
Distributed
    Computing 

Help the Bitcoin Community Reach
Consensus

Semester Thesis

Alexandros Filios

afilios@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich
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Abstract

The recent discussion about changes to the Bitcoin protocol have shown that
the Bitcoin community is unable to reach timely decisions with a transparent
process. Despite starting as a trivial change, removing an artificial limit to the
maximum number of transactions, the discussion quickly degenerated into heated
discussions about non-issues, name-calling and speculation, that to date did not
produce a working long-term solution and is unlikely to do so, given the large
number of competing proposals. It is clear that the Bitcoin community needs
tools to guide the decision process into a more productive direction. The first
step in the decision process is to publicize the various options, who endorses
which option and why. To this end we want to build a reputable tool that can
be used by the members of the Bitcoin community to express their goals in a
pseudonymous way and weight their opinions based on the stake they have in
the ecosystem.
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Chapter 1

Introduction

Since its inception, Bitcoin1 – an online payment system published by Satoshi
Nakamoto in 2008 and launched as an open source software in 2009 – has
markedly grown in popularity and use with more and more people embracing
its concept and participating either actively (miners) or as simple consumers of
the services (users). One of the biggest virtues of Bitcoin that has led to its
gaining more mindshare in the general population with each passing day, cap-
turing the attention of people, governments and businesses around the world is
its democratic character.

For the first time in history we have the ability to guarantee that with the
appropriate coordination and and design each individual can have a voice and
that this voice will not be impersonated. We can guarantee one vote per person
and we can guarantee that it is that person casting the vote. This gives to
all of the participants of the Bitcoin ecosystem the right to decide in common
over important issues concerning the system such as the customization of the
mechanism parameters, rather than leave such decisions up to a central authority.

The objective of this work is to investigate alternatives in order to give par-
ticipants in the community the possibility to vote and decide over a currently
hot topic in Bitcoin: the block size.

The structure of the thesis will be as follows: At first we will provide an
insight into the basic concepts of the Bitcoin protocol upon which our analysis
will be based. Afterwards we will define the problem, its parameters, the goal
and the scope of the problem. Next we will present and discuss the alternatives to
solve the current problem, as well as elaborate a complete solution including the
implementation details. Next, an evaluation of the system will follow with some
representative scenarios and graphical representations of the system performance
and eventually we will summarize the main results and conclusions of the work.

1The word “bitcoin” (with a small b letter) refers to the coins, while the term “Bitcoin”
with a capital B refers to the protocol itself.
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Chapter 2

What is Bitcoin

Bitcoin is a peer-to-peer protocol; users can transfer Bitcoin value directly with-
out an intermediary. Transaction is a data structure describing a transfer that
is broadcast to the network. It typically references previous transaction outputs
as new transaction inputs and allocates all input Bitcoin values to new outputs.
Standard transaction outputs nominate addresses and the redemption of any
future inputs requires a relevant signature [1].

Each participant in the Bitcoin environment has a collection with one or
more key pairs: the private key components are only known by the owner and
stored in a file called wallet, while the matching public keys derive directly the
Bitcoin addresses of the user. This ability to keep multiple addresses per user
constitutes the immunity mechanism of Bitcoin against tracking and contributes
to the system’s privacy.

Transaction data is permanently recorded in blocks. Blocks are organized into
a linear sequence over time (also known as the block chain). New transactions
are constantly being processed by miners into new blocks which are added to
the end of the chain and can never be changed or removed once accepted by the
network [1].

When a transaction is included in a block that is published to the network,
it is said that the transaction has been mined at a depth of 1 block. With each
subsequent block that is found, the number of blocks depth is increased by one.
To be secure, a transaction should not be considered as confirmed until it is
a certain number of blocks depth. Otherwise, a transaction may be included
in a block whose inputs had already been spent in another transaction in the
blockchain (double spending).

Mining is intentionally designed to be resource-intensive and difficult for the
miners to produce, so that the number of blocks found each day by miners
remains steady. This proof of work included in each block satisfies certain re-
quirements and is easy for peers on the network to verify so as to confirm that a
block has been successfully mined. The computational effort lies in finding the
SHA-256 hash of a block’s header that will be lower than or equal to a certain

2



2. What is Bitcoin 3

globally set target (that changes regularly every 2016 blocks), or equivalently,
that will start with a certain number of zeros. This happens because the prob-
ability of calculating a hash that starts with many zeros is very low, therefore
many attempts must be made [1].

Bitcoins are created as a reward for payment processing work in which users
offer their computing power to verify and record payments into the blockchain.
This activity is called a mining and miners are rewarded through

• transaction fees: bitcoins only optionally included but usually expected
with any transfer of bitcoins from one address to another

• the coinbase transaction: a special transaction, unique per block, that has
no inputs and grants a limited amount of (newly created) bitcoins to the
miner that mines the block and has hence the right to generate such a
transaction.

Besides being obtained by mining, bitcoins can be exchanged for other currencies,
products and services [1].

2.1 Block Structure

For the needs of this project, we will have to insert some information in the
block chain, which means that the already existing fields of the block format
have to be exploited. To this end, in this section we will take a closer look on
the block structure and how the various fields are currently used. Following this
we will be able to explore which of them can be further modified, that is, be
given an external non-default value, obtaining this way some additional meaning
without of course clashing their original purpose – thus invalidating the block
information.

As can be seen in Table 2.1 a block consists of two main parts: the header
and a list of transactions. The following have their fields defined by the miner
and seem to be the most useful for our purpose:

• Coinbase transaction: It is created by miners, and there is one coinbase
transaction per block. While regular transactions use the inputs section to
refer to their parent transaction outputs, a generation transaction has no
parent, and creates new coins from nothing. The coinbase can contain any
arbitrary data.

