
Distributed
 Computing

Opportunistic Trip Planner

Semester Thesis

Petar Jokic

jokicp@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Pascal Bissig
Philipp Brandes

Prof. Dr. Roger Wattenhofer

February 28, 2016

Abstract

The process of planning a trip for a group of people can be complex and time-
intensive. Checking all date-combinations and flight-offers on a daily basis would
lead to the best-fitting dates for the lowest cost but is infeasible due to the large
number of possibilities.

During this semester thesis a system that automates the hardest parts of such
a search process was developed, simplifying the planning phase. For a number
of friends, who want to go on a trip toghether, a group can be created on this
system. The group members only have to install the developed Android appli-
cation ”TripPlanner”, set their location and enter preferences on flight times,
vacation duration and maximum flight costs. Calendar events of each member
are automatically extracted and compared on a server. In order to allow for
everyone to attend, the server searches for flight offers which satisfy the entered
preferences and fit between all scheduled calendar-events. Once the server has
found all offers within the next month, the individual trip suggestions are sent
to the user application.

If everyone in the group found an acceptable flight on a certain date, the
application displays this common trip date to all members, which means that
the planning phase ended and flights can be booked. With this tool, the user
effort is limited to a minimum, as only suggested flight offers have to be rated.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 Flight Search Tools . 3

1.2.2 Calendar Tools . 3

2 Data 4

2.1 Data Scraping . 4

2.2 Calendar Analysis . 5

3 Implementation of Opportunistic Trip Planner 6

3.1 Overview . 6

3.1.1 Hardware Selection . 6

3.1.2 Prototype Implementation 6

3.2 Android Application . 10

3.3 Server Program . 11

4 Tests and Validation 12

4.1 Functional Tests . 12

4.2 Performance Tests . 15

5 Conclusion and Future Work 16

5.1 Powerful Organisation Tool . 16

5.2 Extendable Prototype . 16

5.3 Future Work . 17

Bibliography 18

ii

Contents iii

Appendices 19

A Documentation of Android Code 20

A.1 UserSetupActivity . 20

A.2 MainActivity . 20

A.3 GroupActivity . 21

A.4 ResultActivity . 22

A.5 Database . 22

B Documentation of Server Code 23

B.1 Server . 23

B.2 Scraper . 24

B.3 Database . 25

Chapter 1

Introduction

1.1 Motivation

Planning a vacation for a group of friends can be a time-consuming project. Es-
pecially when your friends are spread all over the world and have busy schedules.
The process of finding flight offers that fit the preferences of all group members
implies a lot of work. Comparing calendars to find gaps between scheduled
events while looking for cheap flights on these discussed dates are not the sole
challenges. Also, different persons have different preferences concerning their
flight times, the number of stopovers and costs. Combining all these parameters
during the search for the optimal vacation can therefore be complex.

The goal of this project is to simplify these time-intensive steps by making
use of automation techniques. The first step is to find dates on which all friends
are available. This can be achieved by analyzing their calendars in order to find
a certain number of consecutive free days, which is a simple search problem.
Several semi-automatic tools for this purpose already exist on the market as
mentioned in Section 1.2.2. In the second step, once a set of possible dates is
known, cheap flights can be searched for each of the date-combinations. Doing
this manually might be possible for a few date combinations but seems infeasible
for tens to hundreds of combinations. Gathering flight information is more com-
plex, as offers of many different airlines have to be compared in order to get the
cheapest offer. Well known web-services, such as Skyscanner, exactly perform
this task. For an input set of location, destination, outbound and inbound date,
Skyscanner searches for flight offers by comparing many airlines and by this finds
the cheapest flights for a certain route (see Section 1.2.1).

Going one step further by avoiding the usage of trip boundary dates, the time
period within which a trip is being searched for, does not have to be specified
directly but will be continuously adapted to the search space of one month ahead.
By assuming that the majority of people have their most important calendar
events set about one month in advance, their calendar will usually be up-to-
date for the upcoming 30 days. If the trip planner system repeats the whole

1

1. Introduction 2

search process on a daily basis by extracting each calendar once a day and
recalculating its suggestions, no constraints on dates have to be set manually.
This increases the ease of planning a trip, as the group of friends have to simply
specify a destination, enter their preferences once and join the group. From
this moment on, they will receive daily trip suggestions for possible trips within
the following 30 days. The suggestions they receive already agree with their
calendar and the preset individual preferences, which makes them much more
relevant to the trip. By rating each trip either positively or negatively, the set of
liked date-combinations can be compared with those of all other group members.
If everyone in the group liked a certain trip, it is displayed to all members,
meaning that everyone is able to attend on these dates and everyone has found
flights meeting their individual preferences. In that sense, the trip planner is
an opportunistic tool (and therefore called Opportunistic Trip Planner), that
continuously tries to find matching trip offers and suggesting them to the group
members.

