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Abstract

Mesh networks are gaining popularity as a means to provide internet connectiv-
ity to the public as the cost of deploying fixed network infrastructure increases.
Despite an abundance of wireless devices available in the public, it is di�cult to
incentivise collaboration between devices due to lack of coordination and absence
of trust. We introduce the Biternet network, a proof of concept for mesh net-
working with Bitcoin. Connected mesh nodes form a mesh network where each
node runs the Biternet daemon and the OLSR daemon for routing purposes.
Each node operates at a peer-to-peer level with no strict requirement that there
must be access to the Internet. Bitcoin micropayment channels are used to fa-
cilitate micropayments, allowing mesh nodes to charge end users based on the
data usage with a fine granularity.
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Chapter 1

Introduction

Internet bandwidth by design is limited in capacity due to its reliance on fixed
infrastructure which may only be deployed by vested interests such as govern-
ments, ISPs and large organisations. Fixed infrastructure which supports the
Internet backbone is di�cult to deploy and often costly due to the associated
labour cost, land reclamation and materials involved. Furthermore, additional
overhead must also be taken into account with the maintenance of the Inter-
net backbone. With an ever increasing demand for bandwidth to stream high
definition video contents and confererences, it is apparent that it is not possi-
ble for existing fixed infrastructure to keep up with demand. Current solutions
to o↵er bandwidth to general users are prohibitive as they often require pre-
registration, credit card details and trust in the system. For example, a traveller
who is visiting Switzerland wanting to use a public WiFi network provided by
a well-known internet service provider (ISP) would have to register her credit
card details with said ISP. More often than not, this is a major barrier of entry
for an end-user to utilize the service as international credit card payments are
prohibitively expensive and it is also di�cult for a traveller to register his/her
personal details to obtain the right credentials to access the public WiFi network.

Therefore alternative means to provide bandwidth in parallel to existing infras-
tructure is necessary, and such an alternative solution should be trivial to access
by end users requiring no more than a few clicks. While the main infrastruc-
ture backbone is designed to provide a fixed amount of bandwidth, it is possible
to have residents or even businesses with extra bandwidth acting as nodes in
a mesh network to cater for the fluctuating demand of network bandwidth by
the general public. To allow for safe and anonymous transactions between mesh
nodes, it is possible to utilize Bitcoins to remunerate services. Thus, removing
the necessity to pre-register for usage as long as users and participating mesh
nodes are in possession of Bitcoins.

As a solution to the aforementioned problems, we implemented Biternet, a soft-
ware package consist of a daemon that implements the Biternet networking pro-
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1. Introduction 2

tocol at the application layer and uses the OLSR daemon to perform routing
between nodes. The Biternet daemon also implements Bitcoin micropayment
channels and a temporary wallet to fund the payment channels.

1.1 Mesh Network

An ad-hoc mesh network is a network that is continuously self-configuring and
infrastructure-less. Connected devices may freely participate and leave the net-
work at any time and nodes will subsequently update their routing tables ac-
cordingly to reflect the current state of connectivity within the network. Ad-hoc
networking devices interact with each other at the Physical Layer in the OSI
Architecture. Therefore, two ad-hoc devices may establish a point-to-point con-
nection in the routing layer without an access point. As the topology of an ad
hoc network is highly dynamic and highly dependant on the participation of
networking devices, it is necessary to utilise an ad-hoc mesh routing algorithm
to probe and create routes in an ad-hoc network.

For the purposes of this project, we have chosen to utilised the Optimized Link
State Routing (OLSR) [1] protocol. OLSR achieves e�cient routing by selecting
the optimal path between two nodes. OLSR identifies potential paths by broad-
casting “HELLO” messages to a specific port. Other mesh nodes running OLSR
will also be able to accept and process the “HELLO” messages. These messages
are used to discover one-hop and two-hop neighbours through their responses.
Each mesh node then selects a multipoint relay based on the one hop node that
o↵ers the best route to adjacent two hop nodes. Furthermore, OLSR also uses
topology control messages to disseminate neighbour information throughout the
network. OLSRd is the daemon which runs the OLSR routing protocol. OLSRd
allows mesh node owners to indicate if they are gateways to other networks.
For example, if a mesh node was serving as a gateway to the wide area net-
work (WAN), the mesh node may expose a route to the Internet through Host
and Network Association (HNA) messages messages which indicates the subnets
available through a particular mesh node. It is also possible to expose additional
subnets with the same message to expand the Biternet network.