• Version: The version field is split into two parts. The first is allocated for
the actual version, while the remaining is to do flagging. The version field
is 4-byte long (32 bits), of which the 3 most significant bits are set to 001.



2. What is Bitcoin 4

Focusing now in a single transaction, as depicted in Table 2.2, they consist
of inputs and outputs. The former refer to records which reference the funds to
be spent from other previous transactions, while the latter denote records which
determine the new owner of the transferred bitcoins, and which will, in their
turn, be referenced as inputs in future transactions as those funds are respent.
Of particular interest for our needs are the fields below:

• Lock time: This field refers to the point until which the transaction is
locked and allows signers to create time-locked transactions which will only
become valid (and hence enabled to be added into a block) in the future,
giving the signers a chance to change their minds. The field is interpreted
as follows:

– 0: Not blocked. The field in this case is irrelevant.

– < 500,000,000: Block number at which this transaction is locked

– >= 500,000,000: UNIX timestamp at which this transaction is locked

• Sequence: A field included in each transaction input and was intended
for replacement, a currently disabled feature. How it would work is:

– We send a transaction with a Locktime in the future and a sequence
number of 0. The transaction is then not considered by the network
to be “final” and it can’t be included in a block until the specified
Locktime is reached.

– Before the Locktime expires, we can replace the transaction with as
many new versions as we want. Newer versions have higher sequence
numbers.

– If we ever want to lock the transaction permanently, we can set the
sequence number to UINT MAX. Then the transaction is considered to
be final, even if the Locktime has not been reached.

Since replacement is not used currently, all transactions Bitcoin Core cre-
ates have by default Sequence = UINT MAX making the transaction final
and hence disabling the lock time. Thus, in this case the lock time field
can be set to any value (by default in Bitcoin Core Locktime = 0) having
any effect on the transaction.

• Scripts: A script is a list of instructions recorded with each transaction
that describe how the next person wanting to spend the bitcoins being
transferred can gain access to the. Scripts are found in both inputs – as
scriptSig – and outputs – as scriptPubKey – of a transaction. Scripting
provides the flexibility to change the parameters of what’s needed to spend
transferred bitcoins [1].
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Description Comments

H
ea

d
er

version Block version information

prev block
The hash value of the previous block
this particular block references

merkle root

The reference to a Merkle tree collec-
tion which is a hash of all transactions
related to this block

timestamp
A timestamp recording when this block
was created

bits
The calculated difficulty target being
used for this block

nonce The nonce used to generate this block
txn count Number of transaction entries

T
X

s

Coinbase transaction
Transaction 1
Transaction 2

...
Transaction txn count

Table 2.1: Block structure

2.2 Consensus and Natural Forks

Each full node – a program that can fully validate transactions and blocks – in
the Bitcoin network independently stores the whole block chain, in contrast to
lightweight nodes that need not maintain a full copy of the chain. When several
nodes all have the same blocks in their block chain, they are considered to be in
agreement [2].

Nevertheless, under certain network conditions, two different blocks may be
found at close time instances by two different miners. Then both of them will
have valid and legitimate blocks, and neither will have a reason to toss it out.
Then both will broadcast their newly-validated block out to the network and
some people update their block chain one way, and others update their block
chain the other way, creating two different heads. Technically this is a natural
fork in the block chain [3].

To resolve this problem, the peers in the network keep track of both forks,
but only working to extend whichever fork is longest in their copy of the block
chain at any given time. As a result, the miners working on the fork that extends
more slowly will eventually abandon it and start working on the other fork. Of
course, any still-pending transactions in the shorter fork will still be pending in
the queues of the miners working on the other fork and so all transactions will
be validated in the end.
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Description Comments

version Transaction data format version

tx in count Number of transaction inputs

t
x
i
n
[
]

tx in[1] description comment
prev out hash The hash of the referenced transaction

prev out idx
The index of the specific output in the
transaction

script length The length of the signature script

sig script
Computational script for confirming
transaction authorization

sequence

Transaction version as defined by the
sender. Indended for “replacement” of
transactions when information is up-
dated before inclusion into a block.

tx in[2] ...
... ...

tx in[tx in count] ...

tx out count Number of transaction outputs

t
x
o
u
t
[
]

tx out[1] value Transaction value
pk script

length
Length of the pk script

pk script

Usually contains the public key as a
Bitcoin script setting up conditions to
claim this output.

tx out[2] ...
... ...

tx out[tx out count] ...

lock time
The block number or timestamp at
which this transaction is locked.

Table 2.2: Transaction structure
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This process ensures that the block chain has an agreed-upon time ordering
of the blocks. As a rule of thumb, a transaction is considered confirmed when it
is part of a block in the longest fork and at least 5 blocks follow it in the longest
fork, or equivalently, the transaction has 6 confirmations.



Chapter 3

Evolving the Protocol

In our attempt to enable the further evolution of the Bitcoin protocol and the
enhancement of its functionalities, it is essential that changes be made on the
way the different fields of a block are read and interpreted by the network nodes.
It comes as an immediate consequence that these nodes have to adjust the block
validation rules they adhere to, that is, the rules that a full node follows in order
to determine whether a block is valid or not.

Since Bitcoin is a distributed protocol, it is generally not expected that these
modifications will be applied simultaneously and in a coordinated fashion by all
peers and therefore it can often happen that different full nodes follow different
block validation rules until the changes are propagated, accepted and finally
adopted throughout the peer network. Using the backward compatibility as
the differentiating factor, all protocol changes can eventually fall into two main
categories, which we will study in the following: the softforks and the hardforks.