In order to keep things simple, this thesis focuses on finding flight offers and
refers to the fact that most concepts are potentially transferable and expendable
to other offers, such as hotels (or combined deals).

1. Introduction 3

1.2 Related Work

There are numerous useful tools on the market which help users during the steps
of planning a trip. Existing services can find the cheapest deals for flights, hotels,
rental cars and many other offers. Some of them provide APIs (Application Pro-
gramming Interfaces) which simplify the access to their data set for automated
queries. A problem is that some APIs either require a minimum search volume
or are otherwise limited by a low maximum request rate.

1.2.1 Flight Search Tools

Many well-known web-services are specialised on finding the cheapest flights for
a certain route- and date-combination. Most of them are based on a principle
called data-scraping (see Section 2.1), which means that they collect flight offers
from websites of a large number of flight providers. This process is hard to
be set up, which makes it lucrative to use their provided API. The following
(non-exhaustive) list of flight search tools shows services which provide APIs for
automated flight searches as they are required for this project. A more complete
list of holiday planning APIs can be found in [1].

(i) Skyscanner.net is one of the most used flight search tool available and
features an extensive dataset. It requires a minimum monthly request rate
of 200’000 unique requests to get a private API key. A test key is available
but has a limited request rate only [2].

(ii) Expedia.com provides a free API for flights, hotels and rental cars, but
requires a certain request-to-booking ratio [3].

(iii) Cleartrip.com has separate APIs for flights and hotels. In order to use this
API, a certain request-to-booking ratio is expected [4].

1.2.2 Calendar Tools

Apart from calendar tools integrated in email services, such a Google Calendar
or Microsoft Outlook, there are various other tools available, which help to easily
schedule events for a group of people. One of the most famous ones is Doodle [5].
Its principle is to find dates on which everyone (or the majority) is available. In
order to do that, a user creates an event and distributes the link to it. Everyone
who wants to join, enters its dates of availability (or extracts them from another
calendar), which then are processed to find the best matching date.

Chapter 2

Data

In this thesis many different kinds of data, such as calendar entries and flight
information, are being used. None of them are directly accessible in a form which
would make them automatically processable. For example, the flight offers on
a travel website are structured in a way that makes them easily readable by
a person but hard to directly understand for a computer. To analyze data
programmably, lists of numbers are much more important as they can be directly
processed and compared. Therefore data scraping is used to extract datasets
from their sources, such as websites or calendars.

2.1 Data Scraping

Scraping is the process of detaching and collecting data from a source. The
extracted numbers and text-strings are subsequently stored in a format that is
easier to process. In that way, the scraper needs to know how the website is
structured (e.g. knowing the HTML model) so that it can browse through it
and read the specified data. Furthermore the correct requests have to be sent
to make the website provide the desired information. If the website provides a
well-documented API, the whole scraping process is much easier. An API forms
the interface to access website data in a direct way. The request contains all
control information (like flight destination and dates), whereas the response is
mainly a set of requested data (such as flight offers). The Skyscanner flight
search tool used in this thesis (see Section 1.2.1) works in this exact manner. It
scrapes the airline websites and collects their data in order to be able to compare
offers from many providers [6]. Depending on the chosen routes and the dates, a
single flight-query can return around 200 offers from different providers and on
different times. Due to this tool, the trip planner system has access to condensed
flight information and can therefore focus on its other tasks. More details on
how flight data are being received can be found in Appendix B.2.

4

2. Data 5

2.2 Calendar Analysis

The second set of data used in this thesis is calendar data. Even though this data-
type is easily accessible via calendar applications or online-tools, the extraction
of events, to automatically find out the free dates of a person, is more complex.

This project needs to deal with calendars on Android phones, where the
events of the user are assumed to be listed. Each calendar consists of a database
which contains all events with their specific attributes. Starting with the very
first calendar-entry, which can date back to several years ago, the number of
events can be very large. If one wants to find all events occurring during a specific
period of time, like it is necessary for planning a trip, the simplest approach would
be to go through all events and copy the ones which are within the specified
interval. Unfortunately, this is not sufficient as recurring events are only listed
on the day when they start and do not have single events for every recurrence. So
only one entry exists, which contains attributes specifying the type of recurrence.
In some cases theses entries are not within the observed dates, so all past periodic
entries have to be checked for occurrences withing the planning time-span. By
generating a copy for every such event, these cases can be extracted too.

Knowing when events are listed in a calendar is usually not enough to actually
determine the availability of a person. Deciding on how important a scheduled
event is, can be the more crucial factor. To exemplify, events named ”laundry
day” could be rescheduled for the sake of a trip, whereas ”my weeding day” most
certainly is more important. This judgment is a complex decision for a machine.
To simplify, and because analyzing the importance of an event goes far beyond
the scope of this thesis, it is assumed that as soon as a day has a scheduled event,
it is unavailable for trips.

Apart from extracting calendar information, the gathered dates have to be
compared between the different members of a group, aiming to find dates on
which all members are available. On one hand this can be done quite easily by
taking the overlapping dates of all users. But on the other hand, a single user
might block all dates by having a full schedule. One approach of solving this
problem would be to rate the importance of blocking dates and ask blocking
users, whether they are willing to cancel them. This could possibly solve the
problem if a group does not have long enough free periods. However, the opposite
could happen if a group has too many possible date-combinations, which would
ask for more restrictions. As it can be seen, the task of analysing and comparing
calendars of several group members is arbitrarily complex and has therefore been
simplified for this prototype version of a trip planner. Only the dates when all
group members have empty schedules are interpreted as possible dates for a trip.

More sophisticated solutions could probably be provided by algorithms, which
know or learn when a user is probably available. This could be achieved by means
of habit recognition or analysis of their position.

Chapter 3

Implementation of
Opportunistic Trip Planner

3.1 Overview

3.1.1 Hardware Selection

The hardware of the trip planning system has to be carefully chosen in order to
meet the diverse requirement of the different parts, such as high computational
power and fast Internet-connection for data scraping but also the possibility of
simple user-interactions and access to individual calendar data. Higher com-
putational power asks for server-hardware, whereas the interface to the user is
probably best implemented in an application on a mobile phone.

Accessing calendar data on the smart phone is more independent from the
type of calendar-service used (as it is synchronisable with different calendar-
accounts). This is a major advantage, as for example the extraction of calendar
data from a web service, such as Google Calendar of Microsoft Outlook, would
require the transmission of user-names and passwords and would additionally
need to be implemented for all of these different services individually.

All tasks which do not have to be processed close to the user are more effi-
ciently implementable on a server. The only disadvantage is the data exchange,
which is then needed between the phone and the server. However, data exchange
is necessary either way and the volumes of transmitted data are small compared
to the ones that would be needed for data scraping on the phone.

3.1.2 Prototype Implementation

As stated in the section above, the Opportunistic Trip Planner system consists
of of two subsystems: a smartphone application and a server program. The
idea of the Android application is to give the users an easy access to the sys-

6

3. Implementation of Opportunistic Trip Planner 7

tem. Each user application can communicate with the server, which performs
all calculations and most other analysis tasks.

The first time a user starts the application, he or she has to set up a user-
profile. All calendar entries within the next 30 days are automatically extracted.
Then the user can create a new group, which gets stored on the server, and
invite friends by sending them a group link. This link, previously generated by
the server, automatically opens the application when clicking on it. By accepting
to join the group, the user sends its calendar entries to the server and updates
the group file in the database. The group screen gets periodically updated, so
that every group member can see who has already joined the group. As soon as
all users have joined the group, the server starts to search for flight offers. This
is done for each group member individually, as their locations and preferences
might differ. During this time, the user application keeps polling for offers until
the server has finished its task. Subsequently, the suggested offers are sent to
the user in response to the polling requests. On the Android side, these results
are stored and then sequentially displayed to the user, who can rate them by
clicking ”GREAT” or ”NEXT”. Every rating is sent back to the server, where
the ratings of all group members get stored and compared. If all members liked
a specific date-combination, it gets sent to the user, who can see the periodically
updated list of matching dates via the appearing ”SHOW MATCHES” button.

Figure 3.1 presents theses steps in a chronological order from the view of a
fictional user named ”userHTC”, who joins a group by clicking on a group link
received by e-mail.

3. Implementation of Opportunistic Trip Planner 8

(a) User setup (b) Main screen (c) Link opens application

(d) Join group via link (e) Group screen (f) Suggested trips displayed

(g) Matching dates

Figure 3.1: Screenshots from Android application

3. Implementation of Opportunistic Trip Planner 9

Figure 3.2 shows the interactions between the two subsystems graphically,
pointing out the involved Java-classes for an enhanced understanding of the
system structure. Documentations of the implemented code can be found in
Appendix A and B.

Android Application (TripPlanner) Server Programme

MainActivity.java tripPlannerServer.java

User already registered?

Load user data UserSetupActivity.java

Create new user

Does a group exist?

Load group data

Do trip suggestions exist?

Load trip suggestions
Show unrated ones

Extract calendar data

GroupActivity.java

- Group settings
- Check entries
- Send request

- Show group link

ResultActivity.java

- Show matched
 dates as list

Main screen

Join Group
Store group data

Send trip
Rating,
Update

Suggestions
file

Group link
clicked

Y N

Y

Y

tripPlanner.java

Group
Handler

Join
Group

Handler

Polling
Handler

Rating
Handler

Create new
group file

-> return link

Join Group
-> add new
member
if not full

/groups/

tripPlannerServer_Thread.java

DataScraper.java

Load and check
group data

Start scraping
for flight data

tripPlanner.java

Generate request
query for

skyscanner

queryGen.java

Search flights

/itineraries/

store
trip offers

/ratings/

If group
full

„Great“/
„Next“
button

Start of application

Start background service

Figure 3.2: System overview

3. Implementation of Opportunistic Trip Planner 10

3.2 Android Application

The developed mobile phone application is called ”TripPlanner” and serves
mainly as a user-interface to access the Opportunistic Trip Planner system. A
pseudo flow-diagram of the application can be found on the left-hand side of
Figure 3.2.

All user-specific data are stored in the TripPlanner application. As soon as
it gets started for the first time, a new user profile is asked to be set up. In order
to plan a trip with friends, a group needs to be created. One of the users has
therefore to write down all friends in the ”TRIP SETTINGS”. After clicking
the ”CREATE GROUP” button, a group link is shown in the trip settings and
the user automatically joins the group. Each joined user is always able to see a
periodically updated list of the (user-) names of all joined members or ”not joined
yet” in case not everyone has joined the group yet. By copying the generated
link, it can be sent to the other group members, allowing them to join the group.

After clicking on the link, Android asks whether the TripPlanner application
shall be started or the browser. If the browser is selected, a simple HTML
message appears, showing ”Welcome to TripPlanner! Get the App from Play
Store to join the trip group!”. If TripPlanner is chosen instead, the application
asks whether the user wants to join the group or not. Clicking ”CANCEL” aborts
the process and returns to the main screen, whereas the button ”OK” makes the
user join the group (which is confirmed or denied by showing the appropriate
toast message, depending on whether the user already joined the group or not).
As soon as another user joins the group, all joined group members receive an
updated version of the group entries, showing all names, ordered by the time
they joined it.

Once the group is complete, each user receives suggested trips from its lo-
cation to the common group destination. The trip suggestions are shown on
the main screen as soon as the server has finished planning trips for the specific
user. By clicking either the ”GREAT” button or the ”NEXT” button, the user
rates the shown suggestion and iterates through all received ones. The state of
the ratings is stored and reloaded when resuming the application. Finally, if all
group members liked a certain flight-date, the ”SHOW MATCHES” button gets
enabled. By clicking on this button, the matches get displayed on a list, so that
the group members know on which dates they could book a flight.

Appendix A provides more details on the Android code implementation.

3. Implementation of Opportunistic Trip Planner 11

3.3 Server Program

On the server-side of the trip planning system, a Java program is running a
request-handler, which forms the interface between the flight search tools and the
”TripPlanner” application. The right-hand side of Figure 3.2 shows its structure
and the connections to the network.

The functionality of the server is essentially described in Section 3.1.2. It is
responsible for all group-related actions as well as for the data scraping process.
Therefore it communicates with the application via Internet. As there is no
steady connection between the two subsystems, the server needs to store all
relevant data in its database.

As soon as a group is complete, the server starts to search for flights by
analysing the group data and scraping offers from the Skyscanner website. The
resulting offers are filtered in order to meet all user-preferences, and then stored
as lists of suggestions. By polling data from the server, these files can be accessed
by the application. If a member positively rates a trip, the appropriate date-
combination gets stored on the server, so that it can later be compared with the
ratings of all other group members.

A detailed documentation of the server code can be found in Appendix B.

Chapter 4

Tests and Validation

In order to extensively test a system like the Opportunistic Trip Planner, a user
study with many participants would have to be conducted. Due to the limited
time for this thesis, such a survey was not feasible. As a proof of concept, fictional
users were created instead, so that the system could be tested on a smaller
scale. The functional tests (Section 4.1) and performance tests (Section 4.2)
were conducted on the final version of the developed system.

4.1 Functional Tests

The idea of the functional test was to create a group of two members in order to
verify that the flights get suggested correctly and that the matching functionality
works as expected. Therefore, two mobile phones with arbitrarily modified cal-
endars were used to easily verify the test results. To make sure that flight offers
exist, the well-connected cities Berlin and Zurich were chosen as user-locations
and Barcelona as their destination. The users were given the test parameters
listed in Table 4.1. The numbers in brackets are used to indicate multiple events
on this day and the column ”Days” shows the preferred minimum number of
days for a trip.

User Location Days Scheduled Events in Calendar

userOne Berlin 15 12.02.2016, 13.02.2016 (x3), 04.03.2016 (x2),
05.03.2016

userTwo Zurich 14 15.02.2016, 16.02.2016

Table 4.1: Calendar entries of test users

The observed time period lasts from the day when the test was performed,
the 10.02.2016, until the day 30 days ahead, which was the 10.03.2016. For the
first user this means, that the only possible gap for a trip lasting at least 15 days,
lies between 14.02.2016 and 03.03.2016, which makes 19 days . ”UserTwo” asks

12

4. Tests and Validation 13

for at least 14 days, which can be realised between 17.02.2016 and 10.03.2016, a
period of 23 possible days. As the planner software, running on the server, has to
meet all the the requirements and preferences given by the users, the minimum
number of days for the group has to be 15 (constrained by the first user) and the
search for a common period of possible days should result in the period 17.02.2016
- 03.03.2016. Combinatorially this should result in only 3 different possible date-
combinations, namely: 17.02.2016-02.03.2016 (15 days), 17.02.2016-03.03.2016
(16 days), 18.02.2016-03.03.2016 (15 days). Figure 4.1 summarizes these dates
graphically.

Only offers with these date-combinations should therefore be suggested by
the system. In order to test this, the users have to positively rate one offer for
each such combination. By observing that only these date-combinations are then
shown in the list of matches, the functionality of the system can be verified to a
good portion.

Figure 4.1: Calendar of tested group

After the expected outcome has been determined above, the two users were
set up on the 2 mobile phones. Their calendars and preferences were previously
adapted according to Table 4.1. Approximately two minutes after both users
have joined the formed group, the suggested trips could be validated. It could be
confirmed, that only flights on the expected date-combinations were suggested by
the server. Examples of these suggestions can be seen in Figure 4.2. By positively
rating the first occurrence of each date-combination and discarding all other
offers, the main screen appeared empty again. A few seconds later, the ”SHOW
MATCHES” button became enabled and all expected date-combinations were
listed (see Figure 4.3).

4. Tests and Validation 14

(a) Suggestion for ”userOne” (b) Suggestion for ”userTwo”

Figure 4.2: Offered trip suggestions

(a) Matches of ”userOne” (b) Matches of ”userTwo”

Figure 4.3: Matching date-combinations

4. Tests and Validation 15

4.2 Performance Tests

During the previously performed tests, one bigger limitation was found: The
waiting time before getting results. This drawback of the prototype version is
probably due to restrictions of the maximum number of requests given by the
Skyscanner API (see Appendix B.2). In order to quantify the restriction, a test
trip from Zurich to Barcelona was planned for a single user with a calendar,
that allowed for 91 possible date-combinations. The goal was to determine the
maximum request-rate of the Skyscanner API.

After 22 minutes and 18 seconds, the 91 requests were processed. This results
in an average processing time of 14.7 seconds per request, or in other words,
around 4 requests per minute. The estimated number of daily requests, which
can be processed by the Opportunist Trip Planner, can therefore be calculated:

Nest = 24
h

day
∗ 60

min

h
∗ 4

requests

min
= 5760

requests

day

The maximum number of date-combinations results, if a user has an empty
calendar and set the minimum number of days for his trip to 1. This simple
combinatorial calculation yields 450 combinations.

Nmax =
1

2
∗ 30 days ∗ 30 days = 450 combinations

If this number gets compared with the maximum number of requests per day, a
total number of 13 such users could be constantly served by this system:

Nserved = Nest/Nmax = 12.8users

Although this setup might not be very probable, it still shows that the request
rate is a limiting factor of the Opportunistic Trip Planner. As soon as several
groups want to be served at the same time, measures like limiting the maximum
number of combinations per group would have to be introduced.

Chapter 5

Conclusion and Future Work

5.1 Powerful Organisation Tool

The main achievement of this thesis was to show how powerful the concept of
opportunistic trip planning can be. By using calendar analysis and data scraping,
the developed prototype is able to automatically suggest trip offers to a group
member without any necessary arrangement with the other users. Opportunistic
organization tools could therefore help their users so that they can focus on more
important tasks. Although more extensive user-studies would have to proof the
usability, this project indicates how promising the integration of this tool into a
future project could be.

5.2 Extendable Prototype

During the development process, many possible extensions and improvements
were found, but could not be implemented due to the time restrictions of this
project. Though, a selection of the most important ideas is given below.

