
Distributed
 Computing

Kinect 3D Editor

Semester project

Krzysztof Lis

liskr@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Laura Peer

Prof. Dr. Roger Wattenhofer

January 26, 2016

Acknowledgements

I would like to sincerely thank those whose contributions helped me complete
this project:

• Epic Games and other Unreal Engine developers, for providing the Unreal
Engine 4 framework [1] and associated graphical assets,

• Microsoft Zürich, for providing a Kinect v2 motion tracking sensor,

• Opaque Multimedia, for providing the Kinect 4 Unreal plugin [2],

• Tom Looman, for resources about creating outlines in Unreal Engine 4 [3],

• Georg Bachmeier, Pascal Bissig, Micha l Borkowski, Philipp Brandes, Se-
bastian Brandt, Dr. Christian Decker, Manuel Eichelberger, Klaus-Tycho
Förster, Pankaj Khanchandani, Michael König, Magdalena Molenda, Michalina
Pacholska, Laura Peer, David Stolz for feedback and participation in the
experiments.

i

Abstract

We have attempted to evaluate the usefulness of an application user interface
based on body movement and gestures, which were detected by a Kinect v2
body tracking sensor. We have created a prototype application with this in-
terface: a 3D editor, in which a user can move virtual objects in a 3D scene.
The editor’s performance was evaluated by a group of users completing a set of
predefined tasks with the program. Our research revealed that while a purely
movement-controlled application is possible, it lacks in precision and convenience,
and an approach with additional hardware and adding alternative input methods
is preferable.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Kinect 2 overview 2

2.1 Kinect for Windows SDK 2.0 . 2

2.1.1 Skeletal tracking . 3

2.1.2 Hand states . 3

2.1.3 Gesture recognition . 3

2.2 libfreenect2 . 3

3 Design 4

3.1 Overview . 4

3.2 Calibration and cursors . 6

3.3 Object selection . 7

3.4 Object movement . 7

3.5 Discrete inputs and mode switching 10

4 Implementation 13

5 Evaluation 14

5.1 Challenges . 14

5.2 Testing and results . 15

6 Conclusion 22

Bibliography 23

A Installation instructions A-1

iii

Chapter 1

Introduction

The goal of this project is to evaluate the usefulness of the Kinect v2 motion
tracking sensor in user interface tasks involving spatial controls in 3D environ-
ments.

Moving virtual 3D objects is an important task in application related to
graphics, games or animation. An object placed freely in 3D space has 6 degrees
of freedom: 3 vector components of location, 3 angles of rotation (each around
another perpendicular axis). However the computer mouse has only 2 degrees of
freedom, as it can move on a flat surface. Therefore, editing 3D scenes with a
traditional interface requires a significant amount of repetitive actions.

An interface based on body position and movement offers more degrees of
freedom, and therefore it may be more efficient in the described situation.

1

Chapter 2

Kinect 2 overview

The body movement user interface described in this work is based on a motion
tracking sensor Kinect v2. This sensor is capable of collecting the following
data [4]:

• high resolution (1920× 1080 pixels) video image at 30 Hz refresh rate,

• depth sensing - a 512×424 pixel video stream where pixel values correspond
to the distance of the visible object from the sensor, the range of the depth
sensor is approximately 5 meters,

• infra-red light emitter and camera, capable of producing a video stream
despite lack of other light,

• microphone, which can be utilized for voice control.

A USB 3.0 port and specialized software, described below, is required for a
computer to connect to a Kinect v2 sensor.

2.1 Kinect for Windows SDK 2.0

The recommended way to utilize the Kinect v2 sensor in a program is to use
the Kinect for Windows 2.0 SDK which can be obtained through the manufac-
turer’s website [5]. The SDK provides access to the data produced by the sensor:
video stream, depth stream, infra-red video, however can also perform further
processing on those signals to utilize them for human motion tracking [6]. The
SDK is only available on the Windows operating system.

Apart from the motion tracking, Kinect’s depth data can be used to scan 3D
objects and environments through the Kinect Fusion technology.

2

2. Kinect 2 overview 3

2.1.1 Skeletal tracking

The SDK processes the sensor output with machine learning algorithms to rec-
ognize human silhouettes. The person needs to be in range of the depth sensor
to be tracked, multiple users can be tracked at once. The tracked body is rep-
resented by vector positions of 25 joints located around the body. A specialized
tracker is used to track human faces, however this feature was not used in this
project.

