2.1: Overview of Frameworks

The criteria for choosing a framework were:

1. Support for hard real-time applications.
2. Ability to run a customised Linux operating system on top.
3. Complexity of adaptation of the existing code base as well as the new

MP-Bus implementation.

Compatibility with a full-fledged Linux operating system, the second cri-
terion, is needed to run the Shared Logic control software in a Java virtual
machine. This already disqualified FreeRTOS as it has very minimalistic func-
tionality. Xenomai and L4/Fiasco (with the DROPS architecture and L4Linux,

1Compatible with any Linux flavour.
2The DROPS architecture and L4Linux add full Linux support
3See Subsection 2.2.5 for the function of a hypervisor.

4

2. Background 5

see Section 2.2.3) meet requirements 1 and 2 but would need extensive adapta-
tion of code and/or an extensive programming effort to port bus communication
to the real-time part of the system. A solution using a hypervisor like Xen is
not feasible at this point in time as can be seen in section 2.2.5. Therefore
the preempt-RT patch has been chosen for implementation in the scope of this
semester thesis.

2.2 Real-Time Frameworks

2.2.1 Preempt-RT

The preempt-RT patch aims at adding real-time capabilities to the mainline
Linux kernel. It is based on Ingo Molnàr’s work and maintained by Linux Foun-
dation Fellow Robert Gleixner. The first efforts to add real-time capabilities to
the Linux kernel got attention in 2006 [10]. After quite some struggle to find
funding, the Linux Foundation started a collaborative project to advance real-
time Linux in October 2015, with Google as a Platinum member and several
other companies, Texas Instruments among them, involved as well [11].

The preempt-RT patch renders the Linux kernel fully preemptible through
five changes/additions. First spinlocks are replaced by rtmutexes. Secondly most
critical sections are made preemptible, non-preemptible sections are still possi-
ble using raw_spinlock_t. Priority inheritance is added to in-kernel mutexes,
spinlocks and rw_semaphores. The preempt-RT patch also turns interrupt han-
dlers into preemptible kernel threads and, last but not least, adds high-resolution
timers to the Linux kernel [12]. Many of these patches, such as the high-resolution
timers, have in the mean time been integrated into the mainline kernel.

The performance of a preempt-RT patched Linux has been improving over
the last years, version 3.6.6 (i.e. Linux kernel version 3.6.6) fared 36% better on
average over eight tests (thread switch latency, interrupt latency and semaphore
release duration among others) compared to version 2.6.33.7 according to Fayyad-
Kazan et al. [19]. The worst-case values derived in their benchmarking test were
all in a medium two-digit microseconds range on a Intel ATOM based platform
comparable to the Beaglebone Black in performance [19].

In theory the preempt-RT patch makes any Linux system hard real-time
capable, in practice however the latency depends on proper configuration of the
system. As Linux is nowhere near as deterministic as a minimalistic microkernel
or real-time operating system, properly tuning the system and finding worst-
case execution times is non-trivial [13, p. 409ff.]. Guaranteeing response times
in milliseconds and execution times in a higher three digit microseconds range
should be achievable with the preempt-RT patch [14]. As the time constraints
in the case of the field bus systems focused on in this thesis are not as strict,

2. Background 6

the preempt-RT patch has been selected as the framework of choice for the
implementation.

2.2.2 Xenomai

Xenomai uses an interrupt abstraction approach to achieve real-time properties
with Linux. This means the Xenomai environment controls all real-time ap-
plications and runs the operating system as a thread that is only called when
no higher priority application needs the CPU. Xenomai is based on Adeos, the
Adaptive Domain Environment for Operating Systems. Software solutions like
Adeos, providing a Hardware Abstraction Layer (HAL) underneath the operating
system, are often called nanokernels [13, p. 412].

Like all Adeos-based projects, Xenomai is patched onto the Linux kernel and
uses its HAL. It creates three domains, that are executed simultaneously but
with different priorities; the primary domain hosting the real-time nucleus, an
interrupt shield that can block interrupts from reaching the secondary domain
and the secondary domain, the Linux kernel (see Figure 2.1 for domains and
interruption pipeline). Real-time threads started in the primary domain can
be switched to the secondary Linux domain to use Linux system calls and be
switched back afterwards. This adds some unpredictability but allows real-time
tasks to use the full Linux operating system. Xenomai developers are looking
into greater integration with the preempt-RT patch to improve secondary domain
performance [15, p. 434f.].

Figure 2.1: The Xenomai domains in the Adeos pipeline [13, p. 414]

Xenomai can reliably be used for time constraints as present in the MP-Bus
and BACnet, it does however require additional programming efforts and code
adaptations that are beyond the scope of this thesis. It is certainly an interesting
framework for real-time applications requiring limited Linux system resources to
run in a Linux environment.

2. Background 7

2.2.3 L4/Fiasco with DROPS

L4/Fiasco is a second generation microkernel, part of the L4 microkernel family.
It was developed at the TU Dresden 4. In general microkernels are very mini-
malistic in the functionality they provide, allowing for deterministic behaviour
and hard real-time applications. The L4/Fiasco microkernel adds full operating
system support through L4Linux. On top of the microkernel, a framework called
DROPS (Dresden Realtime Operating System) manages the real-time and Linux
personalities (see Figure 2.2). The approach is similar to Xenomai, does how-
ever differ in one important detail; the whole legacy Linux kernel is shifted to
user-space, an approach that, according to the developers, does not significantly
hamper Linux performance [16].

Figure 2.2: The DROPS architecture [16, p. 3]

L4/Fiasco with the DROPS architecture and L4Linux can provide the real-
time capability and full Linux support needed for the implementation, however
the extensive adaptation needed and the possible unreliability of running the
control module in the user-space Linux system make this approach non-viable
for the scope of this thesis.

2.2.4 FreeRTOS

FreeRTOS is a small and highly portable open-source operating system with a
focus on real-time capabilities. Its main target are small-scale embedded sys-
tems with very limited or no need for high-level and multimedia applications. It
only allows for one process with different threads (or tasks) to run simultane-
ously, highly improving deterministic behaviour while limiting the power of the
operating system. [13, p. 191ff.]

4See http://os.inf.tu-dresden.de/L4/ for the L4 microkernel family

http://os.inf.tu-dresden.de/L4/

2. Background 8

FreeRTOS provides hard real-time capability with very little overhead. The
lack of support for a full Linux operating system makes FreeRTOS infeasible for
any system running the Java based control software developed by Ergon.

