
Distributed
    Computing 

Crowd Simulation

Michael Weigelt

weigeltm.student@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Michael König, Klaus-Tycho Förster

Prof. Dr. Roger Wattenhofer

January 18, 2016



Acknowledgements

I would like to thank my supervisors Klaus and Michael for the valuable feedback
and the regular discussions, and Prof. Wattenhofer for the inspiration to work
with Miarmy. I am also very grateful to Yeah Yang, one of the lead developers
of Miarmy, who kindly answered many questions and resolved issues with the
software.

i



Abstract

Crowd simulations are becoming increasingly important for public authorities
and researchers. The film and video game industry have been developing and
using tools for crowd simulations for decades. The Maya plugin Miarmy is such
a tool, but it was not designed specifically for scientific purposes. We perform
experiments in Miarmy to test its functionality. Simple scenes can be set up,
simulated and rendered quickly and efficiently with Miarmy. However, with
increasingly complex scenes, the Miarmy interface becomes less useful, and per-
forms suboptimal on tasks it was not explicitly designed for. We overcome some
of Miarmy’s limitations by exploiting its Python script interface. Although much
flexibility can be gained this way and the tool is still being developed, it is un-
likely that Miarmy will be useful for exact sciences, where dedicated custom
simulations can be used instead. However, Miarmy is very useful to create and
visualize diverse crowds, as it offers interfaces to various renderers and makes
randomizing agent properties easy. Finally, we simulate and render two scenes
using the methods we developed in the experiments: A huge ball crashing into
a train station hall and a simple imitation of a soccer game.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Miarmy and Maya 3

2.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Perception Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The Decision System . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Experiments 8

3.1 Basic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Agent Avoidance . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Road Following . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Dynamics and Densities . . . . . . . . . . . . . . . . . . . 11

3.2 Reproductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Flowfield . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Rotating Bar . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Further Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Target Spots . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Avoid Ball . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Train Station Hall Video . . . . . . . . . . . . . . . . . . . 19

3.3.4 Soccer Video . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Discussion 22

iii



Contents iv

Bibliography 25



Chapter 1

Introduction

1.1 Motivation

In many cities of the world the human population grows quickly. Urban envi-
ronments are relatively slow to adapt to more people, so population densities
increase. This leads to a host of problems, for instance for public and private
transport. With ever more people on the streets it has become a matter of se-
curity to understand their collective behaviour. Crowd simulations model the
movement of large numbers of agents as realistically as possible. Applications
and goals of crowd simulations include the prediction of mass-hysterias, the plan-
ning of high pedestrian traffic areas such as train stations or airports, and the
simulation of huge armies and crowds in films and video games. One piece of
software that was designed for the latter is Miarmy. The primary question of
this thesis is: Is Miarmy also suitable for answering scientific questions about
crowds?

1.2 Related Work

Many problems related to crowd simulation and path-finding need to be solved
in various video games. The methods these games implement are rarely perfect
because in real-time games, resources are scarce, so quick and cheap solutions
are required. But cheap solutions can fail when many agents are involved, for
example when many agents need to cross a bridge and a group of agents already
on the bridge blocks oncoming agents. In some cases, even increasing computing
power does not help: Akker et al.[1] show that finding optimal solutions to multi-
agent path-finding is NP-hard, and present a heuristic which does not suffer from
that problem.

Another approach to realistic crowd movement and pathing is to use dynamic
potential fields and treat agents and obstacles as particles obeying physical laws.
Treuille at al.[2] describe such a model which is efficient enough to run in real-
time. Even though individual agent movement and planning is not controlled,

1



1. Introduction 2

some phenomena emerge automatically, so that for example collision avoidance
does not have to be explicitly handled.

One typical problem that arises with large numbers of agents is when two
groups approach each other and need to find a way around or through the op-
posite group. The game Supreme Commander 2 has an interesting approach to
this problem [3]. It involves a so called Flowfield, which splits and aligns agent
groups in an efficient way so that they can pass through each other with very
little resistance. This solution is replicated in section 3.2.1.



Chapter 2

Miarmy and Maya

Maya is a piece of software by Autodesk used for the modeling, animation, sim-
ulation and rendering of 3D scenes. Miarmy is a plug-in for Maya, which is still
being developed actively by Basefount. Miarmy makes it possible to simulate
thousands of agents at a time, each interacting with its environment and behav-
ing according to rules given by the user. Because Miarmy is a plug-in, agents
can be created, animated, simulated and rendered all in the same environment.

Concerning agents, Miarmy offers some finished solutions, such as walking
human agents, horse riders, ancient fighters and a type of agent used to fill
up stadia. These solutions include geometric models, textures, animations and
decisions, which are Miarmy’s way to control agent behaviour.

The creation of a Miarmy simulation roughly follows these steps:

1. Import or create of one or several agent types

2. Set the scene. This includes non-interactive environment as well as objects
which can be perceived by the Miarmy agents, such as bounds or paths

3. Place the agents in the scene

4. Run test simulations and refine the scene and the agents

5. Cache the final simulation

6. Render the scene

Since the realistic modelling and animation of agents require a large amount
of time and expertise, Miarmy’s Walker Agents are used throughout this project.

3



2. Miarmy and Maya 4

2.1 Agents

Figure 2.1: Agent nodes

Figure 2.1 shows the agent node (Agent woman).
It consists of several child nodes, most notably
the original agent, the geometry and the de-
cisions. The original agent node is where the
bone structure and the bounding box of the
agent model are located. They are needed for
the Miarmy simulation. The geometry node
contains the body and cloth geometry of the
agent. These are needed when the scene is ren-
dered. Under the decision node all decisions
for this agent type are listed. Decisions with
lower priority are grouped together under an
empty parent decision node. All decisions are
checked in each frame of the simulation. They
determine the behaviour of each agent of this
type. More about this in section 2.3.

The agent node has several parameters,
e.g. TranslateX, RotateY, Sphere Range, Scale
Min/Max, HP Min/Max, MP Min/Max. With these parameters, some general
properties of the agent type can be set. Sphere Range is the maximum distance
an agent “feels” or “hears” other agents. It is used in decision sentences, for
example to determine whether another agent is within the sensory range of an
agent. If Scale Min and Max are not identical, the individual agents’ sizes will be
randomly distributed within the given range. HP and MP stand for Hit Points
and Mana Points. Having no predefined purpose, these are the only parameters
that can be used freely: They can be checked and changed during the simula-
tion. If the agents should start out with randomly distributed HP or MP, the
maximum and minimum of each can be set in the agent parameters.

2.2 Perception Objects

Miarmy provides objects which agents can detect: spots, bounds, roads and
paths and also solid objects called kinematic shapes. All these objects can be
assigned a unique ID, in case several of the same kind are needed in one scene.
They are interacted with by logic sentences. For example, if an agent needs to
act based on its distance to a spot with ID 2, a sentence like my distance from

spot(2) > 50 is used.

Bounds are cuboid shapes which simply allow to check whether an agent is
inside or outside their borders.



2. Miarmy and Maya 5

Roads are two dimensional paths which are created from smooth curves. Agents
can check whether they are on the road as well as the angle between their
own direction and that of the road. The Miarmy road has some important
parameters: Road width, ID, flow edge and flow orientation. The first two
parameters are self explanatory, the other two determine the behaviour of
agents in the edge regions of the road. The parameter flow edge is the
percentage of the road that is counted as edge region. When an agent
walks into the edge region, it will automatically steer inwards, with an
angle determined by the flow orientation parameter.

Paths are extensions of Roads into the third dimension. An example of a sen-
tence referring to a path is I am in path(0) and it points right. A
typical decision based on this sentence would make the agent rotate to the
right, so that it stays on the path.

Kinematic Shapes are objects agents can collide with. Usually, a collided
agent will have enable dynamics as an output sentence, which stops its
current animation and posture and enables rag-doll physics.

Perception objects by themselves do nothing. They need to be used in con-
junction with the appropriate decisions, which are explained in the next section.

2.3 The Decision System

The behaviour of each agent type is controlled by decisions. A decision consists
of at least one input sentence and at least one output sentence. In each step of
the simulation, the input sentences of every decision are checked. If all inputs of a
given decision are true, then all outputs are activated. For example, the following
decision checks if there is another agent within the agent’s sphere range, and if
so, the agent slows down whatever animation it is currently playing.

Figure 2.2: Example Decision



2. Miarmy and Maya 6

Miarmy provides a reasonably large set of predefined input and output sen-
tences, which are formulated in Miarmy’s “human language form” (i.e. ques-
tionable English). Input sentences can be concatenated with the logic operators
and, or, not, but bracket terms are not possible.

Some frequently used sentences are listed here:

• someone in my sphere with distance < ??

• someone in my sphere with angle from ?? to ??

• someone in my sphere with relative speedX < ??

• I’m on road[??] and it point to LEFT

• I’m in path[??] and it point to UP

• my velocity of translation in X > ??

• I’m in bound[??]

• spot[??] is on RIGHT

• my master is on LEFT

• maya python:exampleScript() return value > ??

• marked bone collideBy: KINEPRIM

• my HP < ??

Three of these sentences are not self-explanatory: The master sentence can
only be used after a master-slave relationship between agents has been estab-
lished. To this end, a Python script has to be run after agent placement, which
links agents to each other. The script can be run from the Maya console, and it
looks something like this:

cmds.connectAttr("McdAgent23.masterOf", "McdAgent22.masterOf",

force=True)

This makes agent number 23 the master of agent number 221. A master can
have several slaves, but a slave only has one master. It is possible for an agent to
be master and slave, as long as the relationship graph has no cycles. If it does,
Miarmy crashes.

For the python:exampleScript() sentence, the user can write a custom
Python script which must return a numeric value. The return value can be
compared to a fixed reference value (for which ?? is a placeholder).

1There is no copy-paste error in this command: Both agents’ “masterOf” attributes are
connected.



2. Miarmy and Maya 7

KINEPRIM is a kinematic shape as described in section 2.2. The above
sentence is true when an agent’s bone which has been marked for this purpose
collides with a kinematic shape.

Some output sentences are:

• move FORWARD as speed ??

• rotate to LEFT as speed ??

• play action:??

• change all actions playback speed ??

• set hp value ??

• change hp as speed ??

• enable dynamics

• follow my master

The play action sentence enables one of the agent’s animations, like a walk,
run or sit animation.

Whenever change x as speed y is in a sentence, x is changed by y per
second, not per frame. Only fixed values can be used, so it is impossible to make
the rate of change y dependent on the value x, or on some other value.

The enable dynamics sentence stops the agent’s current animation and en-
ables rag-doll physics. This means that the agent loses all control over its posture
and falls to the ground. Its body becomes subject to the physics engine. In the
current version of Miarmy, this is not reversible.

If two decisions with conflicting outputs are active, the output intensities are
added. For example, if one decision leads to a clockwise rotation with speed 50
and the second decision to a anti-clockwise rotation with seed 20, the agent will
rotate clockwise with speed 30. To lessen this kind of cancellation, there is a
fuzzy-logic system built into the decisions. If it is used, the intensity of a decision
output will depend on the intensity of the input, i.e. the rotation speed depends
on “how true” the input is



Chapter 3

Experiments

In order to test Miarmy’s engine and interface, we conduct a series of experi-
ments. We describe the general idea of each scene, go into the details of the
implementation where it is interesting, summarize the results and compare them
with our expectations. The scenes are very simple at the beginning and get
progressively more complex.

3.1 Basic Tests

3.1.1 Agent Avoidance

This first experiment tests the Miarmy Walker Agents decision set which is
supposed to prevent agents from colliding or overlapping. Three decisions are
involved:

• avoidSphereLeftTurnRight

• avoidSphereRightTurnLeft

• avoidSphereFrontSlowDown

Like the names suggest, two of these decisions are symmetric. The first and
third decisions look like in figures 3.1 and 3.2.

As a very simple first test, 30 agents are placed in a loose crowd, each agent
facing in a random direction. Their only objective is to walk forward and avoid
other agents. Figure 3.3 depicts the situation after a few frames.

Between any two agents, one of three things can happen: Either they never
meet and neither is affected by the other. Or they can walk towards each other
and intrude into the other’s sphere range. In that case, they both slow down
to half their speed and rotate away from each other. If they are facing each
other directly, i.e. within 35 degrees to the left or right, they slow down to 20

8



3. Experiments 9

Figure 3.1: Decision avoidSphereLeftTurnRight

Figure 3.2: Decision avoidSphereFrontSlowDown

percent of their original speed. There is also a very small chance that the agents’
directions are exactly anti-parallel, in which case the rotation speeds for the left
and right side are equal. Because placement nodes can and may be set up exactly
anti-parallel (and thus agents might be aligned perfectly), that is a problem.

The first results of this simulation showed some agents passing through each
other, therefore the FrontSlowDown-decision was slightly adapted. A second
output sentence was added to it, similarly to the left/right decisions: rotate to

left as speed 60. This prevents ties and improves agent avoidance.

It is noteworthy that in the Miarmy GUI, there is a preset decision set avail-
able which is called “Avoid Collide by Sphere” consisting of three decisions with
the same names as the ones described above. However, these preset decisions
do not slow down the agents upon close contact with another agent, they only
rotate them. Tests with both variants showed that unless agents are running,



3. Experiments 10

Figure 3.3: Randomly placed agents

the preset “Avoid Collide by Sphere” is sufficient to avoid collisions, at least in
this simple scene.

3.1.2 Road Following

In the previous experiment, agents do not have a destination. They walk straight
ahead and if their direction is changed due to an obstacle, they do not correct
it after passing the obstacle. Because this is not realistic behaviour, we now
give the agents a constraint. They are following a road in a given direction and
they may not leave the road. Miarmy offers a symmetric decision preset for this
scenario, shown in figure 3.5.

The agent avoidance decisions from the last experiment are included as well,
preventing agents from walking through each other. This leads to a problem: If
an agent is at the left border of a road, its road-following decisions tell him to
rotate right. If there is another agent very close to its right, its agent avoidance
decision tells him to rotate left. If the rotation speed of the latter decision
is greater, the agent leaves the road and all road following decisions become
inactive, making it impossible for him to find the road again.

To try to prevent this, three methods are tested: Firstly, the road edge flow
parameter is set so that the edge flow points inwards. The edge flow decision pre-
set was imported, with input sentence I’m on flow and it points to left.
Agents should steer inwards as soon as they enter the edge zones. Unfortunately,
these decisions offered by Miarmy do not seem to work properly. Even though
the agents are clearly inside the edge zone of the road and the decisions are for-



3. Experiments 11

Figure 3.4: A Miarmy Road

mulated by the Miarmy developers, they do not activate. This might be a bug
or incomplete feature, considering that Miarmy is being developed and frequent
bug fixes are published.

Secondly, a lesser priority is assigned to the agent avoidance decisions. This
should correctly resolve conflicts, but the simulation shows that this measure
does not work properly either. Prioritization has worked in other experiments
though, so it is unclear why this measure is insufficient here.

The last option is to make sure that the rotation speed of the higher priority
decision is always greater. Tests from several simulations with all three methods
considered, this is the most reliable option. It is also the least favourable option,
because it limits the user’s possibilities. A situation might arise where the user
needs the rotation speeds to be in the reverse order.

3.1.3 Dynamics and Densities

In this experiment, the agents’ ability to avoid each other is tested, if the available
space becomes more and more sparse. To achieve this, 50 agents walk along
a path, equipped with the decision set from the previous experiment: Agent
Avoidance and Road Following. The Miarmy Road is replaced with a 3D Path,
allowing for a varying path width. The start of the path is wide enough for the
group of agents to walk in a loose cluster, but it narrows down to the width of
only a few agents, before it opens up again.



3. Experiments 12

Figure 3.5: Road Follow decision preset

In order to have a failure state, a new decision output is introduced: enable
dynamics. The corresponding decision becomes active if an agent trespasses the
critical sphere of another agent. The critical sphere’s radius is chosen as half of
an agent’s bounding box. As soon as an agent’s dynamics are activated, it falls
to the ground like a rag-doll and stays there.

If the experiment is run like described, almost all agents fall down shortly
after the path narrows. The decisions don’t allow the agents to react quickly
enough to the changing environment. If an agent is surrounded by other agents
who threaten to come too close, it has no appropriate reaction: Neither rotating
left nor right will give it more space. The only reaction that helps is slowing
down. However, this is only useful if the agents behind can slow down quickly
enough to avoid a collision. In the described experiment, this is evidently not
the case.

To improve the results of this simulation, the Miarmy Global setting “Auto
Collision Avoidance” is activated, which moves agents apart automatically if
their bounding boxes overlap. Although this makes a big difference (collisions
now occur only in the narrowest region), it looks unrealistic if the crowd is very
dense. Due to this setting, bounding boxes cannot overlap anymore, thus the
agents act almost like particles, repelling each other perfectly elastically. The
speed at which agents repel each other can be changed, and simulations show
that the slower this speed is, the better it looks. Unfortunately, the minimal
speed still is too high for a realistically looking simulation. But it is preferable
to dozens of agents colliding just because they walk through a narrow path.

It would be desirable to make agents avoid fallen bodies on the ground be-
cause walking over a fallen body activates the collision decision of the walking
agent, so it falls, too. Unfortunately, an agent whose dynamics have been en-



3. Experiments 13

Figure 3.6: A 3D Miarmy Path

Figure 3.7: Collided agents with active dynamics. Note: In this picture nearby
agents were rendered invisible to better display the colliding agents. If the agent
density were as low as in the picture, these agents would probably not have
collided.

abled is no longer considered an agent by the Miarmy engine. The developers
have confirmed that there is no way around this in the current version of Mi-



3. Experiments 14

Figure 3.8: Original Flowfield

army. It seems therefore impossible to prevent a pileup of agents once an agent
has fallen in the path of many others.

3.2 Reproductions

These scenes or motives we encountered while researching crowd simulation. The
first example is a feature of a video game, the second is a reproduction of a video
showing off Miarmy’s capabilities.

3.2.1 Flowfield

Two groups of agents walk towards each other and have to pass each other in a
limited space. Every agent from one group should end up where the other group
starts and vice versa. In Supreme Commander 2 [3], this problem is solved with
“Flowfields”Ṫhe goal of this experiment is to replicate this behaviour.

As a failure state, dynamics are used, i.e. agents fall to the ground if they
come into too close contact with another agent. The Agent Avoidance decision
set is also used, together with the Miarmy global setting Auto Collision Avoid-
ance. To confine the agents in space, both groups follow a Miarmy Path in
opposite directions.

When the simulation is performed with walking agents, the results are similar
to the ones in the original. The front row of agents of the first group meet the
front row of the second group and try to avoid them. The front widens, because
the agents at the edges can rotate freely away from the crowd - as long as they
are within the confining path. If the path is too narrow to allow the groups to
spread, some collisions do occur. The first row of agents finds a path through
the oncoming crowd, and with each subsequent agent this path becomes more
clear and straight. The result looks like expected, shown in figure 3.9.



3. Experiments 15

Figure 3.9: Flowfield Replication

When the agents are set
to run instead of walk at the
beginning of the simulation,
Agent Avoidance fails. Sev-
eral agents collide and fall to
the ground, obstructing the
path of the subsequent agents,
who have no way to detect the
fallen agents and fall them-
selves. Thus, if the experi-
ment fails, it fails catastroph-
ically.

Why can the agents not
evade oncoming agents at run-
ning speed? One reason is that for higher movement speeds the rotation speed
in the avoidance decisions needs to be higher. But even tests with increased
rotation speeds failed. It is likely that the time-resolution, i.e. the time differ-
ence between two ticks of the Miarmy simulation, is not high enough for this
scenario. The agents can not react quickly enough to a changed environment.
They come too close to each other before they even have a chance to avoid each
other. Although the user has a little control over the time resolution in Miarmy’s
global options, even the highest setting does not change the above results.

3.2.2 Rotating Bar

In a popular video [4] created with Miarmy, some agents approach a big rotating
bar. When an agent is hit by the bar, it is pushed around, eventually falls over
the bar and cannot get up again. Here, this scene is reproduced.

Apart from the usual agents, the setup involves a rotating bar. Miarmy pro-
vides basic objects that can interact with the agents, called kinematic shapes. In
the current version of Miarmy, they can either be rectangular boxes or spherical.
In order to make them rotate during the simulation, Maya’s keyframe system is
used. With this system, only the desired position, rotation and size of the bar at
different points in time have to be fixed. These points are called keyframes, and
the Maya engine generates the movement between the keyframes automatically.
Here, only the rotation of the bar around the y-axis has to be keyframed. The
duration of the simulation is about 300 frames, and the bar rotates 90 degrees ev-
ery 32 frames. This makes for a reasonable rotation speed relative to the agents’
walking speed.

In the original video clip, the agents play a custom animation upon impact
with the bar. To make such an animation look good and to provide it with
enough variation for a realistic crowd simulation would exceed the scope of this



3. Experiments 16

experiment. Therefore, the output sentence enable dynamics is used to make
the agents fall down after being hit by the bar.

The result differs from the original only in the lack of movement of fallen
agents. As an extension of the original scene, it would be interesting to let
agents stand up again after being hit, and continue walking or start fleeing from
the threatening bar. Unfortunately, agents lose their status as agents once their
dynamics are activated. All decisions are disabled and the agent’s body remains
only as a physical object, similar to the kinematic shapes. Since decisions are
the only interface to the agents’ behaviour, the Miarmy user loses all control over
the agent, once its dynamics are activated.

There is a decision output disable dynamics, which at the moment seems
unusable because once the dynamics are activated, no decision can become true
anymore. Perhaps this means that the developers are planning to change this.

3.3 Further Scenes

3.3.1 Target Spots

In a public transport area like an airport or a train station hall, there are many
agents with many different targets. This experiment simulates such a scene. A
number of agents and several spots are placed randomly within a given radius.
Each agent is assigned a spot as an initial target at random. The agents seek
their target and are assigned a new one once they have reached it.

The key feature of this experiment is that agents need a state that determines
which spot is their current target. To this end, the parameter HP is used. The
agents are initialized with HP values ranging from 0 to 100. Agents with HP
between 0 and 10 seek spot 1, those with HP from 11 to 20 seek spot 2 and so
on. The current HP value can be read and set by a decision sentence. HP and
MP are the only free variables available for such a purpose.

The first decision consists of these sentences:

Input 1: spot(0) is on LEFT

Input 2: my HP from 0 to 10

Output: rotate to LEFT as speed 180

The second decision is a mirrored version of the first one. The third corre-
sponds to a state change:

Input 1: spot(0) to me distance < 8



3. Experiments 17

Input 2: my HP from 0 to 10

Output: set hp value 11

Once this agent’s HP values is set to 11, these above decisions are no longer
active, but an almost identical set of decisions becomes active, with adapted spot
ID and HP values. Consequently, three decisions have to be created for each spot
in the scene.

Normally, decisions are created through the Miarmy GUI, requiring a lot of
mouse clicks and context menus. Because this is too much work if a scene with
20 or 50 spots is required, we reverse-engineered some of the Miarmy GUI, which
is accessible as a collection of Python scripts in the Miarmy directory. With a
combination of Maya and Miarmy commands, we put together a script which
creates an arbitrary number of spots and distributes them within an adjustable
perimeter. For each spot, the three decisions above are automatically generated,
with almost no GUI call (footnote: for some reason, a GUI update function needs
to be called after each created decision, but the user is freed from having to give
any input).

As a result, it is no longer necessary to create dozens of decisions by hand.
Instead, the script can be run, the agents placed and the scene is ready to be
simulated.

Figure 3.10: Agents seeking spots

3.3.2 Avoid Ball

In this experiment, agents are confined to a rectangular space. They walk around
in random directions, avoiding each other and trying to dodge a kinematic ball
which is jumping around. If the ball hits an agent, its dynamics are activated
and the agent falls.



3. Experiments 18

The kinematic shapes cannot be sensed by the agents directly. There is no
decision input sentence that checks for a nearby kinematic shape. Because agents
need to speed up and run away when the ball approaches them, a spot is placed
at the center of the ball and moved together with it at all times. This way, agents
can just respond to proximity of the spot and the results should be the same.

There is no out of the box way to move a kinematic shape or a spot in
Miarmy. Shapes are not agents, so decisions cannot be used, and the simulation
process is inaccessible, so it’s not possible to simply update the shape’s position
in each frame. So in order to move a kinematic shape, it needs to be keyframed.
To keyframe means to pick points in time and fix the shape’s desired position
at that time. The Maya engine will automatically generate the position for all
the frames in between. It is almost impossible to get the ball to behave in a
physically realistic manner this way, but an imitation of “jumping around” was
created by keyframing the ball not only on different positions on the plane, but
by varying its vertical coordinate as well.

Keyframing a ball and a spot at random for a simulation that should run
for a minute or more is another tedious job that is better done by a script.
The commands used are from the Maya.cmds package, i.e. cmds.setAttr() and
cmds.setKeyframe().

Figure 3.11: Agents dodging ball

Except for the unrealistic movement of the ball, the results of this experiment
look good. The agents start running as soon as the ball comes too close, and their



3. Experiments 19

flight pattern looks realistic. The only problem with the scene is that the agents
can apparently sense the ball behind their heads. This is due to the nature of
the decision that determines the distance between agents and ball. The decision
can tell the distance, but not the direction. Miarmy offers no way to find out
the angle to a given spot in the human language system, so the agents either see
nothing or all around 360 degrees.

3.3.3 Train Station Hall Video

This scene combines the target spot seeking scenario with the ball dodging. The
setting is a model of a train station hall where lots of agents seek many different
targets. Suddenly, a ball rolls through the masses, mimicking a catastrophic
event like a derailed train, an amok driver or something of that nature.

The setup is similar to that of Target Spots 3.3.1, but with walls, columns
and a kinematic ball rolling through the scene after a couple of seconds. The
agents dodge the ball as well as they can, but some are too slow and are being
crushed. This scene was rendered and cut into a video.

3.3.4 Soccer Video

This scene is a simulation of a simple, soccer-like game. A custom ball-shaped
agent is chased around by two groups of human agents on a rectangular field. If
the ball enters one of two goal-areas at the far ends of the field, it is reset to the
middle of the field, and the two groups return to their half of the field.

The ball agent is a very simple custom agent, consisting of a single-bone
skeleton, a bounding box and a ball-shaped geometry. The decisions governing
the ball’s behaviour are the following:

• An initial decision to make it move forward with speed 60.

• Two decisions to ensure it stays on the field.

• Two decisions to slightly randomize its movement. Their input sentences
call a custom Python script which returns a random value. Based on that
value, the ball rotates left or right a tiny bit. This makes the ball’s move-
ment look better, and can be regarded as modeling spin, uneven ground
and tidal forces from the moon.

• A scoreGoal decision checks if the ball is in one of two bounds representing
goals and runs a custom Python script reset() if that is the case.

• A decision labelled flee checks for agents in the ball’s sphere range. If an
agent is very close, the ball speeds up to about three times its speed and



3. Experiments 20

calls a Python script flee() which orients the ball away from the closest
agent. As a result, it looks like the closest agent kicks the ball a few meters.

After the agents are placed, a Python script is run to establish a master-slave
relationship between ball and agents.

The agents are controlled by these decisions:

• Initial decision making them run straight ahead.

• Agent avoidance

• Speed adjustments based on randomized HP for variation in agent move-
ment

• Decisions to ensure agents stay on the field

• Two decisions to follow the ball: If the master is closer than 100 and on
the left, rotate left; the same for the right side.

• One decision to make the agents charge for the ball by increasing the agent’s
playback speed if the ball is close enough

The custom Python scripts which the ball’s decisions call are necessary, be-
cause the perception system of Miarmy cannot achieve the desired effects by
itself. For example, the reset() script simply sets the ball’s coordinates to 0/0,
a feature which is entirely lacking from the offered decision output sentences.
Fortunately, the decision input sentence relies on something Miarmy does offer.
But if that were not the case, there would be no way to trigger the execution of
the script.

When an agent from group one is close enough to the ball, it should dribble
it towards the goal of group two. In a decision input sentence, it is possible to
detect the ball within a given angle. However, it is impossible to store that angle
and use this value in the corresponding output sentence (cf. the last paragraph
of Avoid Moving Ball 3.3.2). But this is necessary to kick the ball in the correct
direction. To achieve this, the Python script flee() retrieves the coordinates
of the ball and all agents. It calculates the distance between each agent and
the ball, finds the closest agent and calculates the angle between that agent and
the ball. Then, it rotates the ball in the direction facing 180 degrees away from
the closest agent. At this stage, the simulation looks entertaining but a little
erratic, because the agents just chase the ball without a goal in mind. Since we
want the agent to eventually score a goal, the calculated angle is tilted slightly
towards the goal. As a consequence, an agent in possession of the ball curves
slowly towards the goal, as long as it is undisturbed by others. This scene was
rendered and cut into a video.



3. Experiments 21

Figure 3.12: A mimicry of soccer

Figure 3.13: The budget did not allow for coloured shirts



Chapter 4

Discussion

Miarmy delivers on what it promises. Once the user understands how to use
it, Miarmy makes it easy to create simple scenes with many agents. Tasks like
placing agents in a variety of ways or randomizing cloth geometries and textures
require one click and work well, which makes crowds look much more realistic
and scenes more interesting.

However, Miarmy is poorly documented. The online documentation is trans-
lated from Chinese into a hardly understandable English. Some pages of the
documentation are unfinished or entirely empty. Many of the existing topics are
not properly introduced, others consist of mostly examples. Although examples
are good and appreciated, a general approach to solve a problem is preferable
to only examples. Some topics merely refer to the YouTube tutorials. Although
the language is difficult to understand at times and it is not always clear what
hotkeys the teacher is using, the videos are helpful. There is a playlist with 118
videos, made by the developers, each discussing a topic or feature of Miarmy.
This learning resource is valuable, but problematic: The YouTube tutorials are
necessary to learn how to use Miarmy. Most of the know-how in these videos is
not written down anywhere, which makes it hard to find a specific topic. While
we recognize that some of these problems are due to Miarmy being actively
developed, their extent is rather too large.

The decision system is inflexible and therefore limits Miarmy’s possibilities.
The system is designed for human convenience: A few clicks are enough to
generate a decision with mostly functioning preset input and output decisions.
There are many available sensory inputs and outputs, but not enough. At first
it seems useful that so many sentences are pre-formulated. But when one tries
to adjust them to new needs, there is no way to debug them. There is no way
to tell if a sentence is well-formed or not. There is no documentation about the
general syntax of the sentences, there are only examples. Consequently, whenever
a user comes up with a scenario the developers have not yet thought of, they
have to perform an unjustifiable amount of guesswork and trial and error. As an
example, it would be desirable to detect another agent within an agent’s sphere
range (possible), store the distance (impossible) and write an output decision

22



4. Discussion 23

based on the stored value (impossible). More explicitