
Pascal Sprenger

Design and Implementation of an ECN
Proxy for Performance Improvements in
the Internet

Semester Thesis
October 2015 to January 2016

Tutor: Laurent Vanbever
Supervisors: Brian Trammell and Mirja Kühlewind

2

Abstract

Explicit Congestion Notification is a TCP/IP extension that allows congestion signaling without
packet loss and therefore can greatly increase the performance on the Internet. ECN is widely
implemented in end systems but it is barely used. If the host that opens the connection doesn’t
want to use ECN, it’s not used.

The task of this semester thesis is to design, implement and test a proxy to boost the usage of
ECN. If only one host wishes to use ECN, this proxy simulates for both hosts the corresponding
counterpart. Installed on a home router the proxy would enable the usage of ECN with a server
if the server is ECN capable but the client not. A system administrator can install such a proxy
and enable ECN for every TCP connection in the internet originating from this router.

Contents

Contents 3

1 Introduction 4
1.1 Motivation . 4
1.2 Task . 4

2 Background 5
2.1 TCP - Transmission Control Protocol . 5
2.2 ECN - Explicit Congestion Notification . 5
2.3 Netfilter . 7

2.3.1 Conntrack . 7

3 Design and Implementation of the Proxy 9
3.1 Design . 9

3.1.1 First Phase - Negotiation . 9
3.1.2 Second Phase - Operation . 11

3.2 Implementation as a Netfilter Hook . 15
3.2.1 Difficulties occurred during Implementation 16
3.2.2 Reasons for an Implementation as a Netfilter Hook 16

4 Testing the Implementation of the Proxy 17
4.1 Test Setup . 17

4.1.1 Virtual Machines in VirtualBox . 18
4.2 Throughput Measurement . 18

4.2.1 Test Cases . 19
4.2.2 Automated Testing and Changing of Test Parameters 19

4.3 Results . 20
4.3.1 Downloading from an ECN capable Server 20
4.3.2 Uploading to an ECN capable Server . 21

5 Conclusion 24
5.1 Improvements for a Real World Deployment . 24
5.2 Conclusion and Outlook . 24

A Eigenstaendigkeitserklaerung 26

B Results of the Throughput Testing 27

C Tables with Throughput Analysis Results 42

D Sourcecode 48

List of Figures 64

List of Tables 67

Bibliography 68

3

Chapter 1

Introduction

1.1 Motivation

Explicit Congestion Notification (ECN) [2] is a TCP/IP extension that allows congestion signal-
ing without packet loss and therefore can greatly increase the performance on the Internet. Even
though ECN was standardized in 2001, and it is widely implemented in end systems, it is barely
used [1]. More and more webserver support ECN but often the client that opens the connection
does not request ECN support. If only one endpoint doesn’t want to use ECN, then it is not used.

On the other hand, we have the routers. If there isn’t enough traffic that uses ECN, it’s not
worthwhile to change their operating systems to allow marking packets instead of dropping as
it would be possible with the ECN protocol. The current state is a vicious circle. If nobody uses
ECN, the routers aren’t motivated to mark packets because it makes no difference and if router
don’t mark packets there is no advantage for the clients to enable ECN.

This semester thesis presents a possible solution to break this vicious circle. The solution is to
install a proxy in the home network that negotiates instead of the clients ECN usage with the
servers in the internet. Without changing anything on the machines in the internal network, be
it a laptop, a smartphone or a desktop computer, the traffic with a server using ECN on the
long path through the internet would be ECN enabled. Enabling ECN on the long path from
the home router to the server where the congestion most likely will occur has the potential to
increase the throughput and decrease the delay of the TCP connections for every end-node in
this internal network. Even if no router would mark the packets instead of dropping it would at
least increase the percentage of ECN enables traffic of all TCP traffic.

1.2 Task

The goal of this semester project is to implement and test an ECN proxy that could be installed
in home routers to speed-up ECN deployment in case one of the connection endpoints is not
ECN-capable. This leads to the following tasks:

1. Design and implementation of an ECN proxy

2. Set-up of a testbed to test the ECN proxy implementation

3. Evaluation of ECN performance

4

Chapter 2

Background

Following we have a short summary of TCP, ECN and Netfilter to make the reader familiar with
both of the protocols fundamental to my work and an important part of the Linux kernel.

2.1 TCP - Transmission Control Protocol

TCP is a protocol for a connection oriented communication and part of the transport layer of the
internet protocol suite. Unlike UDP (User Datagram Protocol) the communication with TCP
focuses on being reliable and complete. The receiver acknowledges the received packets to the
sender. If the sender doesn’t receive an acknowledgment after a certain time he assumes the
packet was lost.

As the sender and receiver are both interested in a fast transmission of the data, they try to
communicate as fast as possible. They start slow and get gradually faster and faster until they
reach a set limit or a router on the way between the sender and receiver can’t handle all the
packets sent at a time. If a router has too much packets waiting in his buffer, it has to decline
new packets and has to drop them. Even if the router would observe its queue and notice that
the buffer will probably overflow and therefore packets will be dropped if the packets continue
to arrive at the same rate it has no possibility to communicate with the sender or receiver other
than to drop a packet before the queue reaches its limit. Therefore, a packet is lost, this loss has
to be detected and the packet has to be sent again. This results in a reduced throughput and an
increased delay.

2.2 ECN - Explicit Congestion Notification

ECN is an addition to IP (Internet Protocol) and TCP. It tries to solve the problem of the
communication between sender/receiver and router. If the router detects that its queue most
likely will overflow (or just be too big for an acceptable latency) he can set a flag in the IP
header and tell the receiver to notify the sender, he should send slower. The router communicates
without a packet loss with the sender. There is no packet loss to be detected and therefore the
goodput is increased and the overall delay is reduced.

ECN uses 2 bits in the IP-header and 2 flags in the TCP-header. Table 2.2 explains the different
values of the two bits in the IP-header. The two flags in the TCP-header are the ECE (ECN
Echo) and the CWR (Congestion Window Reduced). These two flags are used for the negotiation
whether ECN is used for the current connection and for communicating when congestion was
experienced. With the task to design a proxy that negotiates and handles an ECN connection if
one part doesn’t want to use it in mind, we take a closer look at how the use of ECN is negotiated
and how sender, receiver and router communicate with each other.

5

6 CHAPTER 2. BACKGROUND

Host A Host B

SYN

SYN,
ACK

ACK

Figure 2.1: A doesn’t want to
use ECN

Host A Host B
SYN,ECE,CWR

SYN,
ACK

ACK

Figure 2.2: A wants to use
ECN but B doesn’t

Host A Host B
SYN,ECE,CWR

SYN,
ACK,

ECE

ACK

Figure 2.3: A and B want
to use ECN, negotiation suc-
cessful

ECN Field
0 0 Not-ECT ECN is not used for this packet. The router has to drop it.
0 1 ECT(1) ECN is used for this connection and this packet can be marked with CE
1 0 ECT(0) ECN is used for this connection and this packet can be marked with CE
1 1 CE Congestion Experienced - This packet would have been dropped

Table 2.1: Explanation of the different ECN Field values

Negotiation whether ECN is used

ECN is an addition to IP and TCP and can’t be used by default. It’s not guaranteed that both
communicating partners can handle the flags and react accordingly. Therefore, the use of ECN
has to be negotiated. This is done simultaneously with the normal connection establishment of
a TCP connection. A connection can only use ECN if both partners want to use it. This gives
rise to three possibilities:

• If the initiating host doesn’t want to use ECN, it won’t be used for this connection. The
three-way-handshake at the beginning of each TCP connection remains unchanged, pictured
in figure 2.1.

• If the initiating host wants to use ECN it sends the normal initial SYN packet but with
additionally setting the ECE and CWR mark. Every router part of the route and the
receiving host can tell that the sender of this packet knows ECN and wants to use it. The
receiver has now two choices, either use ECN or don’t use it. If he doesn’t want to use it,
he simply answers with a normal SYN-ACK packet. This signals the initiating host that
its communication partner can’t or doesn’t want to use ECN. The handshake in this case
can be seen in figure 2.2. In this case ECN isn’t used.

• Lastly if both hosts want to use ECN, the opening host sends the ”ECN-setup SYN packet”
(flags ACK, ECE & CWR set) and the receiver responds with the ”ECN-setup SYN-ACK
packet” (flags SYN, ACK & ECE set and CWR not set). The final ACK is the same as in
the normal handshake and concludes the connection establishment and ECN negotiation.
The handshake in case of a successful negotiation can be seen in figure 2.3

Communication between Sender, Receiver and Router

If successfully negotiated to use ECN, both the sender and receiver can set the ECT (ECN-
capable Transport) codepoint in the IP-header. This codepoint signals to every router on the
path that this connection uses ECN and that the router can instead of dropping the packet just
mark it with the CE code point. A router doesn’t have to mark a packet instead of dropping it,
but it has the possibility to do so.
Using ECN makes the hosts responsible to signal a received CE to the sender. This is done with
the flags ECE & CWR which are part of the TCP-header and previously used to negotiate ECN.
If a host receives a CE he has to set for every packet the ECE flag until he gets a response with
the CWR flag set. This ensures that the sender is notified about the experienced congestion. In
figure 2.4 such a chain is depicted. If a host receives a TCP-packet with the ECE flag set, he

2.3 Netfilter 7

Host A Router Host B
ECT(0)/ PSH,ACK

CE/ PSH,ACK

ECT(0)/ PSH,ACK,ECEECT(0)/ PSH,ACK,ECE

ECT(0)/ PSH,ACK,CWR
ECT(0)/ PSH,ACK,CWR

Not-ECT/ ACKNot-ECT/ ACK

Figure 2.4: Router marks Packet from Host A due to Congestion. First the router receives a
packet and decides to drop it, but after checking for the CET mark he changes the code point to
CE and forwards the packet to the destination. The receiver inspects the packet and notices the
CE, hence he sends the next packet with ECE set and every subsequent packet until he receives
a packet with CWR set from the sender of the CE causing packet.)

knows that at least one of his sent packets would have been dropped. According to the ECN
protocol he now has to react as if the packet was dropped and notify the other host that he
received and reacted to the ECE via setting the CWR flag.

2.3 Netfilter

Netfilter is a part of the Linux kernel that provides a framework for various network related
tasks. The probably most known program based on Netfilter is Iptables. Iptables allows to set
filter and rules for incoming and outgoing IP-packets. This can for example be used to create a
firewall. The structure of Netfilter can be shown by the implementation of Iptables. The rules
of Iptables are organized in chains. There are 5 different chains for Iptables, as shown in figure
2.5. Each chain contains rules and filters for network packets. If a packet arrives at an interface
Netfilter calls the PREROUTING chain of Iptables for this packet. Depending on the packet and
the defined rules the packet enters the FORWARD chain (if the packet is not destined for the
local system) or INPUT chain (the packet is for the local machine). It is possible to delete, alter
or create packets and queue them at every chain, for example if the system wants to send a new
packet it queues the packet in the OUTPUT chain.
These Iptables chains are implemented with Netfilter hooks. Each chain has his own hook. The
input argument of a hook is the packet and the return argument is what happens with this
packet and the possibly changed packet. Hooks have numbers, the hooknumber. The hook with
the lowest number gets called first and has therefore the possibility to analyze the packet before
all the other hooks. Every hook has complete authority over what happens with the packet with
which it’s called. They can decide to alter the packet, to drop it or even what the next hook
should be that gets called for the packet. Returning to the Iptables example, if we look at the
first chain, PREROUTING, we see that after calling the hook of this chain there are two possible
next chains that can be called. This means that in one case at least one hook gets overstepped
and not called. Netfilter instead continues with a higher hooknumber, similar to a jump in a
normal program code.
A new hook can be registered. For this it’s required to have an object of the static struct
nf_hook_ops with a few options set. The two most important are the address of the function
to call if the hook gets called and the hooknumber that decides when the hook is called.

2.3.1 Conntrack

An important feature built upon Netfilter is the possibility to track connections. The Conntrack
modules delivers this functionality for TCP packets. Only with connection tracking is it possible

8 CHAPTER 2. BACKGROUND

INPUT OUTPUT

FORWARD

local

PREROUTING POSTROUTING

Figure 2.5: Iptables Chain Structure. Packet arrives at PREROUTING, destined either for for-
warding or for the local machine. Depending on this the packet is handled by either the INPUT
chain or the FORWARD chain. From the INPUT chain may come a possible new or changed
packet for sending to the OUTPUT chain. The FORWARD and OUTPUT chain give their
packets to the POSTROUTING chain which prepares the packet for sending

to determine if a packet belongs to an already existing connection, if it’s related or if it’s entirely
new. The tracking is made possible by the fact that for a single TCP connection the destination
and source addresses and ports stay the same. Without this module it would be impossible to
make rules and filters depending on the state of a TCP connection.

Chapter 3

Design and Implementation of the
Proxy

ECN can be split in two phases when looking at the whole lifetime of a TCP connection. There
is the first phase where both hosts negotiate if ECN is used and the second phase when ECN is
actually used. These two phases are separated in time. The proxy has therefore two main tasks
for every single TCP connection:

1. In the first phase the proxy has to observe which hosts want or don’t want to use ECN.
It may have to change TCP headers in order to allow the server to respond with an ECN-
setup-SYN-ACK.

2. The second phase starts right after to final ACK packet of the TCP three-way-handshake
at the beginning of each connection. If both hosts either want or doesn’t want to use ECN,
the proxy can’t do anything to improve the connection with ECN. But if only one of them
wants to use ECN he has to simulate the corresponding counterpart for each host. Neither
one of them should notice that the other host uses or doesn’t use ECN. It simulates a
non-ECN-host for the incapable host and for the one using ECN it simulates a partner
that reacts to the marks and flags of the traversing packets.

3.1 Design

The proxy was designed as a Finite State Machine (FSM). The proxy has to change headers not
only based on the current packet but has to consider previous packets. Based on this requirement
it makes sense to implement the proxy as an FSM.

3.1.1 First Phase - Negotiation

The FSM of the first phase has a straight forward structure, similar to a binary tree, as can be
seen in figure 3.1. Both hosts can either want to use ECN or not, depending on the flags set in
the TCP-header. This results in four different end-states. The two cases where both either want
to use it or not result in the same behavior for the proxy in the next phase and can therefore be
merged.

Behavior of each State

It is assumed that Host A always initiates the connection and Host B is always the connection
partner for this conversation. This halves the number of states and doesn’t restrict the capability
of the proxy. If host B would be the initiating host we can simply set Host B as Host A and vice
versa upon receiving the first packet. In this phase only TCP-headers are changed, no IP-header
is touched yet.
There are three different ending states. Depending in which state the connection is in after the
handshake we continue to the second state machine or not. If only one of the hosts wants to use
ECN we remember which host and continue to the state machine of the second phase.

9

10 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE PROXY

Figure 3.1: State Diagram of the Finite State Machine determining who wants to use ECN or
not during the connection establishment

Istart

AC ANC

AC , BNC
AC , BC

ANC , BNC
ANC , BC

Wait for
ACK

from Host A

Wait for
ACK

from Host A

E
C
N
-s
e
tu

p
S
Y
N

n
o
n
-E

C
N
-se

tu
p

S
Y
N

E
C
N
-s
e
t
u
p

S
Y
N
/
A
C
K

n
o
n
-E

C
N
-s
e
t
u
p

S
Y
N
/
A
C
K E

C
N
-s
e
t
u
p

S
Y
N
/
A
C
K

n
o
n
-E

C
N
-s
e
t
u
p

S
Y
N
/
A
C
K

every packet

A
C
K

fr
o
m

A

A
C
K

fr
o
m

A

3.1 Design 11

• I Initial state
Every connection starts in this state. The first SYN determines the next state
State Transitions and changes in Headers

– if ECN-setup-SYN then next state → AC

no change in TCP-header

– if non-ECN-setup-SYN then next state → ANC

TCP-header changed to ECN-setup-SYN

• AC A ECN capable
Host A wants to use ECN, waiting for SYN/ACK from Host B
State Transitions and changes in Headers

– if ECN-setup-SYN/ACK then next state → AC , BC ANC , BNC

no change in TCP-header

– if non-ECN-setup-SYN/ACK then next state → Wait for ACK, AC , BNC-Version
no change in TCP-header

• ANC A not ECN capable
Host A doesn’t want to use ECN, waiting for SYN/ACK from Host B
State Transitions and changes in Headers

– if ECN-setup-SYN/ACK then next state → Wait for ACK, ANC , BC-Version
change TCP-header to non-ECN-setup-SYN/ACK

– if non-ECN-setup-SYN/ACK then next state → AC , BC ANC , BNC

no change in TCP-header

• Wait for ACK, AC , BNC-Version
Wait for the ACK from Host A. Last part of TCP handshake.
State Transitions and changes in Headers

– if ACK from host A then next state → AC , BNC

no change in TCP-header

• Wait for ACK, ANC , BC-Version
Wait for the ACK from Host A. Last part of TCP handshake.
State Transitions and changes in Headers

– if ACK from host A then next state → ANC , BC

no change in TCP-header

• AC , BNC A ECN capable, B not ECN capable
One host wants to use ECN the other not. This is the default state for the FSM of the
second phase.

• AC , BC ANC , BNC Both hosts the same
The proxy doesn’t do anything for the rest of this connection. It just forwards the packets.

• ANC , BC A not ECN capable, B ECN capable
One host wants to use ECN the other not. This is the default state for the FSM of the
second phase.

3.1.2 Second Phase - Operation

In this phase the proxy simulates for each host the corresponding counterpart, ECN-capable or
not-ECN-capable. The only information we need from the previous state machine of the first
phase is which host wants to use ECN. After the connection is established there is no longer
a classification in initiating and accepting host. What matters is only who uses ECN and who
doesn’t.

The proxy sets in this phase the ECT-codepoint in the IP-header for the traffic from the non-
ECN-host (the host that doesn’t use ECN) to the ECN-host (the host that uses ECN). For traffic

12 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE PROXY

in the other direction it has to set the Not-ECN-codepoint. There are four different states in this
second phase after the handshake, depending on the signaled congestion:

• No congestion in any direction

• Congestion in direction from ECN-host to non-ECN-host

• Congestion in direction from non-ECN-host to ECN-host

• Congestion in both directions

We know that there is congestion on the path from ECN-host to the non-ECN-host if we receive
a packet with the CE mark set. The non-ECN-host shouldn’t notice the ECN usage. Therefore,
the proxy has to reset the CE in the packet and remember to set the ECE flag in the TCP-header
for packets to the ECN-host. The proxy sets the ECE flag in every packet for the ECN-host until
he receives a packet from it with the CWR flag set. The proxy has the possibility to communicate
with the congestion causing host without dropping packets.
It’s considerably more difficult to notify the non-ECN-host that his packet would have been
dropped. We consider three solutions for this problem:

Not setting the ECT(1)-codepoint for traffic from non-ECN-host to ECN-host

After successfully negotiating ECN setting the ECT-codepoint is voluntarily. Each host can decide
if he wants to set this codepoint. A simple solution is therefore to just not setting the codepoint
for traffic from the non-ECN-host to the ECN-host. If the codepoint isn’t set no router can set
the CE codepoint. The packet would be dropped instead. The ECN-host never receives a CE and
therefore never marks a packet with the ECE flag forcing us to notify the non-ECN-host. The
router communicates the normal way with the congestion causing host via dropping the packet.
The major drawback of this solution is that ECN isn’t used on the entire path in one direction.
Neither is the traffic ECN enabled nor any of the good properties of ECN have an impact in this
direction.

Proxy drops the Packet instead of Router

If the proxy marks packets from the non-ECN-host with ECT there will most likely be packets
arriving from the ECN-host with the ECE mark set. The proxy now has to notify the non-ECN-
host that a packet would have been dropped. The simplest communication is to drop the next
packet from the non-ECN-host. This is similar to the first solution but with the difference that
the packets have the ECT codepoint set on the path to the ECN-host. The routers on this path
have the illusion that ECN is used in both ways. But still no good properties of ECN have an
impact in the direction from non-ECN- to ECN-host.

Simulate dropping the Packet

The third alternative to notify the non-ECN-host is to simulate as if the packet was dropped.
The sending host observes the ACK-numbers of the arriving packets. If there is three times a
duplicated acknowledgment number (4 times in a row the same number) the sender assumes
that the packet was dropped. The proxy can now remember the ACK-number of the packet with
the ECE flag set instead of dropping the next packet. The router then changes the ACK-number
of the following three packets to the same value. The ECN-host receives every packet, but the
non-ECN-host is under the impression that a packet was lost. The non-ECN-host resends the
packet that was never dropped. The ECN-host receives a duplicated packet and discards it,
because it’s already been correctly transmitted. The proxy sets the CWR flag after sending three
duplicated ACK. With this solution the traffic is ECN enabled for both directions between proxy
and ECN-host. The throughput stays the same as in the second solution. But one good property
of ECN can be used, even if one host isn’t using ECN: The decreased delay. Because the drop
is only simulated the packet arrives on time at the destination and not after the drop was detected.

We decided to implement the third solution for the proxy. With this solution we are closest to
the optimum from all three solutions.

3.1 Design 13

Figure 3.2: State Diagram of the Finite State Machine after the connection is established

default

DupACK

ECEDupACK

ECE

E
C
E

3x
D
up
A
C
K

C
E

C
W
R

CE

CW
R

EC
E

3x
Dup

AC
K

CE & 3x DupACK

ECE & CWR

C
E

&
E
C
E

C
W

R
&

3
x
D
u
p
A
C
K

The flags indicating congestion for one direction can arrive at any time and even at the same
time. This is the reason why every state is reachable from every state in the state diagram in
figure 3.2. The observed flags can only be set in packets arriving from the ECN-host. There
are three different flags which can cause a state transition: ECE, CWR and CE. For this FSM
to work we need two variables, one to save the ACK-number and the second one to count the
number of times we already sent the duplicated ACK. The ”!” in front of flag means that this
flag isn’t set.

• default
Default state. The proxy starts in this state when entering the second phase. No congestion
has to be communicated in this state
State Transitions and changes in Headers

– if (Direction from non-ECN-host) then next state → current state
Set the CET(1) mark in the IP-header

– if (Direction from ECN-host) && !(CE) && !(ECE) then next state→ current state
Set the Not-ECN mark in the IP-header

– if (Direction from ECN-host) && (CE) && !(ECE) then next state → ECE
Set the Not-ECN mark in the IP-header

– if (Direction from ECN-host) && (CE) && (ECE) then next state→ ECEDupACK
Set the Not-ECN mark in the IP-header
Save the ACK-number of the packet
Set the counter #ACK for duplicated ACK to zero

– if (Direction from ECN-host) && !(CE) && (ECE) then next state → DupACK
Set the Not-ECN mark in the IP-header
Save the ACK-number of the packet
Set the counter #ACK for duplicated ACK to zero

• DupACK
This state simulates a packet drop with changing the ACK-number of the current packet to
a previous ACK-number. There has been congestion in the direction from non-ECN-host
to ECN-host
State Transitions and changes in Headers

14 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE PROXY

– if (Direction from non-ECN-host) then next state → current state
Set the CET(1) mark in the IP-header

– if (Direction from ECN-host) && !(CE) && !(#ACK==3) then next state → cur-
rent state
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && (CE) && !(#ACK==3) then next state →
ECEDupACK
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && (CE) && (#ACK==3) then next state → ECE
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && !(CE) && (#ACK==3) then next state→ default
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

• ECEDupACK
This state does both, simulating a packet drop and notify the ECN-host with ECE that he
caused a CE codepoint. Congestion was experienced in both directions
State Transitions and changes in Headers

– if (Direction from non-ECN-host) then next state → current state
Set the CET(1) mark in the IP-header
Set the ECE flag in the TCP-header

– if (Direction from ECN-host) && !(CWR) && !(#ACK==3) then next state →
current state
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && (CWR) && !(#ACK==3) then next state →
DupACK
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && (CWR) && (#ACK==3) then next state → de-
fault
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

– if (Direction from ECN-host) && !(CWR) && (#ACK==3) then next state→ ECE
Set the Not-ECN mark in the IP-header
Set the ACK-number to the saved ACK-number
Add one to the #ACK counter

• ECE
Traffic from the ECN-host was marked with the CE on its way to the proxy. The proxy
has to set the ECE flag until it receives a packet with the CWR flag set
State Transitions and changes in Headers

– if (Direction from non-ECN-host) then next state → current state
Set the CET(1) mark in the IP-header
Set the ECE flag in the TCP-header

3.2 Implementation as a Netfilter Hook 15

– if (Direction from ECN-host) && !(CWR) && !(ECE) then next state → cur-
rent state
Set the Not-ECN mark in the IP-header

– if (Direction from ECN-host) && (CWR) && !(ECE) then next state → default
Set the Not-ECN mark in the IP-header

– if (Direction from ECN-host) && (CWR) && (ECE) then next state → DupACK
Set the Not-ECN mark in the IP-header
Save the ACK-number of the packet
Set the counter #ACK for duplicated ACK to zero

– if (Direction from ECN-host) && !(CWR) && (ECE) then next state → ECEDu-
pACK
Set the Not-ECN mark in the IP-header
Save the ACK-number of the packet
Set the counter #ACK for duplicated ACK to zero

3.2 Implementation as a Netfilter Hook

The proxy was implemented as a Netfilter hook. The hook receives the packet in form of a sk buff
object (Socket Buffer). For our proxy to work we must be able to identify the current packet and
be able to tell if it belongs to an already established connection and in what state this connection
currently is. The sk buff object is created for every new packet. There is no possibility to store
the state directly in the sk buff. Therefore, we had to find a way to store the state of a connection
and we have to be able to tell if a packet belongs to an already established connection.
The Conntrack module already implemented in the kernel has a similar functionality, just the
number of states is smaller and we can’t overwrite these states. We decided to introduce three
new variables in a header of the Conntrack module. Because of the changed header we had to
rebuild the kernel with the changed header. Another possibility would have been to implement
an own variant of the Conntrack module and keep track of the connections on our own, but this
would have been impossible to realize in the scope of this semester thesis.
The changed header introduces three additional variables in the Conntrack module: An 8-bit
variable for the current state of the proxy, a 32-bit variable for the ACK-number saved for the
simulated drop and another 8-bit variable for the counter how many times the ACK-number has
been repeated already.
The hook itself is a kernel module. The source code is on page 48. Like every kernel module it has
an init module() and a cleanup module() function. These functions only register and unregister
the Netfilter hook. There are a lot of small functions, often reused and therefore extracted from the
main hook function. The hook function itself consists of steps which every packet goes through:

• The hook first checks if the sk buff object is NULL and if the iphdr object, which is part of
the sk buff, is NULL. If one of them is NULL, we stop the hook and return an ACCEPT.

• Then we check if the packet is a TCP packet, we only continue if that is the case

• We then continue to retrieve the saved variables from the Conntrack module. We retrieve the
current state of the proxy, the saved ACK-number, the counter of the number of duplicated
ACK sent and the host that initiated the connection.

• In the next step we check if this packet is from a new connection. If this is the case, we set
the state to INIT and save from which interface the first packet came.

• The next step reduces the states used for the proxy by half. By setting the direction the
first packet came from to be direction A we always can assume that Host A is the initiating
host - the client - and don’t have to check for this later.

• The next part is a switch statement that implements the pseudo code of the two state
machines of the first phase (see figure 3.1) and the second phase (see figure 3.2).

• The last thing to do now is to save the changed values back and return ACCEPT

16 CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE PROXY

3.2.1 Difficulties occurred during Implementation

First at all it has to be said that implementing a kernel module is a lot of work. Unlike ”normal”
programming where you can look up the answer to a problem in the internet and will most
probably find an answer because someone before had the same problem, you don’t find an answer
for your questions concerning kernel code. When writing a kernel module, the source code of the
kernel is your best friend. Especially if you have to find the right place where to save your state
if you have to access it for following packets from the same connection.
Most of the time used for programming the proxy was used to find the functions, where the needed
variables are stored and how to make sure that the called functions always return without an
error. Finding out what caused an error in a kernel module can take some time. If there is an
error the machine freezes and has to be restarted. Once we had all the code pieces together, like
how to change a header or how to get the name of the interface, the actual translation of the
pseudo code of the proxy to code written in C was rather easy and fast.

Problem with simulating a packet drop

During simple functionality tests the simulation of a packet drop didn’t cause any problems. But
later when the proxy was tested with higher rates of throughput the connection was disrupted
after some time. We didn’t find a solution for this behavior. In order to have a working proxy
we decided to change the code to have the first method proposed in chapter 3.1.2 implemented.
This method disables the ECT marking for traffic from the non-ECN-host to the ECN-host.
This implementation worked with larger throughput and we were able to run the tests with this
implementation.

3.2.2 Reasons for an Implementation as a Netfilter Hook

One of the first ideas was to implement the proxy with Iptables. This isn’t a good idea mainly
for two reasons:

1. The first reason is that Iptables can’t change a TCP-header. We would have to use another
kernel module or program that would do that for us. This is impractical, especially because
Iptables isn’t designed for communicating with other programs and it would be tricky to
implement and debug a proxy this way. And if you would write your own netfilter module to
change the TCP-header the effort to coordinate Iptables and this module would be greater
than implementing the whole proxy in the netfilter hook.

2. The second reason is that keeping track of the states in Iptables itself would have been very
confusing. Iptables isn’t designed to implement a state machine. For connection tracking it
uses Conntrack. But Conntrack itself lacks in number of states. Also with the way Iptables
handles its rules it would have been horrifying to implement the proxy.

Chapter 4

Testing the Implementation of
the Proxy

The main goal of the testing isn’t to show how good ECN is but rather how good the proxy
works compared to real ECN and not using ECN. The testing should show that the proxy is
close to real ECN and at least not worse than not using the proxy.

4.1 Test Setup

To test the performance of our proxy we have to create a test environment. We need a client and
a server that communicate with each other. The path between them consists of a router that is
able to mark packets instead of dropping them and a machine running the proxy. The router
needs therefore and Active Queue Management (AQM) that predicts congestion before it occurs.
This simple setup can be seen in figure 4.1 and was used for testing the proxy without external
congestion from other sources other than the client and server. In addition to this basic setup we
want to guarantee congestion on the router. Therefore, we have other machines sending packets
over the router. This expanded test setup is illustrated in figure 4.2. Additionally, to the server
and client two hosts generate traffic on the same interfaces the proxy and server already use.
The basic setup is a subset of the expanded setup with additional hosts. When the two hosts of
the expanded setup don’t send any traffic it’s the same as the basic setup. Therefore, we can use
the expanded setup and disable the two congestion causing hosts to get the basic setup.

Client Proxy Router Server

Internal Network

Figure 4.1: Basic Test Setup, Client connected to the Server via the Proxy and a Router

Client Proxy

Router

Server

UDP Host UDP Host

100 Mbit/s10 Mbit/s

Internal Network

Figure 4.2: Expanded Test Setup, Client connected to the Server via the Proxy and a Router.
Additionally, there are two Hosts sending IP-packets over the router to cause the buffers to fill
and eventually cause congestion

17

18 CHAPTER 4. TESTING THE IMPLEMENTATION OF THE PROXY

4.1.1 Virtual Machines in VirtualBox

All six machines were simulated with VirtualBox. Every machine except the machine which
runs the proxy have Ubuntu Server 14.04 LTS with the kernel version 3.19 installed on them.
Out of convenience the proxy-machine runs on a desktop version of Ubuntu 14.04 LTS (The
code was written inside this virtual machine and early testing was done with Wireshark).
The IP-addresses are static and forwarding was enabled. The connections between the ma-
chines were made with internal networks of VirtualBox, the three networks were 192.168.0.0/24,
192.168.1.0/24, 192.168.2.0/24. The machines had the following mentionable specifications:

• Client
The client is connected to one interface of the proxy with the internal network
192.168.0.0/24. The client has the IP-address 192.168.0.10. The standard gateway is
192.168.0.1 (the proxy).

• Server
The server is in the internal network 192.168.2.0/24 with one interface of the router and
a UDP host. The IP-address is 192.168.2.10 and the standard gateway is 192.168.2.1 (the
router).

• Proxy
The proxy has two interfaces. One interface is in the network 192.168.0.0/24 with the IP-
address 192.168.0.1 and the other interface is in 192.168.1.0/24 with the address 192.168.1.1.
The implemented netfilter-hook is inserted on this machine and observes packets from one
of these interfaces to the other one. The standard gateway is 192.168.1.10 (the router).

• Router
The router connects the test setup with the internet. The first interface is connected to the
internet. The second interface is in the network 192.168.1.0/24 with the address 192.168.1.10
and the third in 192.168.2.0/24 with the address 192.168.2.1. On the two interfaces con-
nected to the internal networks runs an AQM. The used AQM is Random Early Detection
(RED) with the following parameters:

– The RED AQM for both interfaces is set with the following parameters: Limit = 40000
bytes, Min = 2000 bytes, Max = 8000 bytes, Average Packet Size = 1000 bytes, ECN
is used, Burst = 4, Drop Probability = 0.3

These parameters are chosen very strictly. We want the router to mark the packets early,
long before it would have to in order to prevent congestion. Further the bandwidths for the
two internal interfaces are limited. This is done to create a bottleneck on the router. For
the downloading case (server upload, client download) the bandwidth of the interface on
the proxy side was limited to 10 Mbit/s and the other internal interface was limited to 100
Mbit/s. Packets arrive 10 times faster from the server than the router can send them to
the client. This is the configuration depicted in figure 4.2. For the uploading case it’s the
other way around. The interface on the server side is 10 times slower at 10 Mbit/s than
the other interface.

• UDP Host
There are two UDP hosts. One in each internal network that is connected to the router.
They have the IP-addresses 192.168.1.20 and 192.168.2.20 respectively. They both send
UDP traffic to each other in order to cause congestion on the router.

4.2 Throughput Measurement

We tested only on a virtual internal network. For every test all the network components were sim-
ulated. VirtualBox isn’t transparent for ECN traffic from a virtual machine to the real internet.
Therefore, we couldn’t test in the real internet with our virtual test setup.

4.2 Throughput Measurement 19

4.2.1 Test Cases

To test the performance of the proxy we looked at different configurations of the test setup. For
every configuration we tested the five possible scenarios:

1. Neither Client nor Server use ECN. Proxy netfilter-hook is not inserted.

2. Neither Client nor Server use ECN. Proxy netfilter-hook is inserted.

3. Server wants to use ECN, Client doesn’t. Proxy netfilter-hook is inserted.

4. Both, client and server, want to use ECN. Proxy netfilter-hook is not inserted.

5. Both, client and server, want to use ECN. Proxy netfilter-hook is inserted.

For the throughput testing the program Iperf is used. Iperf is a network testing tool that is
able to create UDP and TCP traffic and measure the throughput of this traffic. Each of these
scenarios is tested with the same throughput tests:
The proxy is tested with larger files and smaller files with a variable number of simultaneous
connections. All tests are run for downloading from and uploading to the server, likewise every
test is run with cross traffic and without cross traffic. Cross traffic is the traffic generated by the
two UDP hosts used to congest the router. To measure the time needed for transmission we use
the time command from Linux.
Every scenario is tested with these tests:

• Download from Server

– Without Cross Traffic

∗ 1,2,3 and 5 connections transmit simultaneously each 200 MB

∗ 1 connection transmits 100 times 2 MB

– With Cross Traffic

∗ 1,2,3 and 5 connections transmit simultaneously each 20 MB

∗ 1 connection transmits 100 times 2 MB

• Upload to Server

– Without Cross Traffic

∗ 1,2,3 and 5 connections transmit simultaneously each 100 MB

∗ 1 connection transmits 100 times 2 MB

– With Cross Traffic

∗ 1,2,3 and 5 connections transmit simultaneously each 20 MB

∗ 1 connection transmits 200 times 2 MB

Summarized we run |Upload, Download| ∗ |Cross Traffic, No Cross Traffic| ∗ |1,2,3,5 connections
& small files| ∗ |# of configurations| = 2 ∗ 2 ∗ 5 ∗ 5 = 100 different tests.

4.2.2 Automated Testing and Changing of Test Parameters

We used bash scripts for an automated testing. There are two different scripts for testing the
throughput. The first one, listed like all the scripts used in listing D.4 in appendix D on page 61, is
used to test the throughput without the cross traffic from the two UDP hosts. The second, listed
in listing D.5, is used if there is cross traffic. These two scripts are executed from another script
which has the task to first set up the correct test environment before running the corresponding
tests. This script is listed in listing D.3 on page 59.
Only switching from uploading to downloading requires a change impossible to make inside a
running virtual machine. To change from downloading to uploading the bottleneck has to be
changed. The bandwidth limitations have to be reversed in order to guarantee congestion on
the router. All the other changes between different tests can be done inside the running virtual
machines. The only problem is the communication between the different machines. When the
uploader finishes a test he has to signal the other machines to change their configuration.

20 CHAPTER 4. TESTING THE IMPLEMENTATION OF THE PROXY

We solved this problem with Netcat. This is a simple program to read and write from network
connections. With Netcat we can set up a simple web server. This web server waits until it
gets called once and sends the message it has to. After this the program terminates and the
next command of the script can be executed. We therefore set up a command chain, the chain is
illustrated in figure 4.3. If the uploader wants to change a setting, he signals it to the downloader.
The downloader periodically checks for an update from the uploader. If there is a setup change
signaled, he checks if it’s a change meant for him or if another machine has to change a setting.
If the message is for another machine the downloader himself sets up a web server and waits for
the next machine in the chain to read from this webserver. Each machine that sends a message
can only continue if the next machine in the chain has read this message. It is important that
the uploader doesn’t start with his test until every machine got their setting update and reacted
to it. Therefore, we have to make sure that the last message is always to the downloader. The
downloader only reads this message if he has nothing else to do and has therefore successfully
signaled all previous messages not meant for him. The scripts used for this command-chain are
listed in the appendix on page 62ff.

Uploader Downloader Proxy 1. UDP Host 2. UDP Host

Figure 4.3: Signaling Chain for automatically changing the Configuration of the Test Setup

4.3 Results

We expect the proxy to improve the throughput in the downloading scenario if ECN would
improve the throughput. In the uploading scenario we expect the proxy to be at least as good as
the non-ECN scenarios. The proxy should never slow down the traffic. Instead it should increase
the throughput as much as possible.
Every test for each test scenario was taken multiple times in order to get an average performance.
The results of every test are listed in the tables in appendix C on page 42 and the box-plots
graphically representing these results are listed in appendix B on page 27.

4.3.1 Downloading from an ECN capable Server

Representative for all the results obtained when downloading from the server are the two figures
4.4 and 4.5. The first figure, figure 4.4, is the boxplot of the time it took to simultaneously down-
load three times 200 MB from the server to the client without any cross traffic. The second figure,
figure 4.5, shows the results of the same scenario but only downloading 20 MB per connection
and with cross traffic.

0 50 100 150 200 250 300 350 400 450 500 550

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure 4.4: Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

4.3 Results 21

0 50 100 150 200 250 300 350 400 450 500

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure 4.5: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per con-
nection and Cross-Traffic, Server Upload and Host Download

The differences in the case without any cross traffic are very small. It seems that the pure
ECN was a little bit faster but with the small sample size we took that could just be noise.
All 5 configurations are very close to each other. This behavior can be explained if you look at
Wireshark (A program that captures packets sent over a certain interface). Although we tried to
make a bottleneck on the router the number of dropped packets (and therefore retransmissions)
or CE codepoints (if ECN is used), is very small. Without cross traffic and therefore only one
source and destination the router doesn’t have to drop or mark packets very often and therefore
using ECN is nearly equal to not using ECN.

Having a look at the case when there is cross traffic we see that the performance of the real ECN
is much better than that of not using ECN. We see as well that the performance of the proxy,
where the ECN is only simulated, is close to the real one. Analyzing the traffic with Wireshark
we see a significant increase in the number of dropped or CE marked packets. This explains the
difference in the time required to transmit the 200 MB.

We can say that the proxy works as it should for the case when a client wants to download
something from a server and the proxy is installed in the clients’ internal network. If there is no
congestion the proxy doesn’t slow down the throughput and if there is, the proxy is nearly as
good as the real ECN. The proxy simulates ECN as expected in the downloading case.

4.3.2 Uploading to an ECN capable Server

We had some problems with the proxy in the case when the client uploads to the server. As
mentioned in chapter 3.2.1 the proxy stopped working for the current connection after a few
thousand packets were sent. We didn’t find the bug and changed the program code such that
the packets from the non-ECN-host to the ECN-host no longer are marked with the ECT code
point indicating that this packet can be marked instead of dropped. The proxy works with this
simplification but with the drawback mentioned in chapter 3.1.2.

Like in the downloading case all results obtained yield to the same conclusion. Representative
for all results we selected the two diagrams illustrating the throughput tests with 3 simultaneous
connections. Figure 4.6 display the results obtained when each connection uploaded 100 MB from
the client to the server over a router not congested with traffic from the two UDP hosts. In figure
4.7 the results of uploading 20 MB each with a congested path introduced by the UDP hosts are
shown.

Compared to the results obtained in the downloading case without cross traffic, the results for
uploading to the server without congestion are much more spread (figure 4.6). But the results
itself stays the same. Without congestion ECN usage and not using ECN is not clearly separable.
The proxy too is in the same range and takes the same time to complete the task. We can say
that the proxy doesn’t slow down the throughput for this scenario.

Having a look at figure 4.7 we see that ECN enabled traffic is for the scenario with cross traffic
distinctively faster than without using ECN. The proxy was changed to not mark the traffic
with the ECT mark and therefore not using ECN for the uploading direction. The performance

22 CHAPTER 4. TESTING THE IMPLEMENTATION OF THE PROXY

0 100 200 300 400 500 600 700 800 900

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure 4.6: Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per con-
nection and no Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_noProxy_noCross

0 50 100 150 200 250 300 350 400 450

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure 4.7: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per con-
nection and Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_proxy_cross

4.3 Results 23

of the proxy simulating ECN in the downloading direction is a little bit better than not using
ECN but clearly slower than the real ECN. It seems the simulated ECN for downloading from
the server has some influence on the throughput but the performance is clearly similar to the
scenarios where ECN isn’t used.

In the uploading scenario the proxy behaves as it should. Because of the forced change in the
program code due to the bug the proxy can’t profit from ECN for the packets from client to
server. As expected the proxy doesn’t slow down the throughput in the uploading scenario.

Chapter 5

Conclusion

5.1 Improvements for a Real World Deployment

Before the proxy can be installed on home routers all over the world it needs some improvements:

• In the current implementation a change in a header file of the Linux kernel is needed and
therefore a rebuilding of the kernel. This is much too much effort for most of the possible
users of this proxy. If the proxy would handle the connection tracking on its own without
changing the Conntrack module it would be standalone and wouldn’t need a rebuilding of
the kernel. This change takes a lot of work but would enormously improve the usability of
the proxy.

• Another change would be to make the interfaces generic and to enable the support of more
than two. Right now the interfaces are hardcoded in the code and are limited to two. For
a router with more than two interfaces the current implementation doesn’t work.

• The support of IPv6 wasn’t considered for the current implementation and has to be tested
and if necessary included.

• The configurability from user space might be a deciding criterion for some users and would
improve the usability of the proxy

• For a user it would be interesting to have some statistics on the percentage of ECN usage
and simulation, how many devices already use ECN and for how many devices the proxy
simulates ECN.

5.2 Conclusion and Outlook

We showed that the idea of a proxy that negotiates ECN with an end-node if the other end-node
doesn’t want to use it works. For the scenario where a client downloads data from an ECN
capable server the proxy comes close to the performance to end-to-end ECN. This scenario is
the most common use for a normal user at home. If he watches YouTube videos, uses a video
streaming provider like Netflix or just browses through the internet, the user would profit from
using ECN.

In the other scenario where the user uploads to an ECN enabled server, for example synchro-
nizing pictures with Dropbox, the proxy doesn’t do any damage. The throughput is at least
as good as without the proxy. With the error found and fixed that caused the problem in
the uploading scenario the proxy would most probably even improve the throughput. With a
proxy that works as intended for the uploading case it would also be interesting to see what
happens if both server and client are behind such a proxy. With the current implementa-
tion they would negotiate ECN but not mark the packets for either direction. But it would
be interesting to see the result when they both simulate a packet drop when they receive an ECE.

If someone would make the effort and implement the proxy as a standalone kernel module, the
proxy would have the possibility to impact the ECN usage measurably, at least on a regional

24

5.2 Conclusion and Outlook 25

scale. For example, if Swisscom, Sunrise or another service provider would decide to use the
proxy for every of their routers, the usage of ECN would greatly increase for traffic originating in
Switzerland. With the ECN proxy we have an instrument to enable ECN on traffic independently
of manufacturers and OS developers. Every a little bit tech-savvy user that has access to a router
has with this proxy the tool to improve the TCP traffic for all the end-nodes that use that router.