1.2 Bitcoin

Bitcoin [2] is a digital currency which utilizes a distributed ledger commonly
known as a blockchain. Its distributed ledger and its consensus protocol were
first introduced by Nakamoto Satoshi. It is a fully distributed system where the
creation of new coins, transactions and verification of transactions may be per-
formed collectively by the network without the need of a central authority. That
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being said, Bitcoin is a distributed system with eventual consistency character-
istics as the blockchain may at times experience forks, where nodes would be
minting on di↵erent branches of the blockchain. These temporary inconsisten-
cies are eventually resolved when Bitcoin nodes receive and mine on the longest
chain, thus achieving eventual consistency in the long run.

The Bitcoin blockchain is a distributed data structure which contains a series of
blocks chained together like a tree. Every block within the blockchain is a descen-
dent of the genesis block, which is the first block created by Satoshi to initialise
the Blockchain. All subsequent blocks appended to the blockchain must contain
a hash of the previous block thus guaranteeing the chronological order of blocks
that are appended to the blockchain. Occasionally a fork in the blockchain may
occur, a block has more than one block as its child. When this happens, the
Blockchain is in an inconsistent state. Each block contains a block header and
a series of transactions. The inclusion of a transaction in a particular block can
be verified checking its header, therefore there is no need for a client to inspect
the entire blockchain for the authenticity of a transaction. To append a block
to the blockchain, the Bitcoin consensus protocol requires miners to contribute
computational power to “mint” blocks. The act of minting is done by solving a
mathematical puzzle which involves hashing a nonce and the merkle tree hash
of the previous block until a hash with a specific number of leading zeroes as
stipulated by the consensus network is found. The number of leading zeroes
that will lead to find a block is the di�culty of minting the block as the actual
di�culty of finding a hash with an increasing number of leading zeroes would
be increasingly di�cult just as well. The di�culty of minting is re-set for every
2016 blocks minted and is collectively determined by the entire Bitcoin consensus
network. The current targeted minting duration for 2016 blocks is pegged at 14
days, therefore should the network be able to mint 2016 blocks in less than 14
days, the di�culty of minting will be increased. Otherwise, the di�culty will be
reduced after all 2016 blocks are found.

Bitcoin transactions contain a list of inputs that consume unspent outputs from
previous transactions and a list of new outputs. An input is a claim to an un-
spent output, it includes signatures and a reference to previous transaction. One
or more inputs are included in a transaction to fund a transaction. Outputs are
then used to spend the inputs included in a transaction. The di↵erence between
the sum of inputs and outputs are then paid to the successful miner who in-
cludes the transaction into a newly minted block. An output is analogous to a
payment, it contains an output value and one of two redeem script types. For all
intents and purposes, the Bitcoin network only accepts two types of transactions,
Pay-to-PubkeyHash and Pay-to-Script-Hash. Complex transactions, for example
smart contracts and time-locked transactions often have their scripts hashed, al-
lowing a complicated transaction to be expressed as a simple Pay-To-Script-Hash
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transaction. When another user attempts to redeem the unspent outputs, the
user will have to generate a matching hash which matches the script hash and
thus be able to claim the unspent output in a di↵erent transaction. When con-
structing a transaction, a user will have to include a list of inputs which are also
unspent outputs from a previous transaction. The combined sum of the inputs
should be greater than or equal to the combined sum of the outputs, otherwise
the transaction will be considered invalid by the Bitcoin network. Should the
combined sum of the inputs be greater than the combined sum of outputs, the
di↵erence in sum of inputs and outputs would then be considered as transaction
fees and will be paid to any successful miner that has minted the block which
includes said transaction.

Public key cryptography is used to authenticate Bitcoin transactions. Private
keys are stored in a file known as a Bitcoin Wallet. Typically, a public key is
then derived from the private key. Private keys stored in wallets are used to
sign Bitcoin transactions. A Bitcoin user may do this by consuming an unspent
output, transforming it into an input of a transaction, then sign it with a private
key which was used to derive the corresponding public key used in the redeem
script. A redeem script is a set of instructions to be undertaken by Bitcoin nodes
to validate a transaction that is attempting to consume an unspent output as
an input in another transaction. Suppose that a private key and a public key
used in an unspent output does not match, typically the signature used to sign
the input will not pass validation, thus the Bitcoin network will reject the newly
broadcasted transaction.

1.3 Micropayment Channel

Micropayments are typically transactions that involve a small sum that are con-
sidered to be infeasible to be paid due to the prohibitive cost in traditional
payment methods. Bitcoin may be used to facilitate the processing of micro-
payments through a series of transactions that involve three phases collectively
known Micropayment Channels proposed by Jeremy Spillman. To setup a micro-
payment channel, a commitment transaction which commits a sum to a shared
account jointly held by a service provider and a consumer has to be created. Prior
to signing and broadcasting the commitment transaction, a refund transaction
which spends the output of the commitment transaction back to the consumer is
required to guarantee that, should the provider fail to honour its commitments,
the consumer will be able to re-claim her committed funds to the shared account.
Typically, the refund transaction will be time-locked so it is essential that the
consumer retain a raw signed refund transaction to broadcast in at a later time as
the Bitcoin network would typically reject time-locked transactions until the time
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lock expires. Subsequent payments to the provider are done through payment
transactions which spends the outputs of the commitment transaction. Payment
transactions are only broadcast when the service has ended and its broadcast
typically ends the micropayment channel as any remaining balance in the shared
account will be refunded back to the consumer. A significant drawback of Jeremy
Spillman micropayment channels is its inability to allow for additional deposits
to a shared account. However, recent changes to the Bitcoin protocol which
includes the introduction of OP CHECKLOCKTIMEVERIFY [3] allows for subsequent
deposits to a shared account as there is no need to setup refund transactions
prior to commitment transactions.