2.2.5 Xen

Xen is an open-source type-1 or bare-metal hypervisor. This means Xen runs
directly on the hardware using a microkernel design. It provides virtualisation
for one or several guest operating systems on top. One of these operating sys-
tems, the control domain or dom0, provides drivers and has the ability to control
the virtual machines [17]. Parallel setups with Linux and a real-time operating
system have been shown to work with Xen. Avanzini et al. [18] implemented a
single-board dual-OS system with a full-featured Linux and the ERIKA enter-
prise real-time operating system. They designed their study as a proof of concept
that can be ported to other real-time operating systems such as FreeRTOS but
did not actually evaluate performance. A dual-core ARM CPU was used and
the cores statically dedicated to one operating system each, a setup not possible
on the single-core Beaglebone Black. Imperfect isolation of the two operating
systems and the use of Linux as the higher privileged control domain system
could still pose difficulties for real-time predictability in this framework.

The limited experience with dual operating systems with Linux and a small
real-time solution keep Xen from being the setup of choice for an application
such as a HVAC control system for the moment. Additionally the framework
tested by Avanzini et al. [18] is not feasible for a single-core CPU system like the
Beaglebone Black. With additional research hypervisors like Xen can become a
competitive solution for dual-use systems with real-time and full-featured parts
in the future.

2. Background 9

2.3 The MP-Bus and BACnet Protocols

2.3.1 MP-Bus

Overview

MP-Bus (short for MultiPoint bus) is a proprietary communication protocol
developed by Belimo AG. It is mostly compliant to the RS-232 standard but
uses a higher voltage than defined ibid with 24V. The MP-Bus is a master/slave
bus and can be used to connect up to 8 actuators to one master. Sensors can
be connected through actuators using the Belimo Multi-Function Technology
(MFT). MP masters can be MP cooperation nodes (PLC/DDC5 controllers) or
MP Gateways (they link to a different field bus system such as BACnet). The
MP-Bus uses bidirectional half-duplex communication via the U5 wire, normally
used for analog transmission. The dominant voltage level is low, the idle line
high. Table 2.2 gives an overview over the communication parameters [20].

Baudrate 1200 baud
Structure 1 startbit, 8 databits, 1 stopbit
Parity no
Data order LSB first
Package structure 1 startbyte, 0–7 databytes, crossparity, lengthparity

Table 2.2: MP-Bus communication parameters [1]

The MP-Bus can operate in two different modes, PP-mode (Point-to-Point)
and MP-mode (Multipoint). Additionally there is the PPX-mode, only used
for automatic addressing. The operating modes are defined by the address pro-
grammed on the slave. The default mode is the PP-mode, programming an
address different from its PP-address into a device will automatically switch it
to MP-mode. Figure 2.3 shows the different communication and address modes
for the MP-Bus protocol with short descriptions for each of them [1].

MP-slaves only answer to commands received, never start communication
from their side. In case of error, the master has to resend commands for them to
be properly executed. This holds for all possible errors except those occurring
on the application layer, where the slave will return an error code in PP-mode
or addressed communication. An example of any non-application layer error can
be seen in Figure 2.4 [1].

5PLC — Programmable Logic Controller, DDC — Direct Digital Control

2. Background 10

Figure 2.3: Communication and address modes for the MP-Bus protocol [1]

2. Background 11

Figure 2.4: Example of a communication error on the MP-Bus [1, p. 13]

2. Background 12

Timing Requirements

Most timing requirements of the MP-Bus protocol are in a range achievable with
standard Linux operating systems. Table 2.3 gives an overview of the timing
requirements in the protocol. The bit time will usually be handled by the UART
driver.

Parameter Min Typical Max Unit
bit time 821 833.3 846 µs
frame time6 8.21 8.33 8.46 ms
byte gap 0 5 ms
master timeout/repeat interval
- addressed/OnEvent communication 600 ms
- broadcast communication 150 ms
answer delay
- config. commands 8.467 300 ms
- other 8.467 50 100 ms
command delay 8.467 ms

Table 2.3: MP-Bus timing requirements [1]

There is however one special case that needs stricter timing. According to
the MPX standard, slaves must implement the MP_Get_SeriesNo command.
All slaves, which have no MP address must answer with their serial number. To
avoid collisions on the bus, slaves must implement the dominance arbitration
method. Before sending the start byte, any slave must check whether the bus
is idle, i.e. "high". While sending its serial number the slave must continuously
observe the bus and immediately stop transmission if the line is not equal to the
previously sent bit as this can only be the case when another slave is sending at
the same time. Only one slave should be able to transmit its serial number at
any given time. After receiving the serial number, the MP-master can change
the address of a slave using regular commands, then repeat the procedure until
all slaves have received an MP-address [1].

To implement dominance arbitration, a slave must be able to transmit a bit,
sense the bus state and, depending on the outcome, break or send the next bit
while strictly meeting all timing requirements, i.e. the bit time of maximal 846µs.
The roundtrip timing requirements are not as hard to meet, the lowest timing
requirement between receiving a command and sending the answer is 100ms as
can be seen in Table 2.3 [1].

610 bits, see table 2.2
7i.e. frame time

2. Background 13

2.3.2 BACnet MS/TP

Overview

BACnet is a very broad protocol, developed and maintained by the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
As can be seen in Figure 2.5, the protocol includes different standardised data
links but one common network and application layer. The BACnet object model
and services on the application layer are the core of the protocol. An object
contains a collection of properties and was designed to be extensible. Only
the Device object is required in a ”BACnet device“, all else can be defined by
the implementing party. BACnet services are designed around a ”client-server“
model, where a client can send a request which is answered by the server. On
the network layer internetwork communication is defined. The details will not
be elaborated here except for two points. Each BACnet device has a unique
BACnet address consisting of a network number and a medium access control
(MAC) address and there can be maximum one active path between any two
devices. A maximum of 128 devices can be connected to a network. On the
data link layer, there are currently seven technologies defined in the protocol.
The protocol based on the EIA-485 serial communication standard, BACnet
”Master-Slave/Token-Passing“ (MS/TP) will be considered in more detail [21,
p. 31ff.].