Appendix B

Results of the Throughput
Testing

Downloading from the Server

Multiple Connections, one File per connection

174 175 176 177 178 179 180

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.1: Throughput analysis with 1 simultaneous connection, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

343 343.5 344 344.5 345 345.5 346 346.5

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.2: Throughput analysis with 2 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

27

28 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

514.5 515 515.5 516 516.5 517 517.5 518

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.3: Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

855 855.5 856 856.5 857 857.5 858

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.4: Throughput analysis with 5 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

130 140 150 160 170 180 190 200

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.5: Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per con-
nection and Cross-Traffic, Server Upload and Host Download

29

200 220 240 260 280 300 320 340

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.6: Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

240 260 280 300 320 340 360 380 400 420 440 460 480

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.7: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

300 350 400 450 500 550 600 650

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.8: Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

30 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

Multiple Connections, one File per connection, with respect to zero

0 20 40 60 80 100 120 140 160 180

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.9: Throughput analysis with 1 simultaneous connection, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

0 50 100 150 200 250 300 350

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.10: Throughput analysis with 2 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

31

0 50 100 150 200 250 300 350 400 450 500 550

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.11: Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

0 100 200 300 400 500 600 700 800 900

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.12: Throughput analysis with 5 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download

0 20 40 60 80 100 120 140 160 180 200

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.13: Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

32 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

0 50 100 150 200 250 300 350

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.14: Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

0 50 100 150 200 250 300 350 400 450 500

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.15: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

0 100 200 300 400 500 600 700

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.16: Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download

33

One connection, multiple files

351 351.5 352 352.5 353 353.5

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.17: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Server Upload and Client Download

0 100 200 300

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.18: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Server Upload and Client Download, plotted with respect to zero

2,800 3,000 3,200 3,400 3,600 3,800

Proxy & Both ECN & Cross

No Proxy & Both ECN & Cross

Proxy & Server ECN & Cross

Proxy & No ECN & Cross

No Proxy & No ECN & Cross

seconds

Figure B.19: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
with Cross-Traffic, Server Upload and Client Download

34 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

0 1,000 2,000 3,000 4,000

Proxy & Both ECN & Cross

No Proxy & Both ECN & Cross

Proxy & Server ECN & Cross

Proxy & No ECN & Cross

No Proxy & No ECN & Cross

seconds

Figure B.20: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
with Cross-Traffic, Server Upload and Client Download, plotted with respect to zero

Uploading to the Server

Multiple Connections, one File per connection

150 200 250 300 350 400 450 500 550 600 650

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.21: Throughput analysis with 1 simultaneous connection, a transfer of 100 MB per con-
nection and no Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_noProxy_noCross

35

400 500 600 700 800 900 1,000

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.22: Throughput analysis with 2 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download

400 500 600 700 800 900

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.23: Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per con-
nection and no Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_noProxy_noCross

600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.24: Throughput analysis with 5 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download

36 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

120 130 140 150 160 170 180 190 200

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.25: Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

200 220 240 260 280 300 320 340

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.26: Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

240 260 280 300 320 340 360 380 400 420 440 460

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.27: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_proxy_cross

37

300 350 400 450 500 550 600

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.28: Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

Multiple Connections, one File per connection, with respect to zero

0 100 200 300 400 500 600

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.29: Throughput analysis with 1 simultaneous connection, a transfer of 100 MB per con-
nection and no Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_noProxy_noCross

38 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

0 100 200 300 400 500 600 700 800 900 1,000

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.30: Throughput analysis with 2 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download

0 100 200 300 400 500 600 700 800 900

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.31: Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per con-
nection and no Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_noProxy_noCross

0 200 400 600 800 1,000 1,200 1,400 1,600

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.32: Throughput analysis with 5 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download

39

0 20 40 60 80 100 120 140 160 180 200

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.33: Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

0 50 100 150 200 250 300 350

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.34: Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

0 50 100 150 200 250 300 350 400 450

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.35: Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download. One Outlier was removed
from noEcn_proxy_cross

40 APPENDIX B. RESULTS OF THE THROUGHPUT TESTING

0 100 200 300 400 500 600

Proxy & Both ECN

No Proxy & Both ECN

Proxy & Server ECN

Proxy & No ECN

No Proxy & No ECN

seconds

Figure B.36: Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download

One connection, multiple files

2,080 2,100 2,120 2,140

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.37: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Client Upload and Server Download

41

0 500 1,000 1,500 2,000

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.38: Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Client Upload and Server Download, with respect to zero

2,800 3,000 3,200 3,400 3,600 3,800

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.39: Throughput analysis with successively transmitting 200 times a file of size 2 MB,
with Cross-Traffic, Client Upload and Server Download

0 1,000 2,000 3,000 4,000

Proxy & Both ECN & No Cross

No Proxy & Both ECN & No Cross

Proxy & Server ECN & No Cross

Proxy & No ECN & No Cross

No Proxy & No ECN & No Cross

seconds

Figure B.40: Throughput analysis with successively transmitting 200 times a file of size 2 MB,
with Cross-Traffic, Client Upload and Server Download, with respect to zero

Appendix C

Tables with Throughput Analysis
Results

noEcn noProxy noCross 02:56.843 02:56.656 02:55.963 03:00.155 02:59.596
03:00.173 02:57.250 02:59.220 02:56.072 02:58.442

noEcn proxy noCross 02:58.991 03:00.270 02:55.974 02:57.806 02:58.974
02:58.859 02:56.411 02:58.183 02:56.275 02:56.089

oneEcn proxy noCross 02:54.517 02:55.564 02:57.385 02:57.607 02:56.771
02:56.903 02:56.660 02:57.764 02:57.975 02:59.061

bothEcn noProxy noCross 02:57.209 02:57.808 02:57.431 02:59.983 02:57.662
02:56.017 02:59.258 02:59.812 02:56.074 02:58.657

bothEcn proxy noCross 02:55.333 02:53.903 02:56.672 02:56.170 02:55.799
02:55.466 02:55.260 02:56.351 02:56.152 02:56.762

noEcn noProxy cross 02:50.323 03:09.362 03:13.940 03:13.357 03:16.262
03:13.194 03:05.344 03:16.597 03:19.445 03:18.123

noEcn proxy cross 02:53.398 03:05.850 03:02.691 03:09.611 03:01.413
03:10.262 03:08.374 03:04.619 03:15.865 03:07.860

oneEcn proxy cross 02:18.833 02:21.982 02:29.423 02:18.407 02:27.675
02:13.847 02:28.459 02:23.429 02:25.984 02:24.777

bothEcn noProxy cross 02:08.412 02:27.278 02:18.079 02:19.171 02:14.795
02:19.243 02:22.668 02:22.995 02:19.237 02:23.643

bothEcn proxy cross 02:17.393 02:15.826 02:15.869 02:29.284 02:21.267
02:14.351 02:21.990 02:18.724 02:26.997 02:16.036

Table C.1: Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 1 simultaneous connection. Displayed in mm:ss

42

43

noEcn noProxy noCross 05:44.784 05:44.768 05:44.804 05:46.368 05:45.526
05:45.498 05:45.391 05:45.712 05:45.735 05:46.248

noEcn proxy noCross 05:44.846 05:44.876 05:45.460 05:44.033 05:44.278
05:45.138 05:45.132 05:44.374 05:44.116 05:44.469

oneEcn proxy noCross 05:43.784 05:44.665 05:44.436 05:43.769 05:43.865
05:45.337 05:44.593 05:45.348 05:45.670 05:45.172

bothEcn noProxy noCross 05:44.216 05:46.029 05:46.054 05:44.960 05:44.367
05:45.273 05:44.962 05:43.995 05:44.461 05:44.321

bothEcn proxy noCross 05:46.417 05:44.781 05:44.471 05:43.862 05:44.380
05:44.211 05:43.776 05:44.196 05:44.664 05:43.260

noEcn noProxy cross 05:24.618 05:27.328 05:25.877 05:36.843 05:21.553
05:39.888 05:24.057 05:27.657 05:27.714 05:37.243

noEcn proxy cross 05:34.987 05:33.600 05:27.937 05:24.277 05:24.466
05:21.470 05:27.983 05:20.820 05:29.850 05:34.269

oneEcn proxy cross 03:36.939 03:40.581 03:41.247 03:34.933 03:39.952
03:35.775 03:38.486 03:39.426 03:39.412 03:37.138

bothEcn noProxy cross 03:34.404 03:38.041 03:31.846 03:36.366 03:39.520
03:35.643 03:32.248 03:38.761 03:35.334 03:30.987

bothEcn proxy cross 03:31.615 03:32.750 03:32.959 03:31.659 03:35.589
03:32.149 03:41.553 03:20.350 03:33.470 03:31.809

Table C.2: Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 2 simultaneous connections. Displayed in mm:ss

noEcn noProxy noCross 08:37.068 08:37.152 08:36.143 08:36.469 08:36.689
08:37.842 08:36.211 08:37.363 08:37.671 08:36.511

noEcn proxy noCross 08:35.093 08:35.522 08:36.214 08:36.092 08:36.395
08:36.941 08:35.496 08:36.087 08:36.650 08:35.756

oneEcn proxy noCross 08:35.157 08:34.783 08:35.098 08:34.798 08:34.488
08:35.387 08:34.872 08:35.206 08:35.181 08:35.098

bothEcn noProxy noCross 08:35.807 08:35.765 08:36.376 08:36.738 08:35.984
08:35.889 08:36.248 08:36.177 08:35.776 08:35.926

bothEcn proxy noCross 08:34.950 08:35.659 08:35.127 08:34.818 08:35.461
08:35.070 08:35.208 08:34.762 08:35.685 08:35.313

noEcn noProxy cross 07:28.676 07:40.386 07:20.042 07:20.760 07:35.823
07:33.268 07:31.173 07:16.156 07:24.536 07:28.908

noEcn proxy cross 07:14.187 07:16.337 07:19.287 07:20.641 07:18.905
07:28.223 07:17.435 07:24.003 07:23.572 07:21.853

oneEcn proxy cross 04:28.929 04:33.420 04:33.748 04:26.959 04:29.970
04:26.078 04:31.505 04:34.957 04:31.215 04:30.576

bothEcn noProxy cross 04:28.142 04:26.071 04:20.147 04:28.281 04:28.597
04:23.965 04:29.999 04:15.189 04:22.961 04:23.933

bothEcn proxy cross 04:23.547 04:21.810 04:26.384 04:20.495 04:18.213
04:22.192 04:25.488 04:21.272 04:21.955 04:24.062

Table C.3: Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 3 simultaneous connections. Displayed in mm:ss

44 APPENDIX C. TABLES WITH THROUGHPUT ANALYSIS RESULTS

noEcn noProxy noCross 14:17.405 14:17.309 14:17.935 14:17.272 14:17.798
14:17.352 14:16.957 14:17.131 14:17.029 14:17.223

noEcn proxy noCross 14:16.244 14:15.823 14:15.908 14:16.344 14:16.028
14:16.101 14:16.230 14:15.731 14:16.499 14:16.052

oneEcn proxy noCross 14:15.695 14:15.810 14:15.254 14:15.850 14:16.614
14:16.194 14:15.685 14:16.096 14:16.001 14:16.103

bothEcn noProxy noCross 14:17.232 14:17.473 14:17.248 14:17.318 14:17.807
14:18.113 14:17.841 14:16.916 14:17.530 14:18.105

bothEcn proxy noCross 14:16.896 14:15.839 14:15.985 14:15.963 14:16.104
14:15.828 14:15.880 14:15.842 14:16.849 14:15.807

noEcn noProxy cross 10:27.384 10:36.345 10:33.878 10:37.217 10:31.736
10:36.622 10:36.931 10:35.411 10:47.586 10:47.562

noEcn proxy cross 10:26.509 10:28.145 10:19.630 10:11.460 10:25.357
10:24.416 10:19.809 10:10.990 10:27.455 10:36.382

oneEcn proxy cross 05:30.734 05:29.289 05:27.042 05:37.557 05:21.537
05:31.001 05:34.045 05:31.298 05:30.653 05:25.622

bothEcn noProxy cross 05:15.118 05:11.144 05:16.299 05:11.369 05:13.020
05:15.498 05:08.564 05:17.076 05:15.000 05:13.000

bothEcn proxy cross 05:10.463 05:07.898 05:17.419 05:21.260 05:13.223
05:19.915 05:12.900 05:12.025 05:10.620 05:10.710