1.4 Transaction Malleability

All transactions in Bitcoin prior to broadcast must be signed. While transac-
tions are signed and the integrity of transactions are guaranteed, it is possible
to invalidate a transaction by means of manipulating the byte stream contain-
ing the transaction hash. This has profound side-e↵ects on the micropayment
channels we have implemented for the project as it is possible for a malicious
provider to invalidate the hash of the commitment transaction thus rendering
the refund transaction unusable as it is reliant on the hash of the commitment
transaction. This inherent vulnerability is caused by the fact that a transaction
hash can be changed and thus invalidating all future transaction that rely on
the current transaction hash. As a consequence of transaction malleability, it is
unsafe to accept chains of unconfirmed transactions under any circumstance as
later transactions that depend on the hashes of the previous transactions may
change until they are confirmed in a block.

There exist proposed solutions to the transaction malleability problem and Seg-
regated Witnesses is one of the solutions proposed that has already been im-
plemented in a test Bitcoin network environment known as segnet. Segregated
Witnesses [4] solve the problem by having signatures removed from Bitcoin trans-
actions, since signature data is no longer part of the transaction hash, changes
to how a transaction was signed would no longer be relevant to transaction iden-
tification. In the context of micropayment channels, this means that it will no
longer be possible for a malicious service provider to invalidate a refund trans-
action by changing how a commitment transaction is signed, assuming Jeremy
Spillman Micropayment Channels are used.
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1.5 Related Work

The Bitcoin [2] protocol was pioneered and introduced by Satoshi Nakamoto in
2009, following rapid improvements by the community and significant research,
Bitcoin improvement proposals were proposed to address vulnerabilities within
the Bitcoin protocol. The transaction malleability vulnerability was highlighted
by the Decker et. al. in their study of its impact on Mt. Gox [5] and sev-
eral BIPs were proposed to address the transaction malleability vulnerability.
Micropayment channels [6] were introduced by Jeremy Spillman and they fea-
tured the first trust-less mechanism to setup micropayment channels between
two parties using transaction steps as described earlier. The introduction of
OP CHECKLOCKTIMEVERIFY by Peter Todd’s BIP65 [3] enabled the establishment
of Micropayment Channels which are immune to transaction malleability.

The optimized link state protocol [1] was proposed in 2003, it was then imple-
mented by Tonnessen where OLSRd [7] is a daemon which runs the OLSR pro-
tocol. Following further development, the OLSR daemon was further extended
to feature a full plugin library [8] and third party extensions were customisable
and could be added through an API.



Chapter 2

Design & Implementation

In this section of the report, we describe how Biternet was designed and imple-
mented. Biternet is designed to be a software stack which runs on any generic
Linux distributions for Biternet for the purposes of this research project. The
software stack includes a daemon which executes the Biternet protocol and the
OLSR daemon which performs routing independent of the application daemon.
By design, every node participating in the Biternet mesh network is required to
run the software stack. The Biternet top layer daemon is responsible for setting
up micropayment channels, seeking adjacent peers and all communication pro-
tocols between peers.

As a proof of concept, several wireless pre-configured mesh nodes running Biter-
net were used. Each mesh node was a Raspberry Pi Model B with Raspbian and
the network devices were the TP-Link and Edimax EW7811UN wireless dongles.
They were used to setup WiFi access points, internet gateways and ad-hoc con-
nections between mesh nodes. Biternet follows a peer-to-peer model where the
mesh node is capable of acting as a server, relay or a client at the same time.
By default configuration, all Biternet mesh nodes are relay nodes, the provision
of client services is left as a choice to the owner of said mesh node.

7



2. Design & Implementation 8

Figure 2.1: Simple Biternet Mesh Network with Wireless Access Points and
Internet Gateways

2.1 Software Stack

Biternet features a complete software stack which allows mesh nodes to choose
between becoming a full service provider that exposes an endpoint for end users
to use the Biternet network or act as a relay within the Biternet network as
illustrated in the diagram below. Should a mesh node elect to expose a WiFi
Access Point, a mesh node will need to have at least two network devices with
one interface perform ad-hoc networking for OLSRd and the other for broadcast-
ing the WiFi Access Point. Similarly, the number of network devices increases
according to the number of services a participating node wishes to provide. The
sole requirement of participation in Biternet is a network device which perform
ad-hoc networking, otherwise every other network interfaces are optional.
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Figure 2.2: Biternet Software Architecture

2.1.1 Biternet Daemon

The Biternet daemon is designed for flexibility. Owners of the mesh nodes run
the Biternet daemon and are free to configure as many parameters as possible
to encourage competition between mesh nodes to strive to provide the cheapest,
optimal links to adjacent nodes. Mesh nodes may also expose subnets by config-
uring their OLSR daemon to inform adjacent nodes of existing subnets exposed
by their mesh nodes. The Biternet daemon supports peer to peer communication
through the use of Web Sockets. Mesh nodes that will be shutting down typically
provide a grace period of 60 seconds for dependent mesh nodes to finalise and
broadcast payment transactions before internet connectivity is disabled. Every-
time dependent mesh nodes relying on one particular Internet Gateway node
that is shutting down would have to tear down all existing payment channels
with its users and attempt to find a new internet gateway. Once a new internet
gateway is found, a series of payment channels will be set up with the adjacent
nodes again. Each Biternet daemon also contains a temporary wallet which is
required to be funded by the owner of the mesh node. Biternet daemons do
not choose what nodes they connect to as this is being done by OLSRd instead,
the daemon is only responsible for the establishment of micropayment channels,
accounting tra�c usage and to communicate between mesh each time an event
has occured.
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Figure 2.3: Biternet Daemon Application Stack

The Biternet daemon communicates at the application layer with a specially
designed protocol which allows mesh nodes to setup micropayment channels be-
tween nodes automatically. Typically, a mesh node which exposes a gateway to
the Internet would remain dormant and not proactively seek to intiate connec-
tions with adjacent Biternet mesh nodes. Mesh nodes that do not have a gateway
to the Internet would proactive seek to connect to adjacent Biternet mesh nodes
with a route to an Internet gateway. When such an adjacent node is found, it
will ask for an advertisement to obtain the terms of service of the adjacent mesh
node. Subsequently, the mesh node will establish a micropayment channel with
the adjacent mesh node. Once a micropayment channel is established, mesh
nodes will forward tra�c so as long as the connecting mesh node continues to
pay invoice messages that are sent by the mesh node providing a relay service.
When a mesh node terminates its service, a shut down message is sent to all ad-
jacent nodes connected to it. If said mesh node is acting as an Internet Gateway,
the shutdown message will be propogated to all mesh nodes that are linked in a
series of hops to the Internet gateway, this guarantees that all mesh nodes will
eventually have an opportunity to end their micropayment channels appropriate
by broadcasting the latest payment transaction in their current states.

2.1.2 Discovery and Routing

Prior to running the Biternet client, mesh node users will need to manually con-
figure a static IP address that is unique within the Biternet network. Ideally,
we would want all mesh nodes to have self-configuring IP addresses that may
be assigned by utilizing IPv6 Stateless Address Autoconfiguration. By doing so,
mesh nodes will be able to dynamically obtain an IP Address without a central
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authority delegating IP addresses.

Expanding the Biternet network is done by means of discovering adjacent nodes
who run the Biternet application. Biternet applications by default run a routing
daemon called OLSRd - Optimized Link State Routing Daemon. OLSRd period-
ically updates the IP Routing Tables to choose optimal paths. Optimality in the
context of Biternet is calculated as a function of cost to relay a kilobyte of data
to the Internet and the link quality to the adjacent node. While it is possible
to configure the path cost through OLSRD, mesh node users running Biternet
will have to manually synchronize the path cost configured for the OLSRd con-
figurations and the indicative path cost advertised by the Biternet application.
Such a limitation exists because both OLSRd and the Biternet application are
designed to be run seperately. Although mesh nodes will only connect to ad-
jacent nodes, it is still possible for mesh nodes to connect to other nodes, the
connected adjacent nodes simply act as gateways to other mesh nodes within the
same subnet.

Figure 2.4: Simple example illustrating 1-Hop and 2-Hop mesh topology

2.1.3 Access Control

Running an instance of Biternet will automatically invoke the installation of
various IPTables rules which will throttle and limit access by other mesh nodes.
IPTables is a firewall utility bundled with most if not all Linux distributions. It
is often used to filter internet tra�c and protect connected computers from net-
work exploits. For the purposes of this project, IPTables were used as a means
to log tra�c usage, packet redirection for captive portals and access control.