Figure 2.5: BACnet protocol architecture [21, p. 35]

BACnet MS/TP uses the UART pins on a device. A BACnet master uses a
peer-to-peer token passing ring to coordinate with other masters and can initiate
and respond to service requests. Slaves can only answer a direct request from
a master and are not very common. The MS/TP protocol allows for several
baud rates to be used, baud rates of 9’600 and 38’400 bps must be implemented
though. Eight frame types that can be sent are currently defined by ASHRAE.
The operation of a MS/TP master node can be described by a finite state machine
(FSM, see Figure 2.6). A master can only actively send after receiving a Frame
Type 0, i.e. the token. The token must be passed on to the next master in the

2. Background 14

token ring after a defined maximum number of frames. To prevent token loss,
tokens are not acknowledged. Instead the master that has just passed the token
expects at least one frame to be sent by the next master within a certain time
frame, otherwise it will resend the token [21, p. 98ff.].

Real-Time Constraints

There are no strict real-time constraints in the BACnet MS/TP protocol. It can
run relatively stable in a non real-time desktop Linux environment8. The main
difficulty identified by Ergon with running BACnet MS/TP on a microcontroller
is the CPU load generated by the token passing. The timing requirements depend
on the baud rate used, as response timeouts, token loss, etc. are defined by octet
times (the time it takes to send a byte/octet as well as start- and stopbits) [21,
p. 101ff.].

2.4 The Belimo Shared Logic Platform

The Belimo Shared Logic platform is the the core software running on Belimo
control modules. It is developed by the Ergon Informatik AG and runs hardware
independent in a Java virtual machine. The Shared Logic platform implements
control for all bus systems supported by the control module as well as ethernet
connectivity and a web server. It additionally provides an “Application De-
signer” for HVAC engineers to program product-specific control models without
requiring specific programming knowledge. After such a model is deployed to a
node using the “Commissioning Tool”, the Shared Logic platform controls con-
nected sensors and actuators, according to the algorithms defined by the HVAC
engineer. The state of the system can be checked and reconfigured via web
application through a web browser at runtime [7].

8according to the BACnet protocol stack sourceforge site http://sourceforge.net/
projects/bacnet/

http://sourceforge.net/projects/bacnet/
http://sourceforge.net/projects/bacnet/

2. Background 15

Figure 2.6: Finite State Machine of a BACnet master node [6, p. 86]

Chapter 3

Design & Implementation

The practical part of this semester thesis consisted of developing an implementa-
tion for the MP-Bus that can fulfil all timing requirements and integrate it into
the Shared Logic setup by Ergon AG. The next Section, Architecture Overview,
introduces the hardware and software design of the implementation. To achieve
the task specified, first a Beaglebone Black (see Figure 3.1, referred to as bea-
glebone for the rest of this chapter) had to be setup with a preempt-RT patched
Linux system and configured to ensure correct functionality and reach low latency
levels. The configuration of the operating system is described in Section 3.2.
Next a kernel module to bitbang the UART TX pin while observing the state of
the UART RX pin in between bits was written. It is to be used for dominance
arbitration when answering MP_Get_SeriesNo commands on the MP-slave side
alongside the regular UART driver. As the MP-Bus protocol uses bidirectional
half-duplex communication the same signal will lay at both the UART RX and
TX pin at any given time. The implementation of the kernel module is described
in Section 3.3. Finally, the kernel module had to be integrated into the Linux
kernel and adapted for real-time scheduling as described in the last part of this
chapter.

Figure 3.1: Beaglebone Black

16

3. Design & Implementation 17

3.1 Architecture Overview

3.1.1 Hardware

As previously mentioned, a Beaglebone Black, an open-source microcontroller
manufactured by Texas Instruments, was used for the implementation. The bea-
glebone features the same AM335x family processor used by the newest Belimo
control boards, which simplifies the application of any findings to the Belimo
system, while its open-source architecture provides better support for the imple-
mentation and increases its significance for research. An overview of the most
important technical specifications of the Beaglebone Black can be seen in Ta-
ble 3.1.

Part Feature
Processor 1GHz Sitara AM3358
SDRAM 512MB DDR3L 800MHz
Onboard Flash 4GB
Additional Memory microSD slot
Ouput pins 69 Pins, up to 8 modes each

Table 3.1: Beaglebone Black technical specification [5]

Figure 3.2: Shared Logic software architecture

3. Design & Implementation 18

3.1.2 Software

An overview of the Shared Logic software architecture as described in Chapter 2.4
is depicted in Figure 3.2. The implementation of the Shared Logic core in Java
seen on the left is existing code by the Ergon AG. This thesis focused on the right-
hand side, namely the Linux Kernel and time-critical MP-Bus communication
through the new UART Bit Banging Module. Dominance arbitration as the most
time sensitive part of the MP-Bus protocol has not previously been implemented
by Ergon.

3.2 Linux with the Preempt-RT patch

Setting up the beaglebone with a working preempt-RT patched Debian Linux
(see Table 3.2 for the setup) turned out to be a lot more work than expected. The
Debian distribution was chosen, as it is a standard, versatile distribution with a
large community and as the BeagleBoard.org Foundation provides pre-configured
Debian images. Linux kernel version 4.1.15 is used, prepatched by Robert Nelson
for BeagleBoard.org with the beaglebone and preempt-RT patches according to
his instructions on eewiki.net1. The kernel configuration had to be modified to
make the kernel fully preemptible and reduce possible latency (see Table 3.3 for
kernel configuration changes), most configuration entries were already adapted
to the preempt-RT patch though.

Linux Distribution Debian 7 Wheezy
BeagleBoard.org image 2015-03-01
Linux kernel 4.1.15-bone-rt-r17

Table 3.2: The setup used on the BeagleBone Black

Configuration Effect
CONFIG_PREEMPT_RT_FULL make kernel fully preemptible
Disable CPU Frequency scaling disable processor frequency scaling as fre-

quency changes introduce high latency
Disable CPU Idle disable processor sleep as waking up from

deep sleep takes time

Table 3.3: Changes made to the BeagleBoard default preempt-RT kernel config-
uration

1see https://eewiki.net/display/linuxonarm/BeagleBone+Black, accessed 2015–12–01

https://eewiki.net/display/linuxonarm/BeagleBone+Black

3. Design & Implementation 19

Instability in the USB-Ethernet connection between the beaglebone and the
host computer posed additional difficulty. The connection could not be enabled
after installing a new kernel to the beaglebone and/or restarting it. The reason
could not be pinned down even with extensive research and help from the Bea-
gleBoard community2. A kernel update on the host side and restarting the host
everytime after the beaglebone had fully booted had to be used as a workaround.