2.1.2 Hand states

The sensor is also capable of recognizing human hands and classifies them into
the following states [7]:

• open hand,

• closed hand,

• lasso,

• not tracked or unknown.

2.1.3 Gesture recognition

The SDK includes the Visual Gesture Builder tool which allows the developers to
specify their own gestures which will be recognized by the sensor. The developer
records footage of the desired gesture and labels it, then a machine learning
classifier is trained to recognize it.

2.2 libfreenect2

Alternatively, the Kinect v2 sensor can be accessed using an open source driver
libfreenect2 [8]. It does not offer the body tracking features of the SDK, however
it provides the video, depth and infra-red images and is available for Linux,
Windows and OSX operating systems.

Chapter 3

Design

A prototype 3D editor application has been created to evaluate the concept of
body movement controls. In the editor, the user utilizes a body tracking interface
to select, move and rotate objects in a virtual 3D scene.

3.1 Overview

The editor presents a view of a 3D virtual scene, containing objects which can
be moved by the user. An example view of the editor is shown in Figure 3.1.
In general, interaction with the editor consists of selecting an object and then
moving it. The editor can be in the following states:

1. calibration of the motion tracking controls - user stands still and their
initial body posture is recorded, this process is further described in 3.2,

2. base state - in this state the user’s hand movements do not select or move
the objects. The user can interact with the application menu or prepare
their body posture to comfortably perform the next editing action.

3. selection mode - the user is choosing which object will be edited, this
process is further described in 3.3,

4. movement mode - the user is moving the previously selected object in the
scene, this process is further described in 3.4.

Transitions between the states are shown in Figure 3.2. The controls allowing
the user to switch between modes are described in Section 3.5.

The editor is a research prototype and supports only single object selection
and movement. Advanced editing features like scaling, multiple selection, copy-
ing, creation and deletion of objects are not implemented.

4

3. Design 5

right hand cursor

left hand cursor

selected object

desired position of the object

Figure 3.1: An example view of the example application. The user is currently
moving the highlighted selected object. The cursors represent the positions of
user’s hands (further details in Section 3.2). The desired position of the object is
a part of the challenge system described in Chapter 5.

Base state

Selection modeMovement mode

Calibration

sta
rt
mo

vin
g s
ele
cte
d
ob
jec
t

new object selected

clear selection

sto
p
mo

vin
g

start

Figure 3.2: Available states of the example application and transitions between
them. The details of these states are described in Section 3.1.

3. Design 6

3.2 Calibration and cursors

In the editor, the user selects and moves virtual objects by moving their hands.
A Kinect motion sensor tracks the positions of user’s hands. These positions
and movements are then mapped onto the space of the editor’s virtual scene, the
details of this process will be described further in this section. Hand movements
are represented with the movements of cursors, shown in Figure 3.1, providing
the user with visual feedback and allowing them to interact with the objects in
the scene.

The geometric configuration of the system is shown in Figure 3.3. A Kinect
motion sensor tracks the user’s body posture and provides the locations of their
body parts in sensor coordinate space, characterized by the axis unit vectors
Êx, Êy, Êz ∈ R3. By ~HL(tn), ~HL(tn) ∈ R3 we denote the vectors representing
temporary positions of the left and right hand respectively, in sensor’s coordinate
system, reported by the motion sensor at program step tn.

The values reported by the motion sensor in its coordinate system depend
on the user’s physical size and the place where they are standing. The operation
of the interface should not depend on those factors, therefore the hand locations
are mapped to the workspace coordinate space, (characterized by the axis unit
vectors êx, êy, êz ∈ R3 and center of the coordinate system ~c ∈ R3), which is
tied to the user’s location, as seen in Figure 3.3.

The parameters of the workspace coordinate system are determined during
the calibration phase, which takes place upon the program start. During that
phase, the user is asked to stand still with their hands at stretched to the sides.
The hand position vectors ~HL, ~HL in sensor coordinates are recorded and aver-
aged over the calibration time, yielding the averages ~HL0, ~HR0 ∈ R3.

Once the calibration data is available, the values of workspace coordinate
axis vectors in sensor coordinates are calculated. It is assumed that the sensor
will be placed horizontally, so the workspace z axes are the same as the sensor
space axis:

êz = Êz.