3.1 Soft vs. Hard fork

A hardfork is a change of the Bitcoin protocol that is not backwards-compatible,
i.e., older client versions would not accept blocks created by the updated client,
considering them invalid. This can create a blockchain persistent fork – as op-
posed to the natural forks – when nodes running the new version create a separate
blockchain incompatible with the older software. After a hardfork, all users are
required to upgrade. Any iteration to bitcoin which changes the block structure
(including block hash), difficulty rules or increases the set of valid transactions
is a hardfork.

A softfork is a change to the bitcoin protocol wherein only previously valid
blocks/transactions are valid. Since old nodes will recognize the new blocks as
valid, a softfork is backward-compatible. This kind of fork is enforced once the
majority of the miners upgrade to the new rules.

New transaction types – that would otherwise be implemented as hardforks

8



3. Evolving the Protocol 9

– can often be added as soft forks, requiring only that the participants (sender
and receiver) and miners understand the new transaction type. This is done by
having the new transaction appear to older clients as a special form of transaction
(so-called pay-to-anybody” transaction) and getting the miners to agree to reject
blocks including these transaction unless the transaction validates under the new
rules [1].

3.2 The Ecosystem

There can be numerous categorizations of the participants in the Bitcoin ecosys-
tem, depending on the viewpoint and the case under study. In the context of the
present work, we will consider that the different interests of the various involved
parties in the bitcoin community can fall into three main categories.

The two first categories are two different views of the users of the protocol.
These are the people making use of Bitcoin in order to place payments, that
is, to send bitcoins to each other over the network. The smallest unit of their
activity is a single transaction. However, since Bitcoin payments can be used for
different kinds of activity, we expect that a finer categorization of the users into
stakeholders and high-traffic users would be more appropriate in our attempt to
define their incentives and interests. The third category will be that of the block
miners. In more detail:

• Stakeholders (SH): These are the principal value holders and long-term
investors, even if they do not present considerable transaction activity.

• High-traffic users (HTU): These are the users responsible for the high-
est activity in terms of number of transactions, namely the users that cre-
ate the biggest amount of traffic. Many transactions may consist of small
amounts of bitcoins sent back and forth to the same wallets/users. There
are quite a few cases where such transactions are indispensable, such as
SatoshiDICE 1 and BitPay.2

• Miners: These are responsible for the block creation, i.e., the addition of
the transaction records that the users have announced to the network into
the Bitcoin’s public ledger of past transactions through mining [1].

1In SatoshiDICE bets, a Bitcoin transaction is made to one of the static addresses operated
by the service, each having differing payouts. The service determines if the wager wins or loses
and sends a transaction in response with the payout to a winning bet or it returns a tiny fraction
of the house’s gain to a losing bet [1].

2BitPay payments try to mitigate the risk of bitcoin price volatility by allowing the merchant
to accept bitcoin and immediately converting it to US Dollars, Euros, or the currency of the
merchant’s choice [4].
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Although it is straightforward to distinguish the miners from the users, this
is not the case between SHs and HTUs. This happens because of the inherent
property of Bitcoin to prevent user-activity tracking, that is, we cannot record the
activity and profile a specific user by just observing the blockchain transactions,
due to the mechanisms that the protocol has introduced to protect privacy, e.g.
the creation of a new address for each payment (that however belongs to the
same user wallet).

However, it is not our intention to cluster the users, but rather consider the
characteristics of their activity, e.g. value transferred in a single transaction, and
weigh them accordingly depending on the view we consider, that is, the same
user will eventually impact both views (SH and HTU), but more in one and less
in the other, depending on their behavior.

3.3 Problem Statement and Goal

Major policy changes in an open source project are messy. What would be a
closed door policy discussion in a central bank, is now instead held out in the
open, with all parties airing their opinions in an open forum.

One of the main reasons for the popularity of Bitcoin is the fact that it
can support an instant, secure, decentralized, trustless and egalitarian currency
system where all parts of the ecosystem can express their opinions on the current
policies as well as any proposed changes. It is these very characteristics that
can make it possible to move away from a centralized management, improving
bitcoin’s governance by removing a hardcoded policy control from the software.

Nonetheless, although the Bitcoin offers these enablers, such features are not
natively supported by the protocol. To this end the main goal of the present
project is to create a platform that will allow participants to cast their votes
regarding a certain proposal in a standardized way and offer them an appro-
priate way to insert this information into the blockchain. This will help the
system eventually reach consensus, while not violating the following important
conditions:

• Our system should avoid hardforks which would allow backwards compat-
ibility as well as an easier and more immediate deployment on the existing
infrastructure.

• Users should be able to vote maintaining their anonymity that the Bitcoin
protocol guarantees them through its mechanisms and are responsible to a
great extent for its popularity.



Chapter 4

Case Study: The Block Size
Debate

Although the present work covers a more generic topic, that of the ecosystem
need to vote, we will put these ideas into practice and demonstrate them in a
case study, concerning one of the most crucial and debatable issues in the Bitcoin
community: the block size limit.

Absent a speed limit, of sorts, attackers bog down the entire system. In the
early days of bitcoin, when the dollar and processing cost to flood the system
was low, originator Satoshi added a limit on the total number of transactions
validated every 10 minutes.

When the number of transactions in the past 10 minutes exceeds this speed
limit, users start to bid for block space by including fees in their transactions.
Bitcoin transactions are prioritized based on the transaction fee attached. The
higher the fee paid by the user, the more likely their transaction will be prioritized
before a less-paying user [5].

4.1 Incentives

4.1.1 Arguments directly affecting categories

Having already described the three categories in the Bitcoin network that we
would like to consider under the perspective of this project, we can now rec-
ognize their incentives behind pressuring towards bigger or smaller block sizes.
Distinguishing the two cases, we have the following observations to make:

• Smaller blocks: In general, fast confirmation does not have to do with
the block size (although a small block means that less transactions are in
the block and hence the block can go around the network more quickly,
thus reaching the same level of consensus in a considerably less amount
of time). This refers to the first approx. 20 sec, until many nodes have

11



4. Case Study: The Block Size Debate 12

received the block, avoiding the danger of a fork. A small block could take
only 10 sec to be received by the same amount of nodes. Then the rest
of the network will stop competing against this one and therefore we will
have less double spends (faster propagation speeds).