Table C.4: Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 5 simultaneous connections. Displayed in mm:ss

noEcn noProxy noCross 0:05:53.460
noEcn proxy noCross 0:05:52.618
oneEcn proxy noCross 0:05:52.561
bothEcn noProxy noCross 0:05:50.964
bothEcn proxy noCross 0:05:51.465
noEcn noProxy cross 1:03:04.055
noEcn proxy cross 1:02:27.322
oneEcn proxy cross 0:45:38.636
bothEcn noProxy cross 0:45:46.146
bothEcn proxy cross 0:45:09.515

Table C.5: Time elapsed for downloading (Server uploads, Client downloads) 100 times a 2 MB
file with 1 connection. Displayed in hh:mm:ss

45

noEcn noProxy noCross 09:31.831 23:39.844 06:04.260 10:17.139
05:02.082 07:47.708 07:34.967

noEcn proxy noCross 07:54.188 10:14.508 08:13.397 09:59.570
07:52.998 04:50.495 07:51.211

oneEcn proxy noCross 08:12.842 09:04.133 08:37.096 09:20.210
08:08.378 04:43.978 08:12.203

bothEcn noProxy noCross 09:47.775 08:55.644 07:46.733 07:04.504
09:39.683 07:12.513 03:00.878

bothEcn proxy noCross 07:50.469 09:16.709 07:49.067 09:34.694
07:52.137 04:30.609 08:28.793

noEcn noProxy cross 02:59.408 03:12.210 03:17.845 03:08.022
03:15.062 03:11.458 03:06.688 03:17.367

noEcn proxy cross 03:01.234 03:13.286 03:13.645 02:58.402
03:19.812 03:11.124 03:12.073 03:12.763

oneEcn proxy cross 02:59.223 02:57.113 03:05.377 02:54.113
02:56.646 03:14.473 03:09.835 03:12.078

bothEcn noProxy cross 02:07.109 02:22.027 02:18.837 02:23.334
02:17.901 02:19.036 02:19.715 02:21.499

bothEcn proxy cross 02:29.219 02:14.990 02:20.336 02:13.362
02:25.057 02:13.818 02:22.492 02:19.910

Table C.6: Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 1 simultaneous connection. Displayed in mm:ss. Outlier marked red

noEcn noProxy noCross 13:16.301 09:13.234 15:06.181 13:20.616
07:31.349 09:48.642 12:17.003

noEcn proxy noCross 12:16.762 15:53.688 11:58.404 16:27.920
12:20.697 07:16.088 09:34.279

oneEcn proxy noCross 11:25.404 15:54.862 11:04.999 15:14.289
11:05.741 07:38.170 09:06.890

bothEcn noProxy noCross 12:52.354 10:57.969 10:44.017 13:16.912
12:26.072 06:09.810 06:41.809

bothEcn proxy noCross 12:08.990 16:07.808 11:27.217 16:27.863
11:37.449 07:05.571 08:52.651

noEcn noProxy cross 05:25.826 05:28.671 05:29.034 05:23.379
05:19.826 05:17.359 05:31.017 05:24.484

noEcn proxy cross 05:22.843 05:31.007 05:25.400 05:31.011
05:27.375 05:16.349 05:20.923 05:23.501

oneEcn proxy cross 05:20.423 05:15.256 05:24.612 05:11.329
05:19.567 05:29.028 05:14.368 05:16.906

bothEcn noProxy cross 03:22.888 03:32.594 03:33.002 03:31.663
03:29.188 03:34.669 03:28.983 03:30.372

bothEcn proxy cross 03:25.205 03:34.841 03:29.696 03:28.839
03:31.057 03:30.680 03:16.221 03:25.879

Table C.7: Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 2 simultaneous connections. Displayed in mm:ss

46 APPENDIX C. TABLES WITH THROUGHPUT ANALYSIS RESULTS

noEcn noProxy noCross 14:54.200 11:14.115 13:20.247 30:01.177
10:52.873 11:19.162 07:27.100

noEcn proxy noCross 07:01.590 10:59.076 07:52.010 10:23.864
07:51.101 10:45.140 10:55.378

oneEcn proxy noCross 07:07.667 11:19.155 08:52.646 11:28.750
09:42.731 10:33.782 11:08.327

bothEcn noProxy noCross 10:12.252 09:18.353 08:04.799 08:14.748
11:10.516 09:25.929 06:01.171

bothEcn proxy noCross 07:21.600 10:32.576 08:43.014 10:43.443
08:16.027 10:16.129 11:08.768

noEcn noProxy cross 07:16.541 07:21.703 07:12.770 07:14.727
07:18.139 07:05.093 07:11.832 07:13.883

noEcn proxy cross 07:14.927 07:22.754 07:12.009 07:13.871
07:18.381 07:04.171 07:06.185 25:01.000

oneEcn proxy cross 07:14.442 06:56.930 07:03.384 06:55.233
06:50.207 06:56.012 07:03.735 07:11.997

bothEcn noProxy cross 04:14.198 04:19.259 04:16.264 04:18.943
04:19.457 04:15.096 04:19.155 04:17.288

bothEcn proxy cross 04:15.821 04:19.949 04:11.269 04:09.630
04:12.730 04:17.794 04:12.520 04:16.585

Table C.8: Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 3 simultaneous connections. Displayed in mm:ss. Outlier marked red

noEcn noProxy noCross 24:22.151 14:30.646 17:13.259 24:10.995
13:40.396 15:42.573 11:55.259

noEcn proxy noCross 12:52.593 16:01.602 12:34.134 15:52.986
12:33.530 14:32.512 16:31.722

oneEcn proxy noCross 12:40.697 15:48.525 12:32.588 15:56.863
12:36.378 14:26.129 16:19.571

bothEcn noProxy noCross 14:01.064 11:40.645 11:28.204 14:36.002
13:40.410 12:19.105 11:12.978

bothEcn proxy noCross 12:47.076 16:25.987 12:36.276 16:25.062
12:36.568 15:09.832 17:03.830

noEcn noProxy cross 09:58.285 10:06.876 09:45.744 10:02.614
10:17.301 09:59.790 10:11.157 10:09.624

noEcn proxy cross 10:09.823 10:16.023 10:03.273 09:49.788
10:17.395 10:09.104 09:59.828 09:58.113

oneEcn proxy cross 09:57.890 10:02.228 09:45.457 09:59.883
09:58.800 09:49.837 09:37.937 09:58.419

bothEcn noProxy cross 05:17.258 05:13.305 05:05.467 05:12.342
05:03.481 05:05.881 05:05.552 05:12.939

bothEcn proxy cross 05:06.689 05:09.070 05:05.111 04:55.842
05:05.106 05:10.364 05:07.925 05:06.943

Table C.9: Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 5 simultaneous connections. Displayed in mm:ss

47

noEcn noProxy noCross 0:35:18.333
noEcn proxy noCross 0:35:38.335
oneEcn proxy noCross 0:35:49.907
bothEcn noProxy noCross 0:34:47.940
bothEcn proxy noCross 0:34:59.284
noEcn noProxy cross 1:01:57.318
noEcn proxy cross 1:01:58.204
oneEcn proxy cross 1:01:22.811
bothEcn noProxy cross 0:45:08.781
bothEcn proxy cross 0:44:53.042

Table C.10: Time elapsed for downloading (Client uploads, Server downloads) 100/200 (100
times without cross traffic and 200 times with cross traffic) times a 2 MB file with 1 connection.
Displayed in hh:mm:ss

Appendix D

Sourcecode

Sourecode of the Netfilter-Hook and the changed Header-
File

Listing D.1: Sourcecode of the Netfilter Hook

//Netfilter hook for an ECN handling proxy
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/skbuff.h>
#include <linux/tcp.h>
#include <net/ip.h>
#include <net/checksum.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/tcp.h>

static struct nf_hook_ops nfho; //struct holding set of hook
function options

static char *interface_client = "eth1"; //strings with interface
names

static char *interface_server = "eth2";
enum ecn_states{INIT, AC, ANC, AC_WAIT, ANC_WAIT, ACBC_OR_ANCBNC,

ACBNC, ACBNC_DUPACK, ACBNC_ECEDUPACK, ACBNC_ECE, ANCBC,
ANCBC_DUPACK, ANCBC_ECEDUPACK, ANCBC_ECE};

void set_ect(struct iphdr* iph){
unsigned char tosbits;
tosbits = iph->tos;
tosbits = tosbits | 2; //change TOS to ECT(0)
iph->tos = tosbits;
iph->check = 0;
ip_send_check(iph);

}

void clear_ect(struct iphdr* iph){
unsigned char tosbits;
tosbits = iph->tos;
tosbits = tosbits & ~2; //reset ECT(0)

48

49

iph->tos = tosbits;
iph->check = 0;
ip_send_check(iph);

}

void clear_ce(struct iphdr* iph){
unsigned char tosbits;
tosbits = iph->tos;
tosbits = tosbits & ~3; //reset CE
iph->tos = tosbits;
iph->check = 0;
ip_send_check(iph);

}

void set_ece(struct tcphdr *tcph, struct iphdr *iph, struct sk_buff *
skb){

int tcplen;
if(tcph->ece !=1){

tcph->ece = 1;
tcplen = skb->len - ip_hdrlen(skb);
tcph->check = 0;
tcph->check = tcp_v4_check(tcplen, iph->saddr, iph->daddr,

csum_partial((char *)tcph, tcplen,0));
}

}

void set_cwr(struct tcphdr *tcph, struct iphdr *iph, struct sk_buff *
skb){

int tcplen;
if(tcph->cwr != 1){

tcph->cwr = 1;
tcplen = skb->len - ip_hdrlen(skb);
tcph->check = 0;
tcph->check = tcp_v4_check(tcplen, iph->saddr, iph->daddr,

csum_partial((char *)tcph, tcplen,0));
}

}

void clear_ece(struct tcphdr *tcph, struct iphdr *iph, struct sk_buff

*skb){
int tcplen;
if(tcph->ece !=0){

tcph->ece = 0;
tcplen = skb->len - ip_hdrlen(skb);
tcph->check = 0;
tcph->check = tcp_v4_check(tcplen, iph->saddr, iph->daddr,

csum_partial((char *)tcph, tcplen,0));
}

}

void clear_cwr(struct tcphdr *tcph, struct iphdr *iph, struct sk_buff

*skb){
int tcplen;
if(tcph->cwr != 0){

tcph->cwr = 0;
tcplen = skb->len - ip_hdrlen(skb);
tcph->check = 0;
tcph->check = tcp_v4_check(tcplen, iph->saddr, iph->daddr,

50 APPENDIX D. SOURCECODE

csum_partial((char *)tcph, tcplen,0));
}

}

void set_ack_seq(struct tcphdr *tcph, struct iphdr *iph, struct
sk_buff *skb, u_int32_t ack_seq){

int tcplen;
tcph->ack_seq = ack_seq;

tcplen = skb->len - ip_hdrlen(skb);
tcph->check = 0;
tcph->check = tcp_v4_check(tcplen, iph->saddr, iph->daddr,

csum_partial((char *)tcph, tcplen,0));
}

//function called by the hook
unsigned int hook_func(unsigned int hooknum, struct sk_buff *skb,

const struct net_device *in, const struct net_device *out, int (*
okfn)(struct sk_buff *))