The change with the least conceptual influence would be a re-design, which
would make the application more appealing to the customer and also more user-
friendly. For example, a calendar display that shows the suggested trip high-
lighted between the scheduled events would make a rating decision much easier.
Other improvements in usability could include an automatic localisation of each
user, so that the departure airport does not have to be entered manually. This
would be possible by using GPS data and a functionality that lets the user pick
from a list of recommended departure airports. Another feature that might save
trip costs would be a more flexible selection of traveler categories (such as chil-
dren/ adult) or also an aggregation-tool, which detects if several members depart
from the same airport (which would save booking fees). An option to book the
trip directly via the Android application, as indicated in Appendix A.4, would
be one more marketable feature.

16

5. Conclusion and Future Work 17

Also more sophisticated suggestion algorithms could improve the planning
tool. Rather than defining a single destination airport, a region could be selected
instead. This would enlarge the search space for flights but at the same time
simplify the planning phase and allow for more spontaneous trips. Suggestions
would then be more diverse and could additionally include other holiday offers
such as hotels and rental cars.

5.3 Future Work

Based on the prototype developed in this thesis, numerous applications could be
derived by either extending the concept as mentioned in the previous Section 5.2
or by applying the system model to other fields. For example, the whole system
could be applied to business trips, where meeting rooms, hotels and flights have
to be booked by comparing calendar entries.

Finally, the concept could be used in any other field, where activities can be
planned and the user prefers to get surprised by suggestions, instead of manually
searching for opportunities.

Bibliography

[1] ProgrammableWeb:
”http://www.programmableweb.com/category/travel/apis?category=19965”
Listing of travel APIs, accessed 24.11.2015

[2] Skyscanner Business:
”http://business.skyscanner.net/portal/en-GB/Documentation/ApiOverview”
Documentation of Skyscanner API, accessed 24.11.2015

[3] Expedia Affiliate Network:
”http://developer.ean.com/”
Documentation of Expedia API, accessed 24.11.2015

[4] Cleartrip
”http://www.cleartrip.com/faq/api/air/”
Documentation and FAQ of Cleartrip API, accessed 24.11.2015

[5] Doodle
”http://doodle.com/de/”
Online calendar tool, accessed 26.02.2016

[6] Skyscanner
”http://www.skyscanner.net/whywearefree.aspx”
Description of concept, accessed 26.02.2016

[7] AChartEngine:
”www.achartengine.org/content/download.html”
Charting software library for Android applications, update from 15.05.2013

[8] Vadim Maslov: Travel Info
”http://www.kovrik.com/sib/travel/iata-airport-codes.txt”
Simple listing of IATA codes, accessed 26.11.2015

[9] Skyscanner Business:
”http://business.skyscanner.net/portal/en-GB/Documentation/
FlightsLivePricingQuickStart”
API Test Harness, accessed 26.11.2015

[10] Wireshark
”https://www.wireshark.org/”
Network protocol analyzer, version 2.0.0, 2015

18

Appendices

19

Appendix A

Documentation of Android
Code

A.1 UserSetupActivity

When ”TripPlanner” gets started for the very first time, a screen with user
settings will appear. The user name, its location and a set of trip preferences can
be entered there. After that, the main screen will start and the user data will be
stored in the ”UserData.txt” file for all subsequent application-starts. In a future
version, the location setting could be automatically gathered from localisation
services, such as GPS, which would make the user setup more flexible. The list
of preferences is limited at the moment. It includes the minimum number of
days of the trip, the maximum number of stops per route, the maximum extra
time (compared to a direct flight) if stopovers exist and finally the maximum
price for the whole return trip.

A.2 MainActivity

The state from the last application usage gets restored during the start, which
includes a series of text file loading-processes. After the extraction of all neces-
sary calendar entries, the graph, showing the sum of scheduled events during the
observed period of time, gets generated and shown on the main screen. A graph-
ing library called ”AChartEngine” [7] is being used for this purpose. During the
same initialisation process, a background service is being started. Its major task
is to periodically ask the server for updates such as the current state of the group,
the availability of new trip suggestions and information on matching dates. In
order not to block the the rest of the application, it runs independently of the
application and only sends broadcast messages, which can be received by the
running application as a sort of an interrupt. The receiver routine then updates
the files and variables so that, for example, new trip offers can be displayed to
the user.

20

A. Documentation of Android Code 21

The initial main screen shows the scheduled events of the extracted calendar
and suggested trip offers (in case there are any available). A button at the top
left corner leads to the group settings screen, where all group-related data can be
accessed. Right beside this button, another one in the right corner can be used
to display the list of all matching dates for the joined group. This button is only
enabled when matches exist, as otherwise only an empty screen would appear.
Below the calendar section, a quadratic display with two buttons shows suggested
trips, which is intended to rate these offers. Therefore, trip offers are being read
from the ”SuggestedTrips.txt” file while making sure that only those trips are
shown which have not been rated yet. One line in the ”RatingStatus.txt” file
stores the index of the next unrated offer to control this feature. By using
either of the two rating buttons, the user can browse through the unrated offers.
Whenever a suggestion is positively rated, a message with this decision is being
sent to the server.

A.3 GroupActivity

Creating a group on this screen is kept simple and consists of choosing a name,
typing a destination and listing a number of friends. In order to simplify the
search process for flights, the entered destination must be specified in the list
containing all IATA (International Air Transport Association) airports. Such a
file has been downloaded and linked to the application [8]. This is necessary
as official IATA-codes have to be used for the Skyscanner API [2]. In order to
make this file part of the application (which means that it gets automatically
downloaded with the application package), it was stored in an .mp3 format, as
.txt files do not get included in the downloaded package. Improved versions of
this activity could include searching tools, which find the closest airport to a
certain destination or even to a region consisting of several destinations.

While the creation process only has to be performed by a single user of
a group, everyone has to join it somehow. For the creator this automatically
happens once the group was successfully created. In this case the server generates
a link to this group, which can be copied from the group screen to share it with
friends. By clicking on this link, the application automatically opens, or if it
has not been installed yet, a simple HTML message appears that suggests to
do so. This so-called intent-link contains the group-ID, which allows the joining
member to request all group information from the server. If a user accepts to
join the group, he clicked on, the application gathers all group data and stores
it locally. All other group members will then see this newly joined user on their
group screen.

A. Documentation of Android Code 22

A.4 ResultActivity

This screen has a very simple structure, as it only displays a list of date-
combinations received from the server. A click-listener is pre-implemented, which
could be used in a future implementations for booking a selected trip offer.

A.5 Database

The application locally stores the entered user settings, group data and current
trip suggestions, so that the current state can always be reloaded whenever it gets
started. A set of four .txt files, listed in the local storage under ”/TripPlanner/”,
is used for this purpose and can be seen in Table A.1 below. The unrestricted
access on one hand allows simple validation for debugging but also makes the
text files vulnerable to being corrupted, which would have to be prevented in a
public-release version.

Text File File Content

UserData.txt All entries from the user setup screen

GroupData.txt A periodically synchronised version of the group file on
the server, which includes all entries for the group screen
plus additionally the group ID, the total number of group
members and the number of already joined members

SuggestedTrips.txt List of all suggested trips meeting the preferences

RatingStatus.txt Group ID of rated trips, date of last synchronisation with
server, number of suggestions, number of already rated
suggestions

Table A.1: Text files containing application state

Appendix B

Documentation of Server Code

B.1 Server

The server program is running on an server with URL ”http://pc-10129.ethz.ch/”
under ”tripplanner/” and listens to port 3309. While the standard port number
for HTTP transmissions would be port 80, the random port 3309 was chosen as
other services on the server might use the standard one. But for security reasons,
the firewall blocks such non-standard ports and therefore makes a port-mapping
necessary. From an application point of view, this means that all HTTP requests
to URL ”http://pc-10129.ethz.ch/tripplanner/” can be sent to port 80, which
is then mapped inside the server to a request on port 3309 (where the server
program is listening).

After starting the server program, the interface to the network essentially
consists of four handlers, which listen to different URL-path endings. The fol-
lowing table lists the URLs with their associated handlers.

URL-path Associated Handler

/tripplanner/group/
newgroup/

Starts the ”GroupHandler”, which initiates the cre-
ation of a new group based on the transmitted data.

/tripplanner/group/
joingroup/

Starts the ”JoinGroupHandler”, which extracts the
user data from the request and adds the user to the
specified group (if it is not full yet).

/tripplanner/group/
polling/

Starts the ”PollingHandler”, which returns the status
of the group, flight offers (if any are available) and the
list of matching date-combinations for the group.

/tripplanner/group/
rating/

Starts the ”RatingHandler”, which adds the transmit-
ted rating to the database

Table B.1: List of handlers on the server-side

In general, the ”GroupHandler” creates a new group file and the ”Join-
GroupHandler” adds members to this file as long as the number of joined mem-

23

B. Documentation of Server Code 24

bers is smaller than the number of total members. Once this limit has been
reached, which means that the last member has joined the group, the server
program starts planning the trip. For this purpose a new thread gets created, so
that the flight offers for each group member can be searched without blocking
the rest of the program. This is necessary to be able to handle multiple groups
simultaneously.

The search process itself starts with the extraction of all member data from
the group file. With this information, the calendar entries can be compared in
order to determine possible trip dates, when all members are available. Then
it tries to fit the largest minimum trip duration among all members into the
found gaps of free days. If there are any combinations that meet this require-
ment, the function iterates through all group members to find individual trips on
these dates. Each iteration step is processed sequentially and contains the exact
same steps for every member. Summarized, for each possible date-combination,
a scraper is set up with all member-specific preferences and locations. After com-
pletion, the resulting flight offers are stored in a file, from where the associated
”PollingHandler” can access them. This closes the circle of data flow from the
user-application via the data scraper, running on the server, back to the Android
application, where offers are displayed to the user.

Last but not least, each positive trip rating sent by the TripPlanner ap-
plication is being received by the ”RatingHandler”. There it gets added to a
member-specific rating file, where all previous ratings are listed. Each polling
request compares the rating files of all group members and returns the matching
date-combinations in its rating section.

B.2 Scraper

The source for this system is the website skyscanner.net, which provides an API
for searching flights from a large number of different airlines (see Section 2.1).
Although Skyscanner provides an API documentation [2], most parts of it only
give a rough idea of how flight requests can be sent and received. In order to
understand the structure of the strings in both the requests and responses, the
provided testing tool [9] (in combination with a Wireshark network protocol
analyser [10]) served as a good reference. Skyscanner uses an API-key for user-
authentication, which means that without such a key, the API does not work.
For the sake of testing an implementation, the website provides an example key,
which is limited to a certain number of session requests per minute. Higher
rates are available with a private key, but to get a such, a minimum number of
200’000 unique monthly requests have to be guaranteed. Despite this restriction,
Skyscanner is still a promising data source for future versions, hence the rate-
restrictions were accepted for this prototype.

B. Documentation of Server Code 25

The process of getting flight offers via Skyscanner API was found to be di-
vided into two subsequent steps: first creating a session and then polling for
results from this session. All important travel parameters (API key, dates, loca-
tions, number of travelers and many more) have to be sent as a HTTP POST re-
quest to get a session key. A developed query generator, forms the request string,
which is then sent to the specified URL ”http://partners.api.skyscanner.net/
apiservices/pricing/v1.0”. Once a session has been successfully established, the
server can start polling for results by using the obtained session key as an iden-
tification. Polling has to be repeated until all trip offers are available, which can
last several seconds up to more than a minute. Upon completion, the HTTP
GET request, which is used for polling, returns all matching flight offers.

B.3 Database

The flight offers, as they are being received from the Skyscanner API, are encoded
in a string format, which has to be parsed in order to extract the relevant infor-
mation. Firstly, all flights of a certain request (date-combination) are copied into
an array and then filtered with the user-specific preferences (which are loaded
from the group file). This is repeated, so that for all possible date-combinations
an array is being generated. Secondly, all arrays, which now only contain flights
meeting the user requirements, get merged into one overall array. This contains
the trip suggestions for one group member. It then gets stored as a comma-
separated text file in the itineraries folder, from where the group member can
access it through a polling request. Flights which are available through different
websites are only included once by only selecting the cheapest offer.

The files listed in Table B.2 are used for each group which has been cre-
ated. The name specifies the group-ID (here GROUPID), and for itineraries
and ratings also the user-ID (here USERID). The latter one is the index of the
user-position within the group file and therefore also known by each user.

File Name File Content

/groups/GROUPID.csv All group-specific values (group name, number of
joined members, total number of members, desti-
nation) and all member-specific entries (member-
name, location, preferences, unavailabilities)

/itineraries/
GROUPID USERID.csv

Comma-separated list of all possible flights includ-
ing trip details (and booking link) for the specified
member

/ratings/
GROUPID USERID.txt

List of positively rated date-combinations of the
specified member

Table B.2: Files containing trip data for a group

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.2.1 Flight Search Tools
	1.2.2 Calendar Tools

	2 Data
	2.1 Data Scraping
	2.2 Calendar Analysis

	3 Implementation of Opportunistic Trip Planner
	3.1 Overview
	3.1.1 Hardware Selection
	3.1.2 Prototype Implementation

	3.2 Android Application
	3.3 Server Program

	4 Tests and Validation
	4.1 Functional Tests
	4.2 Performance Tests

	5 Conclusion and Future Work
	5.1 Powerful Organisation Tool
	5.2 Extendable Prototype
	5.3 Future Work

	Bibliography
	Appendices
	A Documentation of Android Code
	A.1 UserSetupActivity
	A.2 MainActivity
	A.3 GroupActivity
	A.4 ResultActivity
	A.5 Database

	B Documentation of Server Code
	B.1 Server
	B.2 Scraper
	B.3 Database