The y workspace axis is the direction from the user’s left hand to their right
hand:

êy =
~HR0 − ~HL0

|| ~HR0 − ~HL0||
.

The x workspace axis is determined by the properties of Cartesian coordinate
system, it must be normal to y and z axes and the direction is determined by a
cross product of y and z axes:

êx = êy × êz.

3. Design 7

The center ~c of the workspace coordinate system is the center point between
user’s hands:

~c =
~HR0 + ~HL0

2
.

To obtain normalized coordinates, independent of user’s physical dimensions,
the vectors are divided by the workspace size w, which is equal to the average
distance between the user’s hands during calibration:

w = || ~HR0 − ~HL0||.

By ~hL(tn), ~hL(tn) we denote the vectors representing temporary positions of
the left and right hand respectively, in workspace coordinate system, calculated
at program step tn. These values are obtained by transforming the hand position
vectors ~HL(tn), ~HL(tn) from the sensor coordinate space with axis vectors Êx,

Êy, Êz and center

0
0
0

 to the workspace coordinate space with axis vectors êx,

êy, êz and center ~c:

~hL(t) =
1

w

êxTêy
T

êz
T

 (~HL(t)− ~c),

~hR(t) =
1

w

êxTêy
T

êz
T

 (~HR(t)− ~c).

The hand position vectors in workspace coordinates are then used to display the
hand cursors (as seen in Figure 3.1) and allow user’s interaction with the objects
in the scene.

3.3 Object selection

The object to be edited is chosen in the selection mode. Selection is performed
using the right hand cursor, as seen in Figure 3.4. An object becomes selected
when it overlaps with the cursor, the event is detected by a physics collision
detection algorithm. To select an object, the user needs to move the cursor into
it, as if they wanted to touch it.

3.4 Object movement

When the editor is in the movement mode, the selected object’s location and
rotation is being edited by the user’s input. The control mechanism aims to be

3. Design 8

Êy

Êx

Êz

êy

êx

êz

~HL0

~HR0

workspace

sensor range

motion tracking sensor

user during calibration

~c

Figure 3.3: The relative locations of the sensor coordinate system (axes Êx,
Êy, Êz) and the workspace coordinate system (axes êx, êy, êz, center at ~c)

which depends on the user’s position during system calibration. ~HL0, ~HR0 are
average values of the vectors representing the position of user’s left and right
hand respectively during the calibration phase.

right hand cursor in selection mode

selection mode indicator

object about to be selected

Figure 3.4: A view of the editor in selection mode. An object will be selected
when the hand cursor, highlighted with the selection mode indicator, collides
with the object.

3. Design 9

~hL(tn−1)
~hR(tn−1)

~hL(tn)

~hR(tn)

~p(tn)

~p(tn−1)

new object position

old object position

Figure 3.5: An object is being moved and rotated by the user’s hand movements.
The diagram shows the changes happening in a single step of the program, tran-
sition from step tn−1 to step tn. ~hL(tn−1), ~hL(tn−1) - hand positions in the
previous frame. ~hL(tn), ~hL(tn) - current hand positions. ~p(tn−1) - object’s po-
sition in previous frame, ~p(tn) - object’s position after the current movement
step.

intuitive by acting as if the object was held on a stick between the user’s hands,
as shown in Figure 3.5.

An object’s placement in a 3D scene is described by its location ~p and its
rotation matrix R. These values change in time as the object is moved and
rotated by the user’s hand movements. We denote the center point between the
user’s hands as ~hc:

~hc(t) =
1

2
(~hL(t) + ~hR(t)),

where ~hL, ~hR are hand position vectors in workspace coordinates as defined in
Section 3.2. The change in the object’s position ~p is determined by the movement
of the center point between the user’s hands:

~p(tn) = ~p(tn−1) + (~hc(tn)− ~hc(tn−1)),

where: ~p(tn−1) is the location of the selected object in previous program step,
~p(tn) is the current location of the selected object after the change.

Likewise, the object is rotated to follow the rotation of the vector between
user’s hands. We denote normalized direction between the hand positions as hd:

~hd(t) =
~hR(t)− ~hL(t)

|| ~hR(t)− ~hL(t)||
,

3. Design 10

and the rotation matrix that transforms the previous value of ~hd to the current
one as Q:

~hd(tn) = Q(tn) ~hd(tn−1).