Also, small blocks will require higher fees for fast confirmations because
now less transactions will content for a place in the block.

As a consequence the motives of the three categories will be as follows.

– High-traffic users: It will no longer be cheap to generate transac-
tions at a high rate.

– Stakeholders: Bitcoin may look unattractive to new users with high
fees, hence stopping or reversing global adoption, investment, devel-
opment, support and centralization. As a consequence, this may take
its toll on the popularity and value of bitcoin, resulting in a decrease
on the value already owned. The increased transaction fees per se
should remain neutral for users with high capitals and a moderate
transaction traffic generation.

– Miners: Fees will not be zero. Instead, a low block size limit encour-
ages higher transaction fees to incentivize miners (“let a free market
develop”). This is eventually a necessity in order to incentivize miners
and secure the mining ecosystem.

• Bigger blocks: Although, as explained above, less forks will be caused
with smaller blocks rather than with bigger ones, the fact that we can
include much more transactions in the same blocks, will allow for more
and cheaper transactions per time unit. However, the incurred network
latency will increase the possibility of rejected transactions.

Each group will have then the incentives presented below.

– Miners: Incentivized through higher transaction fees. Since more
transactions are now included int he block, more fees are to be col-
lected by the miners [6].

– High-traffic users: Lower fees will allow them to afford increased
transaction-creation activity.

– Stakeholders: Lower fees but higher transaction rejection possibility.

4.1.2 Arguments indirectly affecting categories

Apart from the incentives illustrated above, some additional arguments are to
be pointed out and taken into consideration that nevertheless are not directly
linked to the interests of some specific group (of the ones we are examining at
least). Such points include the following:
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Incentive Small block Big block

High-traffic users

High transaction fees X
Stakeholders

Lower transaction fees X
High rejection probability X
Bitcoin popularity X
Miners

Free market X
More transaction fees X
Miscellaneous

Node maintenance costs X
Centralization X
New application areas X

Table 4.1: Summary of incentives towards a smaller or bigger block size.

• Centralization: Since larger blocks lead to less miners running full nodes,
this leads to centralized entities having more power, which makes Bitcoin
require more trust, which weakens Bitcoin’s value proposition [1]. Bitcoin
is only useful if it is decentralized because centralization requires trust.

• Node maintenance costs: Moreover, the network will be relieved due to
the lower traffic load that a small block size would bring to the network, i.e.
consider a block of 1 MB and a block of 2 MB that have to be flooded after
their generation to all of the full nodes which will now be more expensive to
operate (more processing power). This will also boost the performance of
lightweight nodes that receive a block only after request. These arguments
promote the use of small block sizes.

• New application areas: Bigger block sizes will leave space for extensions
like Mastercoin, Counterparty, etc.

Summarizing the results of the above analysis, we conclude to table 4.1.

4.2 BIP100 and BIP101

So far, it has already been clear that the current block size limit is too low
and will delay growth and lead to user pain and expense if not increased. To
solve this problem, two schemes have already been proposed for the transition to
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bigger block sizes, with appropriate mechanisms to regulate each phase of this
transition.

• BIP 100: In this scheme, miners vote by suggesting directly their desired
block size. Votes are evaluated by dropping bottom 20% and top 20% and
then the most common floor (minimum) is chosen. Moreover, the increase
or decrease of the block size may not exceed 2x in any one step.

This procedure introduces friction into the block size increase process mak-
ing it changeable, yet giving participants in the system sufficient time to
observe system behavior and change course, ultimately moving towards a
system where the market decides the best block size [5].

• BIP 101: This BIP proposes replacing the fixed 1 MB maximum block
size with a maximum size that grows over time at a predictable rate. More
specifically, the maximum allowed size of a block on the main network shall
be calculated based on the timestamp in the block header.

The maximum size shall be 8 MB on January 11th 2016 and shall double
every 2 years until January 6th 2036, where the maximum size will stop
increasing at 8.192 GB. The maximum size of blocks in between doublings
will increase linearly based on the block’s timestamp [7].1

The main difference of the voting scheme of the two proposals lies in the fact
that in the first case (BIP 100), the miners vote directly for a block size, while in
the latter (BIP 101) they vote only for or against a predetermined action plan.

Nevertheless, the aforementioned schemes only consider the votes of the block
miners, hence leaving no space to users to express their opinion, although they
are still stakeholders of the ecosystem.

4.3 Scope

The tasks that belong to the scope of this work consist principally in the following
points:

• Comparison and evaluation of alternative voting mechanisms for users and
proposal of a solution.2

• Vote parsing, storing and counting for all three categories (as displayed in
Figure 4.1).

1The doubling interval was chosen based on long-term growth trends for CPU power, storage,
and Internet bandwidth. The 20-year limit was chosen because exponential growth cannot
continue forever.

2Similar mechanisms are already defined for the miners in the BIP100 and BIP101 proposals,
as well as adopted by many miners in the mainnet, thus we need not implement them again.
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Bitcoin ecosystem

Users

Stakeholders High-traffic users Miners

User vote User vote BIP 100

BIP 101

Figure 4.1: Different vote types encountered in our system.

• Proposal of the suitable observable metrics to allow for an appropriate
weighting of the votes.

• Result extraction and evaluation according to these metrics.



Chapter 5

Implementation

Since each of the parties that form the Bitcoin community is not involved to the
same extent and in the same manner, their preference (vote) should be given a
different weight factor, that corresponds to their activity and the influence they
have on the function of the network. To this end, we will define three different
metrics to determine the weight of the votes for each of the categories explained
so far.

5.1 Stakeholder Metrics

What distinguishes the behavior of a stakeholder is the fact that they hold bigger
amounts of bitcoins, although the number of the transaction is markedly lower
than that of the high-traffic users. As a consequence the weight that should be
given to their vote should be analogous to the transferred values.

To this end, the weight value we will use for the metrics will now have to
be proportional to the unspent outputs that each transaction comes with. This
means that each transaction comes with a set of one or more outputs to other
users (or the same user) and a vote. The weight of the vote will be proportional
to the sum of the outputs that have not been referenced by an input so far. At
the time of its creation the inputs equal the outputs (minus the transaction fees)
and the vote has the maximum weight. Once one of the users that receive one
of the outputs decides to use their output (the money transferred to them) in
a transaction – that may be accompanied by a vote as well – the previous vote
loses the corresponding amount of weight which is transferred to the new user,
even if the receiver does not make use of this weight by not including any vote in
their transaction. Therefore the votes of a user that has given all their bitcoins
(and they have also been spent by the corresponding receivers) will have zero
multiplier, or equivalently, will no longer influence the total vote results.

16



5. Implementation 17

5.2 High-Traffic-User Metrics

What characterizes this category is the amount of transactions they produce.
Therefore the metric should be proportional to the produced traffic, i.e., the
number of transactions they transmit.

The problem in this case is that this value is constantly increasing over time
(unlike e.g. the metric chosen for the stakeholders). For this reason, we can
use the following weighing strategy: Choose a window of blocks, that is, a min-
imum block height up to the head of the chain, that will be considered for the
calculations, so that the result is kept up to a certain limit.

5.3 Miner Metrics

Since the value of the transactions included in a block that a miner created does
not say much about their influence and importance, we should use a metric more
representative of the resource share they hold in the network, as well as their
investment. One such metric would be the absolute number of blocks they have
created so far, since that is directly related to the time they have been active so
far, as well as the probability with which they can mine new blocks and hence
the equipment they have invested in. Such a metric would be more appropriate
also because it does not require us to keep track of which the miner is and which
blocks they have mined so far1 which may contain some uncertainty, especially
because there is no specific field defined by the protocol referring to the miner.

In this case, all votes will be equally weighed (weight = 1) for each miner,
with the more active miners inserting more votes in the block chain, since they
have mined more blocks. To avoid cases where previously active and currently
inactive miners influence the future decisions, we will keep a sliding window, i.e.,
we will only keep the last N blocks (votes).

5.4 Vote Location

One of the principal goals of this project is to find an appropriate way to insert
the vote of each participant into the block chain. The challenge stems mainly
from the fact that the blocks have an already defined and fixed structure with
limited extensibility. By taking a closer look at the fields of the block header

1However, finding out the identity of the miner and associating it with a mined block is
feasible in two ways:

• as the payout address hash of the reward in the coinbase transaction

• as a plaintext sometimes referred in the output script as “mined by X”.
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and the transactions, we can recognize several potential solutions that will have
to be evaluated against the suitable criteria in the following option assessment.

Eventually, the users (SHs and HTUs) will use the transaction locktime to
insert their vote, while as far as the miners are concerned, we will use the votes
already injected by them in the coinbase-transaction input script (BIP 100) and
the header version (BIP 101).

5.4.1 Evaluation Criteria

In order to decide over the best alternative for the insertion point of a vote, differ-
ent alternatives had to be explored and evaluated, mainly against the following
criteria:

• data overhead

• interference/incompatibility with functionalities used currently or in the
future

• ambiguity of the vote, that is, the possibility to tell whether somebody
abstained intentionally or just ignored the field

• packet clean format, i.e. the field values correspond to the field descriptions
defined by the protocol

5.4.2 Option Assessment

We will investigate some methods to do soft-forking changes in order to give the
possibility to all interested parties to include information into the blockchain.
As already mentioned, there are two different positions where the votes should
be appended, depending on the category by which the vote is cast.

More specifically, the stakeholders and high-traffic users are the ones
that create and broadcast transactions, which means that they can only have
access and alter the contents of their transaction and henceforth the vote has to
be included within the transaction. Thus we recognize the following alternatives:

• Locktime: As explained, for values greater than or equal to 500,000,000
this field refers to the UNIX timestamp at which the transaction will be
unlocked. Of course, if this value refers to some point in the past, the trans-
action will not be locked at all. So, for instance, values between 500,000,000
and 800,000,000 refer to dates between 05.11.1985 and 09.05.1995 that of
course have no reasonable meaning or purpose. Hence we could take advan-
tage of these values and append information regarding the votes. However
this has as a consequence that we cannot use the functionality of the field,
that is, lock a transaction until some later point in time.
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• OP RETURN: The script command (can be in both the scriptSig of an
input or the scriptPubKey of an output) marks a transaction as provably
unspendable/prunable output, which means that the script is marked as
invalid and nobody can spend that output. This allows adding data to a
transaction without the data ever appearing in the UTXO set. Of course
this brings an extra overhead, since we have to include an extra (unused)
output in the transaction [1].

• Input sequence number: This field is currently not in use and hence its
value is always set to 0x FF FF FF FF. This means that a transaction may
not be considered to be final and hence be ignored by some nodes when it
is not set to the maximum value.

The miners are not allowed to modify the transaction data, but only the
block header fields and the coinbase transaction. Therefore their votes should
be appended in either of these fields.

• Coinbase input: Since the input script of the coinbase doesn’t have to
be a valid script, any data can be appended in it, as is the case for the
genesis block.2 The BIP 100 proposal is based on this opportunity.

• Version header: The version number is already used for the BIP 101
proposal.

• OP RETURN: The command can be appended in exactly the same way as
described before, this time in the coinbase transaction.

Summarizing all available alternatives discussed above, we conclude to the
comparative table 5.1.

5.5 Vote Format

In order to be able to recognize the votes in the chain, we will have to encode
the information properly. For the three vote types, we will have the following
formats:

• User vote: In order to be sure that the lock time value will not lock
the transaction, we should pick a value between 500,000,000 (so that its a
UNIX timestamp) that refers to 05.11.1985 and any UNIX timestamp in
the past, say 01.01.2000, which is equivalent to 946,684,800.

2The coinbase of the genesis block contained the dated title of an FT article: “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks”
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Locus Field Advantages Disadvantages

T
ra

n
sa

c
ti

o
n

Locktime No data overhead.
Possible conflicts with other pro-
posals that may be using it –
without a widely adopted protocol.

OP RETURN

No interference with any function-
ality. “Cleaner” packets and uni-
form application for transaction
and blocks. Can be combined with
other mechanisms that try to in-
clude information.

Data overhead (unused outputs in
the transaction).

Input sequence number No data overhead.
May be used in the future (incom-
patibilities/interferences with re-
placement functionality).

B
lo

c
k

Coinbase input
Already implemented (BIP100). No
interference with any functionality.

Data overhead.

Version number
Already implemented (BIP101). No
data overhead.

Ambiguous.

OP RETURN

No interferences. “Cleaner pack-
ets”. Uniform application for trans-
action and blocks.

Data overhead.

Table 5.1: Comparative table of the different vote-locus alternatives.

Hence, in order to distinguish the votes for different proposals, as well as
positive/negative votes from abstention, we can use two bits that are zero
in the binary representation of 500,000,000:

0001 1101 1100 1101 0110 0101 0000 0000

Taking for instance the 29th and 30th bits, the former is used to indicate
that we consciously vote and not abstaining, while the latter represents our
negative or positive vote, respectively for bit values 0 or 1.

This scheme gives at the same time the possibility to use further bit pairs
in the same fashion in order to vote for other proposals in parallel.

• BIP 100: According to this scheme, the miners are allowed to cast their
vote by encoding ’BV’ + BlockSizeRequestValue into coinbase scriptSig,
e.g. “/BV8000000/” to vote for 8MB [5]. However, many miners do not
conform to this scheme and just include blocks with the string “BIP100”
in their coinbase [8].

• BIP 101: The version number has the 1st, 2nd and 30th bits set (0x20000007
in hex) [7].

In all three cases, in order to be able to evaluate the data in a uniform
manner, we will consider a binary vote format, that is, positive vote or negative
vote (including abstentions).

5.6 Capturing the Data

When it comes to capturing and recording the data, we discern as before the
three user categories:
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• For the high-traffic users, we need to consider the data within a specific
time context, say a month, year etc. For this reason, only the votes/transactions
within a window of a certain size (in blocks) will be taken account of for
the vote evaluation and the result computation.

• For the stakeholders, we only need a snapshot at a point in time. With
this snapshot we can check how many unspent outputs they have and adjust
the weight of the transaction vote by checking the next blocks in the chain
without having further context.

• For the miners, a snapshot is enough as well, since we will just use the
unity weight.

5.7 Platform

5.7.1 Emulation and deployment networks

For the needs of testing and measuring we will have to emulate the behavior
of the three node categories and/or record their vote-casting activity. We will
distinguish the following cases once again:

• For the miners, there is already the existing mainnet, where we can
directly read out the votes and record the statistics.

• For the high-traffic users and the stakeholders we will have to inject
the votes into the packets for each of the categories and hence the emulation
will have to take place in the regtest network.

For situations where interaction with random peers and blocks is unneces-
sary or unwanted, Bitcoin Core’s regression test mode (regtest mode) al-
lows instantly create a brand-new private block chain with the same basic
rules as testnet (satoshis with no real-world value, more relaxed transaction
checks), but one major difference: we choose when to create new blocks,
so we have complete control over the environment [2].

The reason we preferred the regtest network over testnet, is the fact that it
runs locally and is hence easier to set up. Moreover, it allows backdating,
that is, creating an arbitrary history by block mining in relatively short
time, so that we can test the new blocks and transactions in our system in
relatively short periods.
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5.7.2 Development

Tools

For the actual development of the application and the realization of the pro-
gramming logic, we will make use of the following programming tools/interfaces.

• BitcoinJ: An open source Java implementation of the Bitcoin protocol
helping the development of Java (and not only) applications that interact
with the Bitcoin network [9]. It can connect to the network, discover the
network peers, download and store the blocks of the chainmaintain a wallet,
send/receive transactions without needing a local copy of Bitcoin Core [10],
provide listeners for events like a new block arrival etc.

• bitcoind: A program providing a full peer which we can interact with
through RPCs.

• bitcoin-cli: A program that allows us to send RPC commands to bitcoind
from the command line. Although the application will be written in
Java and based on the BitcoinJ library, we will use an additional util-
ity BitcoinJSONRPCClient that provides a programmatic interface with
bitcoin-cli and allows access to the full functionality through RPCs.

Application structure

The application runs on two main threads:

• TransactionGenerator: This thread emulates the behavior of the users
creating and announcing transactions to their peers in the network, includ-
ing their vote regarding the block size. For the sake of emulation, there are
two different user profiles being used: one for stakeholders, that is, users
transacting with bigger amounts of bitcoins, and one for high-traffic nodes,
i.e. users submitting numerous transactions of lower value.

• VoteCounter: At the beginning of the runtime, this thread goes through
the whole blockchain and parses each past block for any possibly existing
votes (of any category) in it. In parallel, there is a listener registered in
this thread that parses all new blocks when a block-downloaded event is
triggered. All parsed votes are stored in a local database.