{
struct iphdr *iph;
struct tcphdr *tcph;
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
u_int8_t new_state, new_number_ack;
u_int32_t new_saved_ack;
u_int8_t hostA;
int dirA, dirB;

if(!skb) {return NF_ACCEPT;} //stop if skb = NULL

iph = (struct iphdr *)skb_network_header(skb); //IP-Header

if (!iph) {return NF_ACCEPT;} // stop if iph = NULL

/* IF TCP packet enter cases, else Accept*/
if (iph->protocol == IPPROTO_TCP){

tcph = tcp_hdr(skb); //TCP-Header

nf_conntrack_get(skb->nfct);
ct = nf_ct_get(skb, &ctinfo);
if(!ct){return NF_ACCEPT;} // stop if ct == NULL

new_number_ack = ct->proto.tcp.number_ack;
new_saved_ack = ct->proto.tcp.saved_ack;
hostA = ((ct->proto.tcp.ecn_state) >>7);
new_state = ct->proto.tcp.ecn_state & ~(1<<7); //default

new_state = old_state

/*If new connection set ecn_state to INIT*/
if(ctinfo==2){

new_state = INIT;
if(strcmp(skb->dev->name,interface_client) == 0){ //if client

interface is initiating host
hostA = 0;

}else{
hostA = 1;

51

}

}

/*From A (dirA) or from B (dirB)*/
dirA = ((strcmp(skb->dev->name,interface_client) == 0) && (hostA

== 0)) || ((strcmp(skb->dev->name,interface_server)==0) && (
hostA != 0));

dirB = ((strcmp(skb->dev->name,interface_server) == 0) && (hostA
== 0)) || ((strcmp(skb->dev->name,interface_client)==0) && (
hostA != 0));

switch(new_state){

case INIT:
/*Is Host A input device?*/
if(dirA){

if(tcph->syn == 1){
//ECN-setup ACK
if(tcph->ece == 1 && tcph->cwr == 1){

new_state = AC;
}else{

//set ECE and CWR
set_ece(tcph, iph, skb);
set_cwr(tcph, iph, skb);
new_state = ANC;

}
}

}
break;

case AC:
/*Is Host B input device?*/
if(dirB){

if(tcph->syn == 1 && tcph->ack == 1){
//ECN-setup SYN/ACK
if(tcph->ece == 1 && tcph->cwr == 0){

//both capable
new_state = ACBC_OR_ANCBNC;

}else{
//A capable, B not
//change tcph->ece = 1 && tcph->cwr = 0;
set_ece(tcph,iph,skb);
clear_cwr(tcph,iph,skb);
new_state = ACBNC;

}
}

}
break;

case ANC:
/*Is Host B input device?*/
if(dirB){

if(tcph->syn == 1 && tcph->ack == 1){
//ECN-setup SYN/ACK
if(tcph->ece == 1 && tcph->cwr == 0){

//A not capable, B capable
clear_ece(tcph, iph, skb);

52 APPENDIX D. SOURCECODE

clear_cwr(tcph, iph, skb);
new_state = ANCBC;

}else{
//both not capable
new_state = ACBC_OR_ANCBNC;

}
}

}
break;

case AC_WAIT:
if(dirA){

if(tcph->ack == 1){
new_state = ACBNC;

}
}
break;

case ANC_WAIT:
//wait for the ack
if(dirA){

if(tcph->ack == 1){
new_state = ANCBC;

}
}
break;

case ACBC_OR_ANCBNC:
//don’t change any headers/flags
break;

case ACBNC:
if(dirA){

if((iph->tos & 3) == 3){
//CE codepoint
if(tcph->ece == 1){

//CE and ECE
//save ACK
new_saved_ack = tcph->ack;
new_number_ack = 1;
new_state = ACBNC_ECEDUPACK;

}else{
//CE and no ECE
//do something
new_state = ACBNC_ECE;

}
}else{

if(tcph->ece == 1){
//no CE but ECE
//save ACK
new_saved_ack = tcph->ack;
new_number_ack = 1;
new_state = ACBNC_DUPACK;

}else{
//no CE and no ECE
//new_state = old_state

}
}

53

//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirB){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
}
break;

case ACBNC_DUPACK:
if(dirA){

set_ack_seq(tcph,iph,skb,new_saved_ack);
new_number_ack = new_number_ack +1;
if((iph->tos & 3) == 3){

if(new_number_ack > 3){
//not finished with duplicating but CE occured
new_state = ACBNC_ECE;

}else{
//finished duplicating but CE occured
new_state = ACBNC_ECEDUPACK;

}
}else{

if(new_number_ack > 3){
//finished duplicating -> back to ACBNC
new_state = ACBNC;

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirB){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
}
break;

case ACBNC_ECEDUPACK:
if(dirA){

set_ack_seq(tcph,iph,skb,new_saved_ack);
new_number_ack = new_number_ack +1;
if(tcph->cwr){

if(new_number_ack > 3){
//not finished with duplicating but CE occured
new_state = ACBNC;

}else{
//finished duplicating but CE occured
new_state = ACBNC_DUPACK;

}
}else{

if(new_number_ack > 3){
//finished duplicating -> back to ACBNC
new_state = ACBNC;

}
}

54 APPENDIX D. SOURCECODE

//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirB){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
//set the ece flag, because there was a CE
set_ece(tcph,iph,skb);

}
break;

case ACBNC_ECE:
//printk(KERN_INFO "Ce received");
if(dirA){

if(tcph->cwr == 1){
if(tcph->ece == 1){

//new state and save ACK
new_state = ACBNC_DUPACK;
new_saved_ack = tcph->ack_seq;
new_number_ack = 1;

}else{
new_state = ACBNC;

}
}else{

if(tcph->ece == 1){
new_state = ACBNC_ECEDUPACK;
new_saved_ack = tcph->ack_seq;
new_number_ack = 1;

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirB){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
//set the ece flag, because there was a CE
set_ece(tcph,iph,skb);

}
break;

case ANCBC:
//same code as in ACBNC but dirA and dirB interchanged and

ACBNC -> ANCBC, left out and added when testing complete
if(dirB){

if((iph->tos & 3) == 3){
//CE codepoint
if(tcph->ece == 1){

//CE and ECE
//save ACK
new_saved_ack = tcph->ack;
new_number_ack = 1;
new_state = ANCBC_ECEDUPACK;

}else{

55

//CE and no ECE
//do something
new_state = ANCBC_ECE;

}
}else{

int test = (int)tcph->ece;
printk(KERN_INFO "test = %i\n",test);
if(tcph->ece == 1){

//no CE but ECE
//save ACK
new_saved_ack = tcph->ack;
new_number_ack = 1;
new_state = ANCBC_DUPACK;

}else{
//no CE and no ECE
//new_state = old_state

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirA){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
}
break;

case ANCBC_DUPACK:
if(dirB){

set_ack_seq(tcph,iph,skb,new_saved_ack);
new_number_ack = new_number_ack +1;
if((iph->tos & 3) == 3){

if(new_number_ack > 3){
//not finished with duplicating but CE occured
new_state = ANCBC_ECE;

}else{
//finished duplicating but CE occured
new_state = ANCBC_ECEDUPACK;

}
}else{

if(new_number_ack > 3){
//finished duplicating -> back to ACBNC
new_state = ANCBC;

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirA){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
}
break;

56 APPENDIX D. SOURCECODE

case ANCBC_ECEDUPACK:
if(dirB){

set_ack_seq(tcph,iph,skb,new_saved_ack);
new_number_ack = new_number_ack +1;
if(tcph->cwr){

if(new_number_ack > 3){
//not finished with duplicating but CE occured
new_state = ANCBC;

}else{
//finished duplicating but CE occured
new_state = ANCBC_DUPACK;

}
}else{

if(new_number_ack > 3){
//finished duplicating -> back to ACBNC
new_state = ANCBC;

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirA){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
//set the ece flag, because there was a CE
set_ece(tcph,iph,skb);

}
break;

case ANCBC_ECE:
if(dirB){

if(tcph->cwr == 1){
if(tcph->ece == 1){

//new state and save ACK
new_state = ANCBC_DUPACK;
new_saved_ack = tcph->ack_seq;
new_number_ack = 1;

}else{
new_state = ANCBC;

}
}else{

if(tcph->ece == 1){
new_state = ANCBC_ECEDUPACK;
new_saved_ack = tcph->ack_seq;
new_number_ack = 1;

}
}
//clear ECT, CE, ECE for every packet to B
clear_ce(iph); //clears CE and ECT(0)
clear_ece(tcph, iph, skb);

}
if(dirA){

//set ECT(0), problematic if the proxy set earlier the CE
codepoint

set_ect(iph);
//set the ece flag, because there was a CE

57

set_ece(tcph,iph,skb);
}
break;

default:
printk(KERN_INFO "Invalid state");

}

//write back new values
ct->proto.tcp.ecn_state = new_state | (hostA << 7);
ct->proto.tcp.saved_ack = new_saved_ack;
ct->proto.tcp.number_ack= new_number_ack;
printk(KERN_INFO "state = %i, hostA = %i\n",(int)ct->proto.tcp.

ecn_state, (int)hostA); //print the state and the initiating
host for debugging

}

return NF_ACCEPT;
}

//Called when module loaded using ’insmod’
int init_module()
{

nfho.hook = (nf_hookfn *) hook_func; //function to call
when conditions below met

nfho.hooknum = NF_INET_FORWARD; //called for every
packet that gets forwarded

nfho.pf = PF_INET; //IPV4 packets
nfho.priority = NF_IP_PRI_FIRST; //set to highest

priority over all other hook functions
nf_register_hook(&nfho); //register hook

return 0; //return 0 for success
}

//Called when module unloaded using ’rmmod’
void cleanup_module()
{

nf_unregister_hook(&nfho);
}

58 APPENDIX D. SOURCECODE

Listing D.2: Sourcecode of the changed Header-File

#ifndef _NF_CONNTRACK_TCP_H
#define _NF_CONNTRACK_TCP_H

#include <uapi/linux/netfilter/nf_conntrack_tcp.h>

struct ip_ct_tcp_state {
u_int32_t td_end; /* max of seq + len */
u_int32_t td_maxend; /* max of ack + max(win, 1)

*/
u_int32_t td_maxwin; /* max(win) */
u_int32_t td_maxack; /* max of ack */
u_int8_t td_scale; /* window scale factor */
u_int8_t flags; /* per direction options */

};

struct ip_ct_tcp {
struct ip_ct_tcp_state seen[2]; /* connection parameters per

direction */
u_int8_t state; /* state of the connection (

enum tcp_conntrack) */
/* For detecting stale connections */
u_int8_t last_dir; /* Direction of the last

packet (enum ip_conntrack_dir) */
u_int8_t retrans; /* Number of retransmitted

packets */
u_int8_t last_index; /* Index of the last packet

*/
u_int32_t last_seq; /* Last sequence number seen

in dir */
u_int32_t last_ack; /* Last sequence number seen

in opposite dir */
u_int32_t last_end; /* Last seq + len */
u_int16_t last_win; /* Last window advertisement

seen in dir */
/* For SYN packets while we may be out-of-sync */
u_int8_t last_wscale; /* Last window scaling factor

seen */
u_int8_t last_flags; /* Last flags set */

//These are the three inserted variables for the proxy to function
properly

u_int8_t ecn_state; /*state of the ecn proxy*/
u_int32_t saved_ack; /*saved ack for duplicated acks*/
u_int8_t number_ack; /*number of times ack has been repeated

*/
};

#endif /* _NF_CONNTRACK_TCP_H */

59

bash Scripts used for Testing

Script for the Proxy

while true
do

a=$(nc 192.168.0.10 2345) # address of the client
case $a in
noProxy)

echo "noProxy"
sudo rmmod ecn_proxy
;;

proxy)
echo "proxy"
sudo insmod ecn_proxy.ko
;;

cross)
echo "cross"
echo "cross" > index.html
nc -l 2345 < index.html
;;

*)
echo "sleep"
;;

esac
sleep 10

done

Scripts for the Uploading Host

Listing D.3: Main Script that calls the corresponding Scripts and sends the Signals to the other
Hosts

#noCross
echo "noCross" > index.html
nc -l 2345 < index.html

cd noEcn_noProxy_noCross
#First Proxy, the Ecn
echo "noProxy" > index.html
nc -l 2345 < index.html
echo "noEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=0
sleep 10
bash ../upload_testing_script.sh
cd ..

cd noEcn_proxy_noCross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "noEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=0
sleep 10
bash ../upload_testing_script.sh
cd ..