Two shell scripts had to be written to gain internet access through USB-
Ethernet on the beaglebone (see Code 3.1 and Code 3.2). These had to be
executed after each respective reboot.

Code 3.1: network.sh script on the beaglebone
ifconfig usb0 192.168.7.2
route add default gw 192.168.7.1
echo " nameserver 8.8.8.8 " > /etc/ resolv .conf

Code 3.2: network.sh script on the host
#eth0 is my internet facing interface , eth1 is the BeagleBone

↪→ USB connection
ifconfig eth1 192.168.7.1
iptables --table nat --append POSTROUTING --out - interface eth0 -

↪→ j MASQUERADE
iptables --append FORWARD --in - interface eth1 -j ACCEPT
echo 1 > /proc/sys/net/ipv4/ ip_forward

Another implementation challenge related to the kernel was the impossibility
to cross-compile kernel headers for the beaglebone. Precompiled headers in the
repository do not match a manually compiled kernel whereas cross-compiling
the kernel-headers leads to architecture mismatch errors when trying to compile
the kernel module on the beaglebone. This is a known problem according to
Robert Nelson from Beagleboard.org3. A workaround for this problem is to
cross-compile the kernel module on the host computer.

Some additional steps were needed to get the Shared Logic framework running
on the beaglebone. As Shared Logic is currently implemented on a ptxdist4 Linux
with kernel 2.6.30, the return of “uname -r” had to be tweaked to deceive the
application. The options for the Java virtual machine (jvm) had to be adapted,
the virtual machine needed more memory on the beaglebone. Finally the Shared
Logic software watchdog needed to be disabled.

2https://groups.google.com/forum/#!forum/beagleboard
3see https://groups.google.com/forum/#!category-topic/beagleboard/support/

vEOFtqUJGw0
4http://www.ptxdist.org/

https://groups.google.com/forum/#!forum/beagleboard
https://groups.google.com/forum/#!category-topic/beagleboard/support/vEOFtqUJGw0
https://groups.google.com/forum/#!category-topic/beagleboard/support/vEOFtqUJGw0
http://www.ptxdist.org/

3. Design & Implementation 20

3.3 Bit Banging UART — The Driver

The development of a kernel module to bit bang the UART pins was chosen as
the solution to be pursued as dominance arbitration has the single most strict
timing requirements when implementing MP-Bus support on the beaglebone.
Furthermore the ability to check the current bus state is integral to dominance
arbitration and can best be provided by a driver addition or a separate kernel
module. Bit banging can be described as software controlled serial communica-
tion, where a pin, usually a general input/output (GPIO) pin, is toggled with
the exact timing required for the serial communication protocol chosen [22].
Bit banging using the UART pins is needed as the UART driver provided by
Linux does not support sensing the bus while sending and as regular MP-Bus
wiring connects to these UART pins. This module will only be used to answer
MP_Get_SeriesNo commands as the regular UART driver provides the func-
tionality needed for all communication without dominance arbitration.

The kernel module was developed in four steps:

1. Implementation of a kernel module with ioctl for user space communication.
2. Bit banging on the beaglebone’s GPIO port.
3. Taking control of the UART pins via pin multiplexing through direct mem-

ory access to the processor’s control module.
4. Converting the function for sending a response5 to a kernel thread (kthread)

for better schedulability.

Code 3.3 gives an overview over all methods used in the kernel module.

3.3.1 User Space — Kernel Space Communication with Ioctl

The ioctl part of the kernel module was implemented following the instructions by
Ariane Keller [23]. Ioctl was included as a user space — kernel space interface.
Two ioctl commands were implemented, read and write (see Code 3.4). The
kernel device registers the character device used for ioctl during initialisation
of the kernel mdoule. The memory used for the buffer is also allocated during
initialisation using kmalloc.

5i.e. up to 10 bytes, see Table 2.2

3. Design & Implementation 21

Code 3.3: Overview over kernel module methods
// ioctl read method , called when a process has already opened the

↪→ char device
static ssize_t device_read (struct file *filp , char __user *buffer ,

↪→ size_t length , loff_t * offset)

// ioctl write method , called when a process has already opened the
↪→ char device

static ssize_t device_write (struct file *filp , const char __user *
↪→ buff , size_t len , loff_t *off)

// set pin modes to GPIO for bit banging
int mux_pins (void)

// reset pinmodes
int unmux_pins (void)

// method bit banging a char over the GPIO pin , in compliance with
↪→ UART/MP -Bus specifications

int send_byte (int place)

// this method is called using kthread_run to create a kthread ,
↪→ calls send_byte for each byte in the message

void send_text (void *data)

// ioctl method , called upon an ioctl on our char device
long device_ioctl (struct file *filep , unsigned int cmd , unsigned

↪→ long arg)

// module entry point , called by insmod or during boot time
static int __init GPIObbModule_init (void)

// module exit point , called by rmmod
static void __exit GPIObbModule_exit (void)

3. Design & Implementation 22

Code 3.4: ioctl in kernel module
...
// magic number and command numbers for module & ioctl
define MY_MACIG ’2’
define READ_IOCTL _IOR(MY_MACIG , 5, int)
define WRITE_IOCTL _IOW(MY_MACIG , 6, int)
...
long device_ioctl (struct file *filep , unsigned int cmd , unsigned

↪→ long arg) {
long len = LEN;
switch (cmd) {
case READ_IOCTL :

copy_to_user ((char *)arg , buf , LEN);
break;

case WRITE_IOCTL :
copy_from_user (buf , (char *)arg , len);
break;

default :
printk (KERN_ERR " UARTbitbangModule : invalid ioctl

↪→ detected !\n");
return -ENOTTY ;

}
return len;

}

static struct file_operations fops = {
.read = device_read ,
.write = device_write ,
. unlocked_ioctl = device_ioctl ,

};
...

3. Design & Implementation 23

3.3.2 Bit Banging Functionality

Bit banging any GPIO pin while listening to another one in between bits was
the next implementation step. Examples on how to do bit banging are widely
available, however they needed to be adapted for this particular application.
The bit banging was implemented as can be seen in Algorithm 1. The pins are
written by direct memory access, i.e. writing out 1 to GPIO_SETDATAOUT
or GPIO_CLEARDATAOUT of the respective GPIO pin, and read by directly
reading GPIO_DATAIN for the input GPIO pin. All memory addresses can
be looked up in the Technical Reference Manual for AM335x ARM Cortex-A8
Microprocessors [3].

Algorithm 1 Pseudo code for sending a byte using bit banging

if RXpin 6= idle then
break

end if
send startbit
sleep for bittime/2
if RXpin 6= startbit then
break

end if
sleep for bittime/2
while currentbit < 8 do
if char(currentbit) == 1 then
send 1
sleep for bittime/2
if RXpin 6= 1 then
break

end if
sleep for bittime/2

else
send 0
sleep for bittime/2
if RXpin 6= 0 then
break

end if
sleep for bittime/2

end if
current bit ++

end while
send stopbit
sleep for bittime

3. Design & Implementation 24

For the kernel module bit banging GPIO pins GPIO1_17 and GPIO3_19,
i.e. pin 17 in GPIO group 1 and pin 19 in GPIO group 3, were used. As
an example: To clear an output pin, the bit at the GPIO number at the
GPIO_CLEARDATAOUT offset of the groups base address has to be set to
1. To clarify, memory addresses for the GPIO groups used are listed in table 3.4.

GPIO group Base address
GPIO1 0x44E07000
GPIO3 0x481AE000

Register name Offset
GPIO_DATAIN 0x138
GPIO_CLEARDATAOUT 0x190
GPIO_SETDATAOUT 0x194

Table 3.4: Memory addresses for GPIO groups on the Beaglebone Black

3.3.3 Pin Multiplexing

The AM335x processor family defines up to 8 modes per pin [5]. Switching be-
tween pin modes is done through pin multiplexing, for which the beaglebone
provides a tool called cape manager in user space6. Changing modes in ker-
nel space is not as straight forward though. Mode 7 puts any pin into GPIO
mode if available. In kernel space pin multiplexing can theoretically be controlled
through the pinctrl framework and GPIO pins can be enabled through the GPIO
or GPIO legacy framework provided by the Linux kernel7. However, in practice
there were difficulties with both methods. The GPIO framework does not man-
age to enable GPIO pins when active in another mode. The pinctrl framework
has not been used due to its sheer complexity.

The kernel module implemented in this thesis changes pin modes by directly
writing to the control module registers of the processor. This method is not fore-
seen to be used by the Linux kernel developers, does however allow for quick mode
changes at runtime. Code 3.5 shows the implementation to change GPIO1_17
and GPIO3_19 pins to mode 7. Table 3.5 explains the possible values for the
control module. After bit banging the message to be sent, the pin modes are
restored to their previous value using a similar function. After first implement-
ing the bit banging using separate GPIO pins, here UART1 pins were put into

6The Beaglebone Black can be customized through various capes that can be connected to
the two expansion headers with 92 pins

7see consumer.txt and gpio-legacy.txt on https://www.kernel.org/doc/Documentation/
gpio/, accessed 2016-01-06

https://www.kernel.org/doc/Documentation/gpio/
https://www.kernel.org/doc/Documentation/gpio/

3. Design & Implementation 25

GPIO mode. Changing their mode at runtime is important, as they are being
used by the UART driver for all other MP-Bus communication. The test setup
in Chapter 4 was developed using the GPIO implementation though, as it is
more stable at this point.

Code 3.5: Changing pin modes to GPIO through the control module registers
...
// definitions for GPIO control through memory
define CONTROL_MODULE_START 0 x44E10000

↪→ // CONTROL_MODULE starting address in memory
define CONTROL_MODULE_END 0 x44E11FFF

↪→ // CONTROL_MODULE end address in memory
define CONTROL_MODULE_SIZE (CONTROL_MODULE_END -

↪→ CONTROL_MODULE_START)
define GPIO1_17_OFFSET 0x844

↪→ // control offset for GPIO1_17
define GPIO3_19_OFFSET 0x9a4

↪→ // control offset for GPIO3_19
...
// set pin modes to GPIO for bit banging
int mux_pins (void){

uint32_t * control_module ;
int value;

if (!(control_module = ioremap (CONTROL_MODULE_START ,
↪→ CONTROL_MODULE_SIZE))) {
printk (KERN_ERR " GPIObbModule : unable to map control

↪→ module \n");
return -1;

}

// set both GPIOs to mode 27: Fast , Enable Receiver ,
↪→ Pulldown type enabled , mux mode 7.

value = 0x27;

control_module [GPIO1_17_OFFSET >> 2] = value;
control_module [GPIO3_19_OFFSET >> 2] = value;

iounmap (control_module);

return 0;
}
...

As the method used here is not recommended by the Linux kernel developers,
it can still be improved upon. On the beaglebone accesssing the memory registers
for GPIO modules 1 to 3 leads to a segmentation fault if none of these GPIO
pins have been registered first. Changing the pin mode to GPIO in the control
module of is not sufficient to work around that. At least one GPIO pin situated
on these modules therefore needs to be set up through the GPIO framework.

3. Design & Implementation 26

Bit Field Description

31–7 reserved
6 conf_<module>_

<pin>_slewctrl
Slew Control. Slew Rate: Fast is 0, Slow is 1

5 conf_<module>_
<pin>_rxactive

Receiver Active. Input Enable: Receiver Dis-
able 0, Receiver Enable 1

4 conf_<module>_
<pin>_putypesel

Pad Pullup/Pulldown Type. Pulldown is 0,
Pullup is 1

3 conf_<module>_
<pin>_puden

Pad Pullup/Pulldown enable. Enabled is 0, Dis-
abled is 1

2–0 conf_<module>_
<pin>_mmode

Mode. Pad functional mux select. A number
between 0 and 7 i.e. 000 and 111. This depends
on which mode we require.

Table 3.5: Controle module values for GPIO/UART offsets [24]

3.3.4 KThread

Finally, as a fourth step, the send_text and send_byte functions were to be called in
a separate kernel thread for better schedulability, as these are the timing sensitive
methods. The method kthread_run is a wrapper for kthread_creat followed by
wake_up_process and creates and starts a kernel thread. It takes a function, a data
pointer for the function and the name of the thread as arguments. kthread_run

is called using send_text as a function and a pointer to the message to be sent.
send_text then calls send_byte for each byte in the message.