The two threads explained above are called by the EmulationStarter class,
once it has initialized the user wallet. Then the same class can call the ap-
propriate class of the VoteEvaluation class in order to read the data from the
database, evaluate the votes and extract the final results so far.
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VOTES TABLE

id int Auto-incrementing index.

block hash String
The hash of the block where the vote has been in-
serted into.

block height int
The block height for quicker reference on result eval-
uation.

transaction hash String

The hash of the transaction where a user inserted
the vote or of the coinbase transaction in the case of
the miners.

vote type Enum
The vote type (BIP100, BIP101, USER), so that it
can later be parsed appropriately.

vote value boolean
TRUE for positive votes, FALSE for negative
votes/abstentions.

vote weight float

The sum of the unspent outputs of the transaction
for the user votes (that will be used for the SH-view
evaluation. Unused for the rest.

Table 5.2: Structure of the VOTES table.

Two further classes Utils and StatsKeeper are used for general-purpose
static methods and storing statistics into a Matlab file.

5.7.3 Storing the data

The database scheme we are going to use will consist of only one table (Ta-
ble 5.2) that describes the votes in a uniform manner for the high-traffic users,
stakeholders and miners, although some fields may not apply to both cases, e.g.
vote weight. What will eventually differ is the way we parse the blocks / trans-
actions to extract these data, as well as the weight we will attribute to them
when evaluating the vote results.
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Evaluation

In this chapter, we will present some interesting results regarding our voting
system for the users, as well as the already existing proposals BIP 100 and BIP
101 for the miners.

As far as the users are concerned, we have already examined two possible
user views: the stakeholders and the high-traffic users. Each user, depending
on their behavior, participates in the system and hence in the voting procedure
more as a SH and less as a HTU or vice versa.

Although all users vote in a uniform way, without being classified explicitly
in one of the two views, the voting procedure should be able to let both views
express their preference (vote) distinguishing them from one another. An impor-
tant parameter to be assessed in our system should thus be the extent to which
the result extracted for each view really corresponds to the result that each view
voted for.

To exemplify this point, we suppose that the users are called to vote for or
against a given proposal. If the users whose behavior fits more to the description
of the SH-view decide to vote with a certain ratio A in favor of the proposal,
whereas the users better described by the HTU-view decide to vote with a ratio
B in favor of the proposal, then the final outcome of the vote evaluation should
depict this situation by outputting a result close to A for the SH-view and B for
the HTU-view.

As for the miner voting system, results that could be of interest and will be
presented are the following:

1. The delay of the block-parsing procedure for the blocks of the main net-
work.

2. The participation of users as far as the proposals BIP 100 and BIP 101 are
concerned.

24
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Bitcoin User

SH

Yes No

HTU

Yes No

5%

25% 75%

95%

75% 25%

Figure 6.1: Emulation scenario for users

6.1 User Evaluation Scenarios

In order to test the expressiveness/validity of the metrics we chose for the users
(SHs and HTUs), we will consider the scenario of Figure 6.1. As can be seen
in the graph, our scenario includes the two different user views, SH and HTU,
and therefore we will consider users that adopt one of the two distinct behaviors,
either closer to one or the other view.

We define the following parameters for our emulation:

• SH/HTU frequency: The SHs and the HTUs generate 5% and 95% of
the total transactions, respectively.

• YES/NO ratio: Moreover, the former decide to vote in favor of the
proposal (positive) with a ratio of 25%, leaving the rest 75% cast a negative
vote, while as far as the latter view is concerned, 75% vote for and 25%
against it.

• held value: Also, we set the total bitcoins held by the SHs to be 100
times more than the overall value held by the HTUs, so as to make the two
behaviors more distinct from each other.

• evaluation window: In order to discard stale votes, that is, votes coming
from users that may have been active in the past but not anymore, we need
to define a relatively short evaluation window. In our case, this is set to
50 blocks.

Taking the above into consideration, apart from the standard scenario, we
will also try different values for the aforementioned parameters (Table 6.1), in
order to examine their influence in our system’s performance.
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Scenario (fSH , fHTU )
(
( Y ES

NO
)SH , ( Y ES

NO
)HTU

)
V alueSH/V alueHTU HTU Window

Standard (5%, 95%) (25%, 75%) 100 50
SH/HTU frequency x (25%, 75%) 100 50

YES/NO ratio (5%, 95%) x 100 50
Held value (5%, 95%) (25%, 75%) x 50

Evaluation window (5%, 95%) (25%, 75%) 100 x

Table 6.1: User evaluation scenarios.

6.2 User Evaluation Results

Standard scenario. In Figure 6.2 we can see the result of the vote parsing
and evaluation (i.e., multiplication by the appropriate factor and summing up)
while more blocks are being mined and added to the block chain. The dashed
line corresponds to the theoretical values we set in our scenario, the dots to the
actual measurements we extracted and the solid one to the mean value of our
measurements.

From the graph we can point out that the two user views give accurate results
representing the actual voting results of the SHs and the HTUs accordingly. Not
only is the mean value of the positive-vote percentage for each view close to
what they voted (less than 5% in both cases), but also the deviation of each
measurement is very small from this mean value.

The reason for the discrepancy of the SH-view result is that the HTU users
still hold some bitcoin value and vote with a considerably higher percentage
positively. On the other hand, as far as the HTU results are concerned, we
observe that the voting results are lower than the original votes of the HTU
users, because the votes of the SHs has still been considered.

For the following scenarios, we will only use the mean value for each view for
each setting, i.e., set of scenario parameters, in order to extract some conclusions
regarding the behavior of the scenario parameters.