60 APPENDIX D. SOURCECODE

cd oneEcn_proxy_noCross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "oneEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_testing_script.sh
cd ..

cd bothEcn_proxy_noCross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "bothEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_testing_script.sh
cd ..

cd bothEcn_noProxy_noCross
echo "noProxy" > index.html
nc -l 2345 < index.html
echo "bothEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_testing_script.sh
cd ..

#cross
echo "cross" > index.html
nc -l 2345 < index.html

cd noEcn_noProxy_cross
echo "noProxy" > index.html
nc -l 2345 < index.html
echo "noEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=0
sleep 10
bash ../upload_new_testing_script.sh
cd ..

cd noEcn_proxy_cross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "noEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=0
sleep 10
bash ../upload_new_testing_script.sh
cd ..

cd oneEcn_proxy_cross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "oneEcn" > index.html

61

nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_new_testing_script.sh
cd ..

cd bothEcn_proxy_cross
echo "proxy" > index.html
nc -l 2345 < index.html
echo "bothEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_new_testing_script.sh
cd ..

cd bothEcn_noProxy_cross
echo "noProxy" > index.html
nc -l 2345 < index.html
echo "bothEcn" > index.html
nc -l 2345 < index.html
sudo sysctl -w net.ipv4.tcp_ecn=1
sleep 10
bash ../upload_new_testing_script.sh
cd ..

Listing D.4: Script for testing the Connection without Cross-Traffic

Script for automatic testing

Create or overwrite the files for testing
echo "1 connection, big file" > 1_conn_big.txt
echo "2 connection, big file" > 2_conn_big.txt
echo "3 connection, big file" > 3_conn_big.txt
echo "5 connection, big file" > 5_conn_big.txt
echo "small files"> small.txt

for i in {1..5}
do

for VARIABLE in 1 2 3 5
do

(time iperf -c 192.168.2.10 -P $VARIABLE -n 200m -i
10) 2>> ${VARIABLE}_conn_big.txt

done
done

(time (for i in {1..200}; do iperf -c 192.168.2.10 -n 2m ;done)) 2>>
small.txt

Listing D.5: Script for testing the Connection with Cross-Traffic

Script for automatic testing

Create or overwrite the files for testing
echo "1 connection, big file" > 1_conn_big.txt
echo "2 connection, big file" > 2_conn_big.txt
echo "3 connection, big file" > 3_conn_big.txt
echo "5 connection, big file" > 5_conn_big.txt
echo "small files"> small.txt

62 APPENDIX D. SOURCECODE

for i in {1..5}
do

for VARIABLE in 1 2 3 5
do

(time iperf -c 192.168.2.10 -P $VARIABLE -n 20m -i
10) 2>> ${VARIABLE}_conn_big.txt

done
done

(time (for i in {1..200}; do iperf -c 192.168.2.10 -n 2m ;done)) 2>>
small.txt

Script for the Downloading Host

while true
do

a=$(nc 192.168.0.10 2345) # address of the uploading
host

case $a in
noEcn)

echo "noEcn"
sudo sysctl -w net.ipv4.tcp_ecn=0
;;

oneEcn)
echo "oneEcn"
sudo sysctl -w net.ipv4.tcp_ecn=1
;;

bothEcn)
echo "bothEcn"
sudo sysctl -w net.ipv4.tcp_ecn=1
;;

noProxy)
echo "noProxy"
echo "noProxy" > index.html
nc -l 2345 < index.html
;;

proxy)
echo "proxy"
echo "proxy" > index.html
nc -l 2345 < index.html
;;

cross)
echo "cross"
echo "cross" > index.html
nc -l 2345 < index.html
;;

*)
echo "sleep"
;;

esac
sleep 10

done

Script for the UDP Hosts generating Cross-Traffic

UDP Host on Client Side

while true
do

a=$(nc 192.168.1.1 2345) # address of the ECN proxy

63

sleep 1
case $a in
cross)

echo "cross"
echo "cross" > index.html
nc -l 2345 < index.html
sleep 1
iperf -c 192.168.1.20 -u -b 10M -t 100000000 -i 20
;;

*)
echo "sleep"
;;

esac
sleep 10

done

UDP Host on Server Side

while true
do

a=$(nc 192.168.1.20 2345) # address of the UDPA host
case $a in
cross)

echo "cross"
iperf -c 192.168.1.20 -u -b 10M -t 100000000 -i 20
;;

*)
echo "sleep"
;;

esac
sleep 10

done

List of Figures

2.1 A doesn’t want to use ECN . 6

2.2 A wants to use ECN but B doesn’t . 6

2.3 A and B want to use ECN, negotiation successful 6

2.4 Router marks Packet from Host A due to Congestion. First the router receives a
packet and decides to drop it, but after checking for the CET mark he changes the
code point to CE and forwards the packet to the destination. The receiver inspects
the packet and notices the CE, hence he sends the next packet with ECE set and
every subsequent packet until he receives a packet with CWR set from the sender
of the CE causing packet.) . 7

2.5 Iptables Chain Structure. Packet arrives at PREROUTING, destined either for
forwarding or for the local machine. Depending on this the packet is handled by
either the INPUT chain or the FORWARD chain. From the INPUT chain may
come a possible new or changed packet for sending to the OUTPUT chain. The
FORWARD and OUTPUT chain give their packets to the POSTROUTING chain
which prepares the packet for sending . 8

3.1 State Diagram of the Finite State Machine determining who wants to use ECN or
not during the connection establishment . 10

3.2 State Diagram of the Finite State Machine after the connection is established . . 13

4.1 Basic Test Setup, Client connected to the Server via the Proxy and a Router . . 17

4.2 Expanded Test Setup, Client connected to the Server via the Proxy and a Router.
Additionally, there are two Hosts sending IP-packets over the router to cause the
buffers to fill and eventually cause congestion . 17

4.3 Signaling Chain for automatically changing the Configuration of the Test Setup . 20

4.4 Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 20

4.5 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 21

4.6 Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download. One Out-
lier was removed from noEcn_noProxy_noCross 22

4.7 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download. One Outlier
was removed from noEcn_proxy_cross . 22

B.1 Throughput analysis with 1 simultaneous connection, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 27

B.2 Throughput analysis with 2 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 27

B.3 Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 28

B.4 Throughput analysis with 5 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 28

B.5 Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 28

64

LIST OF FIGURES 65

B.6 Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 29

B.7 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 29

B.8 Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 29

B.9 Throughput analysis with 1 simultaneous connection, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 30

B.10 Throughput analysis with 2 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 30

B.11 Throughput analysis with 3 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 31

B.12 Throughput analysis with 5 simultaneous connections, a transfer of 200 MB per
connection and no Cross-Traffic, Server Upload and Host Download 31

B.13 Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 31

B.14 Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 32

B.15 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 32

B.16 Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Server Upload and Host Download 32

B.17 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Server Upload and Client Download 33

B.18 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Server Upload and Client Download, plotted with respect to zero 33

B.19 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
with Cross-Traffic, Server Upload and Client Download 33

B.20 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
with Cross-Traffic, Server Upload and Client Download, plotted with respect to zero 34

B.21 Throughput analysis with 1 simultaneous connection, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download. One Out-
lier was removed from noEcn_noProxy_noCross 34

B.22 Throughput analysis with 2 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download 35

B.23 Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download. One Out-
lier was removed from noEcn_noProxy_noCross 35

B.24 Throughput analysis with 5 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download 35

B.25 Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 36

B.26 Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 36

B.27 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download. One Outlier
was removed from noEcn_proxy_cross . 36

B.28 Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 37

B.29 Throughput analysis with 1 simultaneous connection, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download. One Out-
lier was removed from noEcn_noProxy_noCross 37

B.30 Throughput analysis with 2 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download 38

B.31 Throughput analysis with 3 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download. One Out-
lier was removed from noEcn_noProxy_noCross 38

66 LIST OF FIGURES

B.32 Throughput analysis with 5 simultaneous connections, a transfer of 100 MB per
connection and no Cross-Traffic, Client Upload and Server Download 38

B.33 Throughput analysis with 1 simultaneous connection, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 39

B.34 Throughput analysis with 2 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 39

B.35 Throughput analysis with 3 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download. One Outlier
was removed from noEcn_proxy_cross . 39

B.36 Throughput analysis with 5 simultaneous connections, a transfer of 20 MB per
connection and Cross-Traffic, Client Upload and Server Download 40

B.37 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Client Upload and Server Download 40

B.38 Throughput analysis with successively transmitting 100 times a file of size 2 MB,
no Cross-Traffic, Client Upload and Server Download, with respect to zero 41

B.39 Throughput analysis with successively transmitting 200 times a file of size 2 MB,
with Cross-Traffic, Client Upload and Server Download 41

B.40 Throughput analysis with successively transmitting 200 times a file of size 2 MB,
with Cross-Traffic, Client Upload and Server Download, with respect to zero . . 41

List of Tables

2.1 Explanation of the different ECN Field values . 6

C.1 Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 1 simultaneous connection. Displayed in mm:ss 42

C.2 Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 2 simultaneous connections. Displayed in mm:ss 43

C.3 Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 3 simultaneous connections. Displayed in mm:ss 43

C.4 Time elapsed for downloading (Server uploads, Client downloads) 200MB/20MB
(noCross/cross) with 5 simultaneous connections. Displayed in mm:ss 44

C.5 Time elapsed for downloading (Server uploads, Client downloads) 100 times a 2
MB file with 1 connection. Displayed in hh:mm:ss 44

C.6 Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 1 simultaneous connection. Displayed in mm:ss. Outlier
marked red . 45

C.7 Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 2 simultaneous connections. Displayed in mm:ss 45

C.8 Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 3 simultaneous connections. Displayed in mm:ss. Outlier
marked red . 46

C.9 Time elapsed for uploading (Client uploads, Server downloads) 100MB/20MB
(noCross/cross) with 5 simultaneous connections. Displayed in mm:ss 46

C.10 Time elapsed for downloading (Client uploads, Server downloads) 100/200 (100
times without cross traffic and 200 times with cross traffic) times a 2 MB file with
1 connection. Displayed in hh:mm:ss . 47

67

Bibliography

[1] Mirja Kühlewind, Sebastian Neuner, and Brian Trammell. On the state of ECN and TCP
options on the internet. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7799 LNCS:135–144,
2013.

[2] K Ramakrishnan, S Floyd, and D Black. The Addition of Explicit Congestion Notification
(ECN) to IP, 2001.

68