3.4 Real-Time Scheduling

The preempt-RT patch provides the sched_setscheduler function to set the schedul-
ing policy and assign a priority to the process identifier (PID) of process calling
the it. Possible scheduling policies are listed in Table 3.6. The first three are regu-
lar Linux scheduling policies, the last two are real-time scheduling policies added
by preempt-RT. As only one process needs to run with high priority at any given
time in this implementation SCHED_FIFO is used here. The real-time scheduler
assigns priorities of 50 and lower to non real-time tasks including all interrupts.
Kernel 3.14 added an additional scheduling policy with SCHED_DEADLINE8.
which has to be set using sched_setattr and is not covered here.

8see Linux manpage at http://man7.org/linux/man-pages/man7/sched.7.html, accessed
2016-01-06

http://man7.org/linux/man-pages/man7/sched.7.html

3. Design & Implementation 27

Value Policy
SCHED_OTHER the standard round-robin time-sharing policy
SCHED_BATCH for “batch” style execution of processes
SCHED_IDLE for running very low priority background jobs

SCHED_FIFO a first-in, first-out policy
SCHED_RR a round-robin policy

Table 3.6: Scheduling policies for sched_setscheduler9

As the most time critical task, the kernel module is assigned a high priority.
The priority is set via param->sched_priority. The struct param is then passed to
sched_setscheduler alongside the PID and the selected scheduling policy. Code 3.6
shows the priority assignment.

Code 3.6: Implementation of real-time scheduling
...
/* define realtime priority , we use 90 as PRREMPT_RT uses 50 as

* the priority of kernel tasklets and interrupt handler by default
↪→ */

define MY_PRIORITY (90)
...
// set our thread to high rt priority
struct task_struct *TSK;
struct sched_param PARAM;
TSK = current ;
PARAM. sched_priority = MY_PRIORITY ;
sched_setscheduler (TSK , SCHED_FIFO , &PARAM);
...

3.5 Outlook: BACnet MS/TP

Integrating BACnet MS/TP into the setup presented in this chapter should not
pose a problem. As mentioned in the section on the BACnet protocol in the
background chapter(see Section 2.3.2) the timing requirements for BACnet are
less strict than the timing needed for dominance arbitration with the MP-Bus.
A software BACnet control module could therefore be assigned a lower real-
time priority, still allowing the MP-Bus bit banging module to execute reliably.
Furthermore so far BACnet and the MP-Bus, while both implemented, have not
been used simultaneously by Ergon and Belimo.

9see Linux manpage at http://man7.org/linux/man-pages/man2/sched_setscheduler.2.
html, accessed 2016-01-06

http://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
http://man7.org/linux/man-pages/man2/sched_setscheduler.2.html

Chapter 4

Evaluation

The implementation and the soft real-time constraints of the MP-Bus were eval-
uated through different measurements. The kernel module implementing the
time-critical parts of the MP-Bus protocol was tested with a MP-Bus connec-
tion using a host PC as a simulated MP-Master as further described in Sec-
tion 4.1. In this setup, execution times of the bit banging module were measured
as well as its collision detection tested. Roundtrip time on MP-Master side was
also measured, can however not be seen as representative due to the test setup.
These measurements are presented in Subsection 4.2.1. The performance of the
patched Linux was measured through latency under load using cyclictest from
the rt-tests framework1, the results of which are listed in Subsection 4.2.2.

4.1 Test Setup

The test setup can be seen in Figure 4.1 and Figure 4.2. For the test, a host
PC running a adapted MP-Master test implementation in Java is connected
via USB to the Belimo ZIP-USB-MP gateway, which translates all commands
sent by the MP-Master to the MP-Bus. The gateway’s MP-Bus signal and
ground wires are connected to an Ergon MP-Bus hardware driver. The MP-Bus
hardware driver is additionally connected to a 24V 100mA power supply unit
providing the power as well as high and ground voltage levels for the MP-Bus.
The hardware driver transforms the the MP-Bus voltage down to 3.3V to be
connected to the Beaglebone Black. The MP-Bus hardware driver furthermore
separates the single-wire MP-Bus signal to the RX and TX connections for the
beaglebone. On the microcontroller a MP-Slave simulator implementation in C,
adapted from an earlier Ergon program for this thesis, polls the UART1 port for
incoming MP-Bus commands. If a MP_Get_SeriesNo command is successfully
detected, a response with the series number is sent to the more stable GPIO
implementation of the bit banging kernel module via ioctl. The kernel module

1The rt-tests framework can be found here: http://git.kernel.org/cgit/linux/kernel/
git/clrkwllms/rt-tests.git

28

http://git.kernel.org/cgit/linux/kernel/git/clrkwllms/rt-tests.git
http://git.kernel.org/cgit/linux/kernel/git/clrkwllms/rt-tests.git

4. Evaluation 29

transmits the response using bit banging on the GPIO pin if the bus is idle and
breaks in case of collision with the incoming message. On the beaglebone, a small
shell script was written and executed to load the bit banging module into the
kernel and enable all GPIO modules to avoid segmentation faults as described
in the Pin Multiplexing Section 3.3.3.

Figure 4.1: Overview over the setup used to test the implementation of the
MP-Bus

Figure 4.2: Picture of the test setup

4. Evaluation 30

4.2 Measurements

4.2.1 Byte and Roundtrip Times

The test setup described in the previous section is used to measure the timing
of the bit banging module per byte, i.e. from right before setting the startbit
to right after setting the stopbit within the kernel thread. The timing of the
roughly 6000 bytes measured can be seen in Figure 4.3. The average duration
per byte is 7.512ms, with the lower time bound for successful bit banging being
7.389ms2 and the upper bound being 7.614ms2. The upper time bound, i.e.
complying with the serial communication sending pattern, is violated in roughly
2% of all measurements. These violations are however clustered in five packets
and correlated with collisions on the bus. In case of a collision, timing cannot
and does not have to be guaranteed. The clusters have the additional effect, that
the number of affected responses (i.e. packets of 10 bytes) is below those 2%, as
often several bytes violating the upper time bound belong to the same response.
Figure 4.4 shows a box-whiskers plot of the byte time measured. Again it can be
seen that the most bytes are sent within a small timing band. The first quartile
is at 7.502ms, the median at 7.507ms and the third quartile at 7.511ms.

Figure 4.3: Byte sending time duration in the kernel module3

There are several possible explanations for these results and the high latency
spikes in particular. The interrupt handling on kernel side could need more fine

2Nine times the min/max bit time as defined in Table 2.3. Nine, not ten, as the measurement
is stopped right after setting the stopbit, thus not including its duration.