Then the change in selected object’s rotation R is given by:

R(tn) = Q(tn)R(tn−1),

where: R(tn−1) is the rotation matrix of the selected object in the previous step
and R(tn) is the rotation matrix of the selected object after the change.

3.5 Discrete inputs and mode switching

In addition to the spatial controls used in selection and movement of objects,
the application needs discrete inputs (equivalent to button presses on traditional
input devices) to preform actions like entering and exiting movement mode,
choosing to select a new object, exiting the program.

We have designed a gesture menu, which allows the user to choose one of
4 presented actions with the movement of their hand. The menu is shown in
Figure 3.6. This menu is 2 dimensional and displayed directly on the screen, not
as part of the virtual scene. Upon activation, the menu is displayed with the
cursor in the center, as in Figure 3.6a. Then the user moves their hand to select
an option. Moving the hand up, down, left or right selects a different choice.
An option is selected when the cursor moves close enough to the option label, as
seen in Figure 3.6b. In the example application, entering the selection mode is
performed via the gesture menu.

However, not all inputs can be done with the hand movements. In the editor’s
movement mode, all hand movements influence the selected object’s location and
rotation. Therefore, the input exiting movement mode cannot rely on the hand
positions. We have two alternative solutions to that problem:

1. Hand states - as discussed in Subsection 2.1.2, the Kinect sensor can dis-
tinguish different states of the hands. In this input variant we decided that
the user will perform editing with open hands, and the movement mode
will be toggled by closing the right hand - closing the hand once will ac-
tivate the mode, closing again will exit it. Closing the left hand will open
the gesture menu.

A debouncing mechanism will prevent false-positive detections of the ges-
ture, by requiring the hand to remain closed for a short time, around 0.15
seconds.

However practical tests have shown that the hand state detection is highly
unreliable, the closed hand state is sometimes falsely detected and the

3. Design 11

option 2

option 4

option 1option 3

menu options

initial cursor location

(a) The initial state of the menu and
initial location of the cursor.

option 2

option 4

option 1option 3

cursor selecting choice 1

(b) The user moved their hand to the
right, and selected choice 1.

Figure 3.6: The gesture menu user interface, presenting the user with a choice
of 4 options to select. The cursor is controlled by the movement of the user’s left
hand. One of the options will be selected when the cursor is moved close enough
to the option label.

3. Design 12

sensor will not detect the hand is closed if only the back of the hand is
exposed to the camera. Also it is inconvenient for the user to forget to
keep the hands open and switch the mode by unintentionally closing their
hand. Due to these problems, an alternative was developed.

2. Other body parts - the Kinect sensor tracks positions of all body parts,
so their movements can also be utilized as an input mechanism. In the
example application, the movement mode is toggled upon raising the right
knee, and the gesture menu is activated upon rising the left knee.

A debouncing mechanism will prevent false-positive detections of the ges-
ture, by requiring the knee to remain raised for a short time, around 0.15
seconds.

This input is more reliably detected than hand states and prevents false-
positive detections. However, many users have difficulty with raising their
legs without moving their hands - which causes them to unintentionally
move the selected object when exiting movement mode.

Voice control could be utilized in place of those discrete input mechanisms. How-
ever, we decided that this project should focus on body movement controls.
Integrating voice control could be a topic for further research.

Chapter 4

Implementation

The example application was build using the Unreal Engine 4 framework, which
provided the 3D graphics, user interface, vector and matrix operations functions.
The application logic was developed using the C++ language and Unreal En-
gine’s Blueprint Visual Scripting system. The graphical assets used are example
assets provided by Unreal Engine and can be utilized freely in projects developed
with that engine. A view of the example application is shown in Figure 3.1.

The outline used to highlight the selected object was created with the re-
sources provided by Tom Looman [3].

The Kinect 4 Unreal plugin by Opaque Multimedia was used for a simple
integration of the Kinect sensor with Unreal Engine-based application.

To allow later analysis of the actions performed by users within the editor, all
actions were stored in a log and saved in JSON format upon closing the program.