Different SH/HTU frequencies. In the graph of Figure 6.3, the mean re-
sults for the positive votes of each view are plotted as a function of the percentage
of the SH votes over the total votes cast.

As expected, when there are no SHs voting, the votes of the HTUs will
determine the result of the SH view as well, in spite of the low overall held value.
On the other hand, as the proportion of SH votes increases, the result for the
HTU view decreases rapidly towards the theoretical value for the SH view, since
the votes cast by the latter make up for a bigger part of the total votes.

As a consequence, when 30% of the votes come from SHs, the result for the
HTU view is 15% below the expected value. On the contrary, the corresponding
result for the SH view is less than 4% away from the theoretical value, an expected
fluctuation due to the randomness inserted into the vote generation.
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Figure 6.2: User positive-vote results for the SH and HTU views for the standard
scenario.
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Figure 6.3: User mean positive-vote results for the SH and HTU views, but
different division of users between the SH and HTU views.
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Figure 6.4: User mean positive-vote results for the SH and HTU views, but
different discrepancies of YES/NO ratio.

Different YES/NO ratios. In each experiment of this scenario, the SHs
voted positively at a percentage of x%, while the HTUs at a percentage of 100%−
x%, thus forming a difference of 100% − 2x% between them. In Figure 6.4, the
vote results are plotted as a function of the difference between the YES-votes of
the SHs and HTUs. To exemplify, when this difference is 0%, both voted with a
percentage of 50%. On the other hand, when the difference is 100%, none of the
SHs and all of the HTUs voted positively.

As experimentally confirmed, when both of the views voted had the same
voting behavior, i.e., 50%, none of them influenced the results of the other,
since they voted unanimously. However, when they presented exactly opposite
behaviors, they influenced the other view the most, hence affecting the accuracy
of the overall results.

Different held values. In this scenario, the influence of the ratio of the
held value of the SHs over that of the HTUs is examined.

As is to be observed in the semi-logarithimc diagram of Figure 6.5, the SH
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Figure 6.5: User mean positive-vote results for the SH and HTU views, but
different amounts of held bitcoin value ratio.

view is almost entirely determined by the HTUs when each user hold the same
total bitcoin value. The reason is that the HTUs are much more in number, hence
they hold more value in total and can impose their voting behavior over that
of the SHs. As this ratio increases above 100, the SHs can determine the result
of their view relatively unaffected by the votes cast by the HTUs. Nonetheless,
the results of the HTU view remain unaltered by the variations of the total held
value, since it does not come into its computation.

Different window sizes. As illustrated in Figure 6.6, the variation in the
value of the evaluation window left the SH view unaffected (since it doesn’t come
into its calculation), while the HTU view is only lightly influenced by the window
size.

This happens because in our simulation scenario, the users had a similar
behavior throughout the emulation period, while the window mechanism is only
used to make the results immune of stale votes, that is, votes cast by users in
the past, when their voting behavior was different from the behavior of the users
that have voted recently.
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Figure 6.6: User mean positive-vote results for the SH and HTU views, but
different evaluation windows.
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Summary. Although sending out a big amount of transactions could have
a strong impact on the results for the HTU view, a user cannot influence the
extracted voting result arbitrarily. This means that we can neither insert as many
votes as we want, nor insert only our votes excluding those of other users, because
including transactions comes with a cost, and more precisely the transaction fees
that have to be paid in order to include our transaction into the block. The more
users that want to insert transactions in the blocks, the higher the contention
and hence the minimal fee that has to be paid for the transaction (i.e. the vote)
to be included in the chain.

As proven by means of emulation, although a SH and a HTU vote in the same
uniform way, our vote-counting system and evaluation technique successfully
distinguished the preferences of the two groups with good precision.

Nonetheless, this categorization of a user might not always be very clear,
thus affecting the accuracy of the results. Among the factors that can influence
the distinctness of the two views are the following:

• held value: The bigger the difference between the amount of bitcoins held
by the SHs and HTUs, the easier to extract correct results for the SH view.

• SH/HTU ratio: For percentages close to 50%, i.e., equal proportion of
SHs and HTUs, we expect the HTU view to present results more biased,
therefore inaccurate, towards the SHs.

At the same time, the evaluation seems to be to a high degree immune with
respect to the parameters below:

• evaluation window: As long as the minimal sample is collected, the
results will have the desired accuracy. Bigger sample sizes on the other
hand may give more importance to currently inactive users.

• YES/NO ratio: As seen, both SHs and HTUs voting positively with
exactly the same ratio returns zero discrepancies for the results of the two
views. However, even different YES/NO ratios for the SHs and the HTUs
influence only up to a limited extent the results for the other view.

6.3 Miner Further Results

As far as the BIP100 and BIP101 proposals are concerned, it would be interesting
to observe their adoption rates, as well as their evolution through time. From
the graph of Figure 6.7 the following points are to be mentioned:

• The BIP100 proposal was much more widely adopted than BIP101, since
the votes for the former can be found in about 10 times more blocks than
those for the latter.
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Figure 6.7: Deployment of BIP 100 and BIP 101 proposals

• Both proposals present a declining tendency with less and less blocks in-
cluding a corresponding vote for any of the two.



Chapter 7

Conclusion

In the course of this project, we addressed the need of the Bitcoin ecosystem to
converge towards a consensus with respect to an existing proposal.

Our starting point was the identification of the problem; then we recognized,
analyzed and assessed the various options and developed a voting scheme accord-
ing to the result of this evaluation. Afterwards, using the block-size debate as a
study case, we emulated a Bitcoin network where users with different character-
istics, as far as their financial activity is concerned, inserted their votes in the
Bitcoin block chain. Eventually, we counted the votes and evaluated them using
the appropriate metrics, demonstrating that the voting behavior of the users
could indeed be reflected with satisfactory accuracy in the extracted results.
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