3Collisions were included as 0 values

4. Evaluation 31

Figure 4.4: Box-whiskers plot of the byte time in the kernel module

tuning, although the bit banging kernel thread has a higher real-time priority
than the interrupt handlers. Incoming messages could still lead to overhead an
induce some latency. Another possible explanation comes from collisions between
incoming messages and responses. In this case the MP-Slave will stop sending
as soon as it detects a non-idle bus or bit mismatch according to dominance
arbitration (see Section 2.3.1 for more details on dominance arbitration). The
correlation between collisions and some high latency spikes supports the notion
of collisions having an impact on latency. The usleep function, used in the kernel
module to time the bit banging, may also be a source of unpredictability and
additional latency.

The roundtrip time measured in the MP-Master implementation run on the
host PC is depicted in Figure 4.5. It was measured from before calling the send
method in the MP-Master to right after receiving and correctly identifying the
response. The influence of the polling interval of the MP-Slave simulator can
clearly be seen in the measurements. Roundtrip time is above the maximum
answer delay4 required by the MP-Bus. It was however not measured according
to this requirement, as sending the command, transmission and processing of the
response were within the time taken. The Java implementation and the host PC
are furthermore not real-time optimized. The timing shows very little variation
apart from the polling interval though, speaking in favour of a stable MP-Slave
on the other side.

4See Table 2.3. The slave should start responding within this interval after receiving a
command.

4. Evaluation 32

Figure 4.5: Roundtrip time measured in the MP-Master Java implementation
run in eclipse5

4.2.2 System Latency

Latency measurements using cyclictest while running the Shared Logic frame-
work on the Beaglebone Black produced the histogram showed in Figure 4.6.
The cyclictest program, which is part of the rt-tests framework, was called with
four threads, a real-time priority of 90, a thread interval of 1000µs and 100’000
iterations. The highest latency detected for threads 1–4 was 53 µs, 67 µs, 81 µs
and 100 µs respectively. Another cyclictest with a similar setup, but detecting
latency thresholds as shown in Code 4.1, needed 3 cycles to pass the threshold
of 200 µs, 14 for 250 µs and 1575 for 300 µs with full load.

5Gaps show the end of a measurement block

4. Evaluation 33

Figure 4.6: Histogram of latency under load in µs as measured by cyclictest

4. Evaluation 34

Code 4.1: Output by cyclictest (with 200, 250 and 300 µs max latency)
root@beaglebone :~/rt -tests # ./ cyclictest --smp -p95 -f -b 200
/dev/ cpu_dma_latency set to 0us
INFO: debugfs mountpoint : /sys/ kernel /debug/ tracing /
policy : fifo: loadavg : 2.49 2.33 1.54 3/280 1785

T: 0 (1785) P:95 I:1000 C: 3 Min: 104 Act: 159 Avg: 140
↪→ Max: 159

Thread Ids: 01785
Break thread : 1785
Break value: 269

root@beaglebone :~/rt -tests # ./ cyclictest --smp -p95 -f -b 250
/dev/ cpu_dma_latency set to 0us
INFO: debugfs mountpoint : /sys/ kernel /debug/ tracing /
policy : fifo: loadavg : 2.56 2.35 1.55 3/280 1789

T: 0 (1789) P:95 I:1000 C: 14 Min: 104 Act: 176 Avg: 131
↪→ Max: 183

Thread Ids: 01789
Break thread : 1789
Break value: 303

root@beaglebone :~/rt -tests # ./ cyclictest --smp -p95 -f -b 300
/dev/ cpu_dma_latency set to 0us
INFO: debugfs mountpoint : /sys/ kernel /debug/ tracing /
policy : fifo: loadavg : 2.52 2.34 1.55 4/280 1792

T: 0 (1792) P:95 I:1000 C: 1575 Min: 81 Act: 137 Avg: 145
↪→ Max: 261

Thread Ids: 01792
Break thread : 1792
Break value: 304

Chapter 5

Conclusion and Future Work

A software based solution for the MP-Bus protocol based on Linux with the
preempt-RT patch was possible. Replacing the dedicated hardware module for
bus control with a kernel module is feasible using a real-time Linux framework.
The preempt-RT patch adds the capability to reliably deal with real-time con-
straints and execute soft time-critical threads in kernel space. More sophisticated
real-time frameworks for Linux offer hard real-time capability if additional adap-
tation efforts and, in some cases, reduced Linux functionality are not an issue.

The reliability of the implementation of the MP-Bus in this semester thesis
can be further improved by replacing the usleep function used to time the bit
banging with a more predictable method, optimising the byte time further to
be closer to the lower bound with no load present on the system and additional
fine tuning of the preempt-RT patched Linux. Separating application-level bus
control into different non-Java modules with increased real-time priority would
be advisable for better schedulability and reduced latency on the system. The
pin multiplexing solution can also be further optimised, a better implementation
in the Linux kernel is desirable.

All in all this semester thesis serves a successful proof of concept for the
software solution sought for real-time field bus systems on Linux. This could
allow for cost reductions in building automation as hardware requirements for
control modules can be lowered.

35

Bibliography

[1] Martin Wild, Andreas Frey, PP / MP Specifications, Belimo, Hinwil CH,
Rev. 26, November 5, 2010.

[2] Martin Wild, MP Cooperation Documentation, Belimo, Hinwil CH, Rev. 1.0,
November 29, 2006.

[3] Texas Instruments, AM335x ARM Cortex-A8 Microprocessors (MPUs) —
Technical Reference Manual, Texas Instruments, SPRUH73H, April 2013.

[4] BeagleBoard.org Foundation, BeagleBone Black Schematics, beagle-
board.org, Doc.-Nr. 450-5500-001, March 21, 2014.

[5] Gerald Coley, BeagleBone Black System Reference Manual, beagle-
board.org, Rev. C.1, May 22, 2014.

[6] American Society of Heating, Refrigerating and Air-Conditioning Engineers,
Inc. (ASHRAE), BACnet — A Data Communication Protocol for Build-
ing Automation and Control Networks, AHSRAE, Atlanta, ISSN 1041-2336,
2008.

[7] Ergon Informatik AG, Belimo Shared Logic — Software für ein besseres
Klima, 2013.

[8] Felipe Cerqueira, Björn B. Brandenburg, A Comparison of Scheduling
Latency in Linux, PREEMPT-RT, and LITMUSRT, Proceedings of the
9th Annual Workshop on Operating Systems Platforms for Embedded
Real-Time applications (OSPERT 2013), pp. 19–29, invited paper, July
2013.