Each time a client is connected to the Biternet network and has successfully
established a payment channel with a provider mesh node, it will be included in
a whitelist accounting table where packets will be forwarded without restriction.
The Biternet application also allows mesh node users to configure if they would
like to charge for both upstream and downstream tra�c or uni-directional tra�c.
By default, the Biternet application only charges for downstream tra�c as it is
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perfectly possible for a malicious node to account for upstream tra�c which may
not necessarily be forwarded to its destination. As a consequence, a client may
unknowingly be retrying requests too often while getting charged for doing so.
Clients who are connected to the Biternet network but has yet established a
payment channel will be denied relay services as IPTables are used to block all
forwarding tra�c until payment channels are established. However, to facilliate
Bitcoin transactions, well-known bitcoin API services are whitelisted and SPV
client ports are also whitelisted to allow for Bitcoin Wallets to fund payment
channels and broadcast transactions.

2.1.4 Usage Metering

To be able to accurate charge correct amounts of bitcoins from client mesh nodes
and end users utilizing the Biternet network. IPTables are used to measure
upstream and downstream data usage based on IP Addresses. The Biternet
application allows mesh node owners to configure the periodicity to poll the
IPTables for updates and in each polling interval, invoices will be sent out to
client mesh nodes for payment. If client mesh nodes or users fail to provide a
partially signed payment transaction within the time interval stipulated in the
usage agreement, filtering rules will be re-instated for such clients and users so
that they may no longer be able to connect to the Internet through the Biternet
network.
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2.2 Protocols

Biternet has a protocol for connecting and setting up payment channels between
mesh nodes. Every Biternet daemon implements a peer-to-peer architecture,
therefore they may both initiate and receive contact from an adjacent peer node.

2.2.1 Micropayment Channels

To formally set up a payment channel with an adjacent mesh node, the following
payment channel negotiation protocol is used:

1. The consumer node contacts the provider node with a GET Advertisement

message.

2. The provider node then replies with an Advertisement message which in-
cludes the terms of the micropayment channel and all necessary information
to set up transactions.

3. If the consumer node is satisfied with the terms of the payment channel,
the consumer node can then send a Acceptance message with includes
its public key and all other bitcoin specific transactions for micropayment
channels.

4. Otherwise, the consumer node can choose to ignore the Advertisement.

5. This concludes the payment channel negotiation protocol. Should the con-
sumer node accepts the terms, then the mesh node proceeds to execute
steps to set up a Bitcoin micropayment channel which is further elabo-
rated in the implementation section of this report.

Our micropayment channels were implemented from scratch as there were no
existing usable micropayment channel libraries available for the web. A new
javascript library that is usable on all development platforms (i.e., Native and
Web) was produced as a result of this project known as btc-micropayment-
channels and is currently hosted in the Node Package Manager which is freely
auditable and accessible by the public. The micropayment channel library is
built on a wrapper around Bitcoin low level functions Javascript library known
as bitcoinjs-lib. The micropayment channels are implemented within the Biter-
net daemon. For the purposes of the project, we implemented Jeremy Spillman’s
style micropayment channels, thus it would be vulnerable to transaction mallae-
bility. Due to time constraints, we could not implement micropayment channels
utilizing OP CHECKLOCKTIMEVERIFY that would have been invulnerable to trans-
action mallaebility.
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Figure 2.5: Micropayment Channel Transactions

To initiate micropayment channels, we first prepare a commitment transaction
which commits a deposit amount to a shared account that spends an output
to a 2-of-2 multisig address. To redeem the 2-of-2 multisig unspent output, the
transaction spending the committed amount would require both the provider and
the consumer’s signature. Before the commitment transaction is broadcasted, it
is necessary for the provider to sign a prepared refund transaction which spends
the deposit which is committed to the shared account. This is to guarantee
that should the provider renege on her service, the consumer would still be
able to recover committed funds to the shared account without the provider’s
assistance. In our implementation, once the commitment transaction has been
prepared on client side, the deposit amount and the consumer public key is
then communicated to the provider, so that the provider may sign a refund
transactions which spends the deposited amount back to the consumer. After the
signed refund transaction is received from the provider, the consumer then sends
a signed commitment transaction which the provider verifies, then broadcasts to
the Bitcoin network. Subsequently, the provider will periodically issue invoice
messages to the consumer to request for payment. Should the consumer renege
on payment requests, the provider can easily terminate the service and tear down
the micropayment channel. Otherwise, incremental payments will be made to
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the provider and once the consumer is done using the service, the provider can
then broadcast a final payment transaction to the Bitcoin network which spends
the total amount paid to the provider and returns the remaining balance to the
consumer.

Figure 2.6: Micropayment Channel Sequence Diagram
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2.2.2 Application P2P Messaging

As in most other protocol based applications, Biternet also implements peer-to-
peer messaging to allow peers within the network to announce their impending
shutdown. A mesh node should fully exit the Biternet network after a full 60 sec-
onds to allow other reliant mesh nodes to terminate existing payment channels
and broadcast necessary transactions. Currently, the only messages the Biter-
net network handle are OLSRd routing messages and protocol-specific messages
(e.g, shutdown messages and advertisement messages). All protocol-specific mes-
sages are sent in Javascript Object Notation (JSON) message format for generic
message parsing.
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2.3 Web Client

To facillitate ease of access to the Biternet network, each mesh node which pro-
vides a WiFi Access Point hosts a web client which serves as a captive portal.
When a user connects to a mesh node access point, the user is re-directed to a
captive portal which requires her to set up a payment channel. The Biternet
web application also implements the exact same peer-to-peer protocol as the one
used in the daemon. A simple illustration of the web client in the diagram below
and further implementation details may be sought in the implementation section
of the report.

Figure 2.7: Biternet Web Client

Steps for an end-user to connect to the Biternet network:

1. User connects to a Biternet WiFi Access Point.

2. User receives an IP address from the DHCP server of the provider node.

3. Captive portal pops up in user’s device and prompts for micropayment
channel initiation.
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4. If user accepts the terms of service, user then funds the micropayment
channel and Internet access will be available.

5. Otherwise, user will be denied access to the Internet until user chooses to
fund micropayment channel.

2.3.1 Biternet Web Application

The Biternet web application is fully functional without a server and may be
run on both mobile devices and desktop. Upon instantiation, the web applica-
tion will randomly generate a private key pair client-side which can be used as
a temporary wallet used to store Bitcoins that the end user would like to pledge
to fund a micropayment channel. As no local storage is implemented, a wal-
let import format hex string is generated when the user is attempting to fund
the temporary wallet so that the user may safely recover the wallet should the
browser refresh or exit. Once the temporary wallet on the Web Client is funded,
the web application then initiates the establishment of a micropayment channel
with the DHCP server that is hosting the WiFi network for the client, commiting
all funds available on the temporary wallet to the micropayment channel. Once
the micropayment channel is established, the user may use Internet service or
connect to subnet devices within the Biternet network. In the o↵ chance that
connectivity with the DHCP server is lost or WAN connectivity is lost after funds
are committed to a shared account, the web application still retains the ability
to broadcast a refund transaction as long as the browser tab containing the web
application is not refreshed nor terminated. The user may easily move on to
a di↵erent WiFi hotspot or even utilize mobile internet tethering to broadcast
the refund transaction to the Bitcoin network to reclaim funds committed to the
shared account as long as no payment to the provider has been made.
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Figure 2.8: Communication between web app and mesh node



Chapter 3

Evaluation

In this section of the report, we evaluate the performance metrics of our imple-
mentation for Biternet. In the following sections, we measured the time it takes
for a route to be built and the throughput of the Biternet network with respect to
an increasing number of hops between mesh nodes to the internet gateway. We
also did a thorough analysis on the known problems and potential vulnerabilities
of the system.

3.1 Route Build Time

To measure the route build time between mesh nodes, we have setup our experi-
ment to measure the time taken for OLSRd to build a route to the nearest mesh
node which provides a gateway to a default route. For N -Hop configurations
where N is greater than 1, we measure the time taken to build a route to the
adjacent mesh node which acts as a relay to the mesh node providing an internet
gateway. To obtain the results for this experiment, we have set up the mesh
nodes in the following configuration:

• 1-Hop Configuration. A mesh node that exposes a wireless access point
(AP) is linked to a mesh node which provides internet access through wired
interface.

• 2-Hop Configuration. A new mesh node that exposes a wireless access point
(AP) is linked to a mesh node as described in the 1-hop configuration.

• N -Hop Configuration. For each increasing N -hop configuration, one ad-
ditional mesh node that exposes a wireless AP is added and is linked to
the outer most mesh node that exposes a wireless AP in the (N � 1)-hop
configuration.

Due to hardware and spatial constraints, we were only able to test up to 3-Hop
configurations.

20
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The experiment was conducted as follow:

1. We set up a mesh node which provides a gateway to the internet.

2. We placed each mesh node required for the N -hop configuration in a spe-
cific physical location where the number of connectible mesh nodes is con-
strained to just one.

3. For each N-Hop configuration, we first turn on hardware interface which
performs ad-hoc networking on the N-th furthest mesh node from the mesh
node which provides the internet gateway.

4. A job script is also set up on the reference mesh node (i.e., the mesh node
furthest away from the mesh node providing an internet gateway) to time
the duration it takes to observe a default route entry in the kernel routing
table. As it was not possible to register an event to trigger the stopping
of the timing script, the timing script periodically polls the kernel routing
table every 100 milliseconds to check if a default route has been inserted
into the kernel routing table.

5. Once an entry to a default route is inserted into the kernel routing table,
we know that the reference mesh node has built a route to the mesh node
providing an internet gateway.