13

Chapter 5

Evaluation

5.1 Challenges

In order to measure the effectiveness of the interface, a set of scored challenge
levels has been created. In each level the user is presented with a different virtual
scene containing a set of movable objects. Each level involves a set of tasks to
perform, every task is to move and rotate an object to match the desired location
and rotation of the object which is indicated by a semi-transparent ghost of the
object. An example task can be seen in Figure 5.2. The task is completed when
the object has been placed in the correct location and rotated accordingly, as
shown in Figure 5.3. The example application contains four levels:

1. Practice level: Figure 5.1, contains no tasks and its purpose is to let the
user accustom themselves to the interface,

2. Level 1: Figure 5.2, contains one task involving simple movement and
rotation of a single object,

3. Level 2: Figure 5.4, contains three tasks, each involving moving a sphere,
the rotations are not scored.

4. Level 3: Figure 5.5, contains two tasks involving a complex rotations of
the objects.

In the example application, once the user decides the object is placed accu-
rately enough, they can proceed to the next level by choosing an option in the
gesture menu, which described in Section 3.5. Each task is scored according to
the following criteria:

1. ∆~p = (∆px,∆py,∆pz) - difference between the desired location vector of
the object and the actual location vector representing the position where
the user placed the object. From ∆~p, the following quantities are calcu-
lated:

14

5. Evaluation 15

Figure 5.1: The practice level of the example application. It contains no tasks
and its purpose is to let the user practice interaction with the interface.

2. ∆α - smallest angle of rotation required to rotate the object to the de-
sired rotation specified in the task. If the objects moved are spheres, this
quantity is not measured.

3. ∆t - time of completion, measured from the first time when an object was
being selected (first start of selection mode) to the last time an object was
moved (last exit from movement mode). As the user can edit objects in
any order, the total time used for all tasks in a level is measured and then
divided by the number of tasks in level to obtain per-task time.

These metrics, as well as a complete log of user activities in the program (se-
lections and movements of objects), are saved by the editor in a file to enable
further analysis.

5.2 Testing and results

A test was conducted in which 12 participants were asked to perform the tasks
in the example editor. Each participant performed the tasks twice, in order to
measure whether the results improve as the user gains more experience with the
interface. The quantities described in Section 5.1 have been recorded.

The averages of values obtained in the test are shown in Table 5.1. The
values of distances and vector coordinates are given in units used by the Unreal

5. Evaluation 16

object to be moved desired position of the object

Figure 5.2: The first challenge level, contains one task involving simple move-
ment and rotation of a single object The desired position of the object is indicated
with a semi-transparent ghost of the object.

Figure 5.3: View of the completed version of the first level shown in Figure 5.2.
The object has been placed inside the desired position indicator.

5. Evaluation 17

Figure 5.4: The second challenge level, contains three tasks, each involving
moving a sphere in order to construct a snowman. Since the objects are spheres,
rotation is not measured.

Figure 5.5: The third challenge level, contains two tasks, each involving a com-
plex rotation of the object.

5. Evaluation 18

10 units

Figure 5.6: Size of Unreal Engine’s distance units in comparison to the size of
objects used in the example editor. The distance between the tips of the rockets
is equal to 10 Unreal Engine units.

Engine 4 - the meaning of that units in terms of the virtual scene is shown in
Figure 5.6.

The not insignificant values of rotation and location errors (∆α, ||∆~p||), in-
dicate that the body tracking controls have a rather limited precision. During
testing, noise and random hand position shifts have been observed in the data
provided by the motion tracking sensor.

The times required by the users to place an object precisely in the scene are
in the order of tens of seconds, quite long compared to the times expected from
traditional user interface actions, like manipulating objects with a mouse. One
reason for that could be the inconvenient mode-switching mechanism involving
leg movement. Another contributing factor may be the limited precision of the
body tracking controls, as users spent time doing small movements trying to
achieve most accurate placement despite the input noise.

The location error ∆~p is significantly higher in the x axis (∆px value) -
direction forward from the user - than in y and z axes (∆py, ∆pz values) -
directions right, left, up and down from the user. The reason for that is most
likely that the participants had difficulties with accurately judging the depth
of an object in the scene, to which the x coordinate corresponds. The ability
to move the camera in the scene could solve that problem, however moving
the camera would require increasing the complexity of the controls, for example
addition of another mode. In an advanced editor program camera controls would

5. Evaluation 19

Level 1, simple rotation 2, moving spheres 3, complex rotation

∆t [s] 64.9 ± 41.1 26.9 ± 12.7 43.4 ± 12.0

∆α [0] 15.8 ± 8.8 not applicable 12.0 ± 7.0

||∆~p|| 12.8 ± 10.4 6.8 ± 5.4 11.9 ± 9.4

|∆px| 11.5 ± 10.6 5.5 ± 5.3 9.4 ± 7.9

|∆py| 3.0 ± 2.7 1.5 ± 1.6 4.1 ± 4.2

|∆pz| 2.5 ± 1.8 2.4 ± 2.4 4.6 ± 4.8

Table 5.1: Average values of the metrics achieved by users participating in the
challenges. ∆t - time of task completion. ∆α - angle between the achieved object
rotation and desired rotation, in degrees. ∆~p = (∆px,∆py,∆pz) - difference
between the desired location vector of the object and the actual object location
vector achieved by the user, in Unreal Engine 4 units, as seen in Figure 5.6. The
uncertainty values are equal to one standard deviation.

regardless be necessary to edit bigger scenes.

Each user performed the challenges twice. The results obtained in both
attempts have been compared to determine if performance improves with train-
ing. The results are shown in Table 5.2. The ratios of values achieved in the
second attempt to values achieved in the first attempt have been depicted on
histograms: completion time in Figure 5.7, angle error in Figure 5.8, location
error in Figure 5.9.

A slight majority of the users needed more time ∆t in the second attempt,
which is unexpected as then they were more accustomed to the editor interface.
It is possible that in the second attempt they focused more on precision. No
dominant direction of change in rotation angle error ∆α has been observed. It is
likely that the tested control method does not allow a higher precision in rotation
editing. The location error ||∆~p|| has improved for a slight majority of users.
It is possible that the object location control method allows for higher precision
but requires practice from the user. The observed differences were not very
significant, and the number of participants (12) was low, therefore, no strong
conclusions can be drawn from the analysis of the results.

5. Evaluation 20

Quantity New value lower (better) New value higher (worse)

completion time ∆t 28 44

angle error ∆α 17 18

distance ||∆~p|| 44 28

Table 5.2: Comparison of challenge results between two consecutive attempts
made by the same users. The new value lower column contains counts of oc-
currences (singular task completions) such that the value of the metric in the
second attempt is higher than in the first attempt. New value higher is the num-
ber of occurrences such that the second value is higher. The higher the value of
a metric, the worse the quality of the task completion.

0 1 2 3 4 5 6 7
∆t2
∆t1

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f o
cc

ur
en

ce
s

Figure 5.7: Comparison of measured challenge task completion times achieved
by the test participants in two consecutive attempts. A histogram of ratios of ∆t2
- times measured at second attempt, to ∆t1 - times measured at first attempt.

5. Evaluation 21

0 1 2 3 4 5
∆α2

∆α1

0

1

2

3

4

5

6

7

8

9

nu
m

be
r o

f o
cc

ur
en

ce
s

Figure 5.8: Comparison of measured angles between the desired object rotation
and the object rotation achieved by the challenge test participants in two con-
secutive attempts. A histogram of ratios of ∆α2 - angles measured at second
attempt, to ∆α1 - angles measured at first attempt.

0 2 4 6 8 10
||∆~p2 ||
||∆~p1 ||

0

5

10

15

20

25

nu
m

be
r o

f o
cc

ur
en

ce
s

Figure 5.9: Comparison of measured distances between the desired object loca-
tion and the object location achieved by the challenge test participants in two
consecutive attempts. A histogram of ratios of ||∆~p2|| - distances measured at
second attempt, to ||∆~p1|| - distances measured at first attempt.

Chapter 6

Conclusion

In the course of this project, we successfully developed a working prototype of a
3D scene editor, however it is not ready for non-research usage. We have reached
the following conclusions:

• The Kinect v2 sensor reliably tracks the human body and location of the
body parts, however the data has limited precision and suffers from noise.
The hand state detection is less reliable and some hand states are only
detected if the hand is correctly aligned towards the sensor.

• Body movement and gesture controls are not enough to efficiently control
a complex application. Methods of providing discrete inputs, like button
presses, are required. Gestures can fill that role, but not when body move-
ment controls are needed for a different part of the interface (in out case,
the gesture menu cannot be used during object movement). Applications
based on body movement controls would benefit from using a hand-held
device with buttons, like the Wii Remote device.

• Controlling the application simultaneously with several body parts, like
both hands and one leg in the example application, is inconvenient for the
user and may lead to loss of precision in control.

• The existing software tools allow for easy and efficient development of
programs making use of the Kinect v2 motion tracking sensor.

• Body movement controls prevent the user from sitting close to the com-
puter screen, therefore a big screen, a projector or head mounted display
is preferred for comfortable operation.

• The body movement interface based on a Kinect v2 sensor can be used to
effectively move objects in a virtual scene, however with a limited precision.
While that may not be suitable for professional editor software, it could
be used in games or for fast prototyping, where precision is not of utmost
importance.

22

Bibliography

[1] Unreal Engine 4 main site. https://www.unrealengine.com

[2] Opaque Multimedia: Kinect 4 Unreal plugin. http://www.opaque.media/

kinect-4-unreal

[3] Tom Looman: Multi-color outline post process
in unreal engine 4. http://www.tomlooman.com/

multi-color-outline-post-process-in-unreal-engine-4/ (October
2015)

[4] Microsoft: Kinect hardware. https://dev.windows.com/en-us/kinect/

hardware

[5] Microsoft: Kinect for Windows SDK 2.0 - Download. https://www.

microsoft.com/en-us/download/details.aspx?id=44561

[6] Microsoft: Kinect for Windows SDK 2.0 - Features. https://msdn.

microsoft.com/en-us/library/dn782025.aspx

[7] Microsoft: Kinect for Windows SDK 2.0 - Body tracking. https://msdn.

microsoft.com/en-us/library/dn799273.aspx

[8] libfreenect2 project site. https://github.com/OpenKinect/libfreenect2

23

https://www.unrealengine.com
http://www.opaque.media/kinect-4-unreal
http://www.opaque.media/kinect-4-unreal
http://www.tomlooman.com/multi-color-outline-post-process-in-unreal-engine-4/
http://www.tomlooman.com/multi-color-outline-post-process-in-unreal-engine-4/
https://dev.windows.com/en-us/kinect/hardware
https://dev.windows.com/en-us/kinect/hardware
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://msdn.microsoft.com/en-us/library/dn782025.aspx
https://msdn.microsoft.com/en-us/library/dn782025.aspx
https://msdn.microsoft.com/en-us/library/dn799273.aspx
https://msdn.microsoft.com/en-us/library/dn799273.aspx
https://github.com/OpenKinect/libfreenect2

Appendix A

Installation instructions

The following instructions describe how to install and execute the example editor
application created in the course of this project.

• Install Visual Studio 2015, which will serve as a C++ compiler for the
project.

• Install Unreal Engine 4 [1]. Open the launcher and download version 4.10
of the engine.

• Download the project files. They should be stored in the directory
KinectUnrealTest.

• Rename the subdirectory Plugins to a different name, for example Plugins2.
This step is a necessary part of building the C++ sources of the applica-
tion, because it uses the Kinect 4 Unreal, for which source code is not
provided. Unreal Engine will try to build every module from source, and
will abort the build process upon failing to build the plugin. The plugin
is only accessed through the visual scripting interface, therefore it is not
needed during C++ compilation and can be safely hidden at that step.
The problem may be saved in later versions of the engine.

• Open the KinectUnrealTest.sln in Visual Studio and run the Build So-
lution action.

• Rename the subdirectory back to Plugins. It is important to do this before
opening the project in Unreal Engine, as without this directory, the engine
will fail to load the plugin. If the project is accidentally opened without
the plugin, restart the engine. Do not save any files in that state as it may
corrupt the visual scripting files.

• Open the project in Unreal Engine by launching the engine and choosing
the KinectUnrealTest.uproject file in the dialog window.

• Connect the Kinect v2 sensor.

A-1

Installation instructions A-2

• In Unreal Editor, click the Play button to launch the program. Switch to
New Editor Window option to display it full screen.

	Acknowledgements
	Abstract
	1 Introduction
	2 Kinect 2 overview
	2.1 Kinect for Windows SDK 2.0
	2.1.1 Skeletal tracking
	2.1.2 Hand states
	2.1.3 Gesture recognition

	2.2 libfreenect2

	3 Design
	3.1 Overview
	3.2 Calibration and cursors
	3.3 Object selection
	3.4 Object movement
	3.5 Discrete inputs and mode switching

	4 Implementation
	5 Evaluation
	5.1 Challenges
	5.2 Testing and results

	6 Conclusion
	Bibliography
	A Installation instructions