[9] Carsten Emde, Long-term monitoring of apparent latency in PREEMPT
RT Linux realtime systems, OSADL Project: Real Time Linux Workshops
(RTLWS) 2012, October 2010.

[10] Carsten Emde, Robert Gleixner, Quality assessment of real-time Linux,
boards & solutions / ECE, Reprint for OSADL, https://www.osadl.org/
uploads/media/ECE-2011-09.pdf, Accessed: 2015-12-28, September 6,
2011.

[11] Linux Foundation, The Linux Foundation Announces
Project to Advance Real-Time Linux, http://www.
linuxfoundation.org/news-media/announcements/2015/10/

36

https://www.osadl.org/uploads/media/ECE-2011-09.pdf
https://www.osadl.org/uploads/media/ECE-2011-09.pdf
http://www.linuxfoundation.org/news-media/announcements/2015/10/linux-foundation-announces-project-advance-real-time-linux
http://www.linuxfoundation.org/news-media/announcements/2015/10/linux-foundation-announces-project-advance-real-time-linux
http://www.linuxfoundation.org/news-media/announcements/2015/10/linux-foundation-announces-project-advance-real-time-linux

Bibliography 37

linux-foundation-announces-project-advance-real-time-linux,
Accessed: 2016-01-02, October 5, 2015.

[12] RTwiki, RT PREEMPT HOWTO, https://rt.wiki.kernel.org/index.
php/RT_PREEMPT_HOWTO, Accessed: 2016-01-02, March 7, 2014.

[13] Ivan Cibrario Bertolotti, Gabriele Manduchi, Real-time embedded systems:
open-source operating systems perspective, Boca Raton, Fl. : CRC Press,
ISBN: 978-1-4398-4154-9, 2012.

[14] Daniel Bristot de Oliveira, Romulo Silva de Oliveira, Timing analysis of
the PREEMPT RT Linux kernel, Software: Practice and Experience, DOI:
10.1002/spe.2333, May 25, 2015.

[15] Giorgio C. Buttazzo, Hard RealTime Computing Systems — Predictable
Scheduling Algorithms and Applications, Pisa ITA, Springer Science and
Business Media, ISBN 978-1-4614-0675-4, 2011.

[16] Hermann Härtig, Michael Roitzsch, Ten years of research on L4-based real-
time systems, Proceedings of the 8th Real-Time Linux Workshop, 2006.

[17] XenWiki, Xen Project Software Overview, http://wiki.xen.org/wiki/
Xen_Overview#Introduction_to_Xen_Architecture, Accessed: 2016-01-
03, April 20, 2015.

[18] Arianna Avanzini, Paolo Valente, Dario Faggiolii, Paolo Gai, Integrating
Linux and the real-time ERIKA OS through the Xen hypervisor, 10th IEEE
International Symposium on Industrial Embedded Systems (SIES), 2015.

[19] Hasan Fayyad-Kazan, Luc Perneel, Martin Timmerman, Linux PREEMPT-
RT v2.6.33 versus v3.6.6: better or worse for real-time applications?, ACM
SIGBED Review — Special Issue on the 3rd Embedded Operating System
Workshop (EWiLi 2013), Volume 11 Issue 1, p. 26-31, February 2014.

[20] Belimo AG, A9-0001 — Introduction to MP-Bus Technology, http:
//www.belimo.ch/pdf/e/MP_Technology_e.pdf, Accessed: 2015-12-27,
v1.1, April 2010.

[21] H. Michael Newman, BACnet — The Global Standard for Building Au-
tomation and Control Networks, Momentum Press, New York, ISBN 978-1-
60650-288-4, 2013.

[22] John Patrick, Serial Protocols Compared, Embedded Systems Programming,
Vol. 15 No. 6, June 2012.

[23] Arianne Keller, Kernel Space - User Space Interfaces, http://people.ee.
ethz.ch/~arkeller/linux/kernel_user_space_howto.html, Accessed
2015-11-20, Version 0.8, July 2008.

http://www.linuxfoundation.org/news-media/announcements/2015/10/linux-foundation-announces-project-advance-real-time-linux
http://www.linuxfoundation.org/news-media/announcements/2015/10/linux-foundation-announces-project-advance-real-time-linux
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://wiki.xen.org/wiki/Xen_Overview#Introduction_to_Xen_Architecture
http://wiki.xen.org/wiki/Xen_Overview#Introduction_to_Xen_Architecture
http://www.belimo.ch/pdf/e/MP_Technology_e.pdf
http://www.belimo.ch/pdf/e/MP_Technology_e.pdf
http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html
http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html

Bibliography 38

[24] Derek Molloy, GPIOs on the Beaglebone Black using the Device
Tree Overlays, http://derekmolloy.ie/gpios-on-the-beaglebone-black-using-
device-tree-overlays/, Accessed 2016-01-06.

[25] N.P. Mahalik, Fieldbus technology: industrial network standards for real-
time distributed control, Springer, Berlin, ISBN: 3-540-40183-0, 2003.

[26] Hermann Merz, Thomas Hansemann, Christof H¸bner, Building automa-
tion : communication systems with EIB/KNX, LON und BACnet, Springer,
Berlin, ISBN: 978-3-540-88828-4, 2009.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Linux with Real-Time Capabilities
	2.2 Real-Time Frameworks
	2.2.1 Preempt-RT
	2.2.2 Xenomai
	2.2.3 L4/Fiasco with DROPS
	2.2.4 FreeRTOS
	2.2.5 Xen

	2.3 The MP-Bus and BACnet Protocols
	2.3.1 MP-Bus
	2.3.2 BACnet MS/TP

	2.4 The Belimo Shared Logic Platform

	3 Design & Implementation
	3.1 Architecture Overview
	3.1.1 Hardware
	3.1.2 Software

	3.2 Linux with the Preempt-RT patch
	3.3 Bit Banging UART — The Driver
	3.3.1 User Space — Kernel Space Communication with Ioctl
	3.3.2 Bit Banging Functionality
	3.3.3 Pin Multiplexing
	3.3.4 KThread

	3.4 Real-Time Scheduling
	3.5 Outlook: BACnet MS/TP

	4 Evaluation
	4.1 Test Setup
	4.2 Measurements
	4.2.1 Byte and Roundtrip Times
	4.2.2 System Latency

	5 Conclusion and Future Work
	Bibliography