6. We repeat the experiment 10 times for each N-hop configuration to normal-
ize the errors attributed to systematic errors in our experimental design.
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Figure 3.1: Time required to connect N -th mesh node to N � 1th Relay Node
in N -Hop Configuration (in seconds)

Results Based on our findings, we observed that wired configurations would
yield more consistent time measurements compared to mixed and wireless config-
urations. This is apparent through the lower median time requirement compared
to both wireless and mixed configurations. It is also apparent that as the number
of hops increases, the time required to set up connect the N -th mesh node to a
N � 1th relay node increases significantly as demonstrated in the diagram above
with the increasing median and mean time. The standard deviation of the data
set also increases as the number of hops in a configuration increases. The data
also present some significant outliers in N -Hop configurations where N is greater
than 1. Extreme outliers greater than 60 seconds observed in the 3-Hop config-
uration dataset were removed in order to provide a sound comparison between
N -Hop configurations.

Discussion The increasing median time observed in the data set is within
expectation as the complexity of the network topology would increase as the
number of hops increases. An increase in the complexity of the network topology
would significantly increase the necessity of topology control messages. As a
consequence of that, OLSRd would have to process more messages and will
require more time to process them to select an optimal route to a mesh node
providing an internet gateway. The dramatic increment of the standard deviation
however was unexpected as the experiment was set in a controlled environment
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and the physical topology of the mesh nodes were configured in such a way where
each mesh node would only have one adjacent mesh node to connect to, therefore
we expected that OLSRd should have been able to select the adjacent mesh node
consistently. However, given that the experiment was run in a building with
many wireless devices, the significant variance in the data set could have been
attributed to wireless interference from other devices causing OLSR topology
control messages to be dropped resulting in an inconsistent route build time for
configurations with more hops.

3.2 Route Swap & Seek Time

Ad-hoc networks are inherently unstable as their topology changes frequently.
In this section of the experiment, we measure the time it takes for OLSRd to
swap between routes which enables it to connect to a mesh node which provides
an internet gateway. We also measure the time it takes for OLSRd to discover
a new internet gateway should an existing internet gateway go o✏ine. Due to
hardware limitations, we were only able to test this in a 3-Hop configuration
where there are two intermediary relay nodes which provides a link to the mesh
node with an internet gateway. The procedures for the experiment are as follow:

1. Two mesh nodes which provides a gateway to the internet was set up.

2. Two mesh nodes acting as an intermediary relay between a mesh node with
a Wireless AP and the mesh node with an internet gateway were set up.
Both intermediary relays do not share the same mesh node which provides
an internet gateway.

3. Finally, a mesh node with a Wireless AP which exposes the Biternet net-
work to end users was set up.

4. Measurements were taken in a SSH session in the mesh node with the Wire-
less AP to measure the time taken to swap between intermediary relays
which provides connectivity to the mesh node with an internet gateway.

5. The experiment was repeated 10 times to normalize errors attributed to
systematic errors in our experimental design.

To measure the seek time to connect to a mesh node with an internet gateway
when connection with an existing mesh node provider an internet gateway is
severed. The following configuration was set up for the seek time experiment:

1. One mesh node acting as the reference mesh node was set up with a Wire-
less AP. This is the mesh node used to measure the time it takes to regain
internet connectivity.
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2. Another mesh node acting as an intermediary relay between the mesh
nodes providing internet service was set up. The intermediary relay was
connected to the reference mesh node with wired interface.

3. Two mesh nodes with internet connectivity were set up.

4. To run the experiment, the mesh node providing an existing internet service
was switched o↵ by a test runner script on the reference mesh node. The
job script then polls the kernel IP routing table until an entry with default
destination is entered. The time taken for the entry is then logged.

Figure 3.2: Swap & seek time (seconds)

Results Our results show that the cost of changing intemediary relay nodes to
a common mesh node with an internet gateway is significantly higher than the
cost of directly connecting to a mesh node with an internet gateway. We also
observed that the required time to create a route to an adjacent mesh node with
an internet gateway is signficantly more consistent than creating a route to the
internet through an intermediary relay node.

Discussion By default, OLSRd configures the neighbour set holding time to 6
seconds, therefore should a link be broken down, it would take OLSRd at least
6 seconds to realise that a link is completely lost. This is consistent with the
measurements taken for the time taken for the reference mesh node to connect
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to a gateway node through an intermediary relay node. Since the intermedi-
ary node has to update its 1-hop neighbour time, it will take a minimum of 6
seconds for OLSRd to realise an existing link is lost, then update to a new gate-
way node. Once this is done, the intermediary relay node can then broadcast a
Topology Control message which allows the reference node to update its 2-hop
neighbour table immediately. Thus, a new route to the gateway node may be
found relatively quickly in less than 10 seconds. While the measurements do
deviate quite significantly from the route build time measurements, this maybe
attributed to the di↵erence in the background interferrence as the measurements
for this particular experiment was done during o↵-peak hours where there would
be significantly less signal interference.

Building a route to a gateway node through a newly connected relay node in-
herently cost more time due to the fact that it would take more time to update
neighbour sets across two nodes along the path. This is caused by the fact that
the relay node would have to been selected as a multipoint relay by the gateway
node prior to it being able to forward OLSR messages from the gateway node
through to the reference node. The inherent communication overhead for this is
estimated to approximately 12 seconds as an election for an MPR would have
to take place when the new relay node was chosen as the relay between the ref-
erence node and the new gateway node. An Midpoint Relay (MPR) is a node
selected by OLSRd to serve as a midpoint relay to reduce message flooding in
the mesh network. While it is quick for an asymmetric route to be built between
the reference node and the gateway node as the relay node would have already
been selected as a MPR in the OLSR daemon for the gateway node. The newly
connected relay node would have to undergo a selection process in the reference
node and this is the cause of the time overhead compared to a direct connection
to a gateway node. Once the relay node is selected as a MPR by the reference
node, it will require more time for the relay node to forward OLSR messages
to the gateway node so that a symmetric link could be established, which is a
pre-requisite for entry in the kernel routing tables.

3.3 Known Problems and Vulnerabilities

As of the current build version, Biternet will throw an error and exit when its
wallet has run out of funds. As a consequence of that, should other mesh nodes
be reliant on a mesh node that has run out of funds, all micropayment channels
and connections to the mesh node that has run out of funds would be severed
instantaneously. As there are no means of topping up a micropayment channel
without running the entire establishment procedure from the start, it is currently
not possible to top up an established micropayment channel. Jeremy Spillman
micropayment channels are also inherently vulnerable to transaction mallaebility
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as discussed in the introduction section of this report due to the fact that the
refund transaction is reliant on the hash of the commitment transaction.

Suppose mesh nodes lose connectivity to the internet whilst providing service
to end users who are connected to the Biternet network. The nodes will lose
all ability to commit transactions to the Bitcoin network. Whilst this is not a
fatal problem that would terminate the Biternet daemon, this would prevent any
Biternet daemon from allowing end users to connect to the Biternet network as
it is necessary to establish a micropayment channel before gaining access to the
Biternet network. Existing users who have already established micropayment
channels would not be a↵ected by the lack of internet connnectivity and would
be able to use the Biternet network continuously until the micropayment channel
runs out of funds.

The Biternet web client currently does not implement stateful memory nor does
it cache its state. Therefore should the user refresh or exit the web application
by accident, it is not possible to continue the existing established micropayment
channel and it would be necessary to establish a new micropayment channel.
Furthermore, the Biternet package currently relies on third party Bitcoin block
explorer services, therefore there it is necessary to trust a third party service
and the availability of the Biternet service is also reliant on the availability of
the third party block explorer service. Ultimately, it is possible to substitute the
reliance on third party block explorer services with an implementation of a SPV
client, thus allowing mesh nodes and web client is independently verify trans-
actions on the blockchain without relying on third party services. Regardless,
the usage of SPV clients is still conditional on the provision of internet service
by the Biternet network, if there is no internet gateway, there is no way a SPV
client could verify and broadcast transactions.

Biternet currently requires mesh node owners to statically configure non conflict-
ing IP addresses for each mesh node. Ideally, Biternet mesh nodes should run
IPv6 stateless auto-configuration to automatically gain a non-conflicting IPv6
address within the network. However, due to significant time constraints and
the incompatibility of OLSRd to work with IPv6 addresses, this has been omit-
ted from the design of Biternet. As of the current implement, Biternet will
experience conflicting IP addresses within the same network should nodes be
configured incorrectly. As a consequence, the ad-hoc mesh networking may fail
occasionally as the network interface device may broadcast on di↵erent subnets.
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Conclusion

We implemented a proof of concept (Biternet) where several mesh nodes were
able to to collectively provide end users with internet connectivity in exchange
for payments in bitcoins. Biternet is simple and easy to configure for mesh node
owners and may easily scale depending on the hardware used to provide inter-
net service. Furthermore, it is also possible for Biternet to supply content from
subnets within the network.

There are many avenues for future improvement. Future iterations of Biternet
will remove the necessity to configure two separate applications (i.e., Biternet and
OLSRd). Followed by the introduction of the usage of OP CHECKLOCKTIME-
VERIFY in commitment transactions to remove the necessity of pre-signed re-
fund transactions that are reliant on commitment transactions, thus eliminating
the possibility of transaction mallaebility. Finally, followed by an implementa-
tion of a proper plugin for OLSRd to factor in link cost in terms of monetary
value.
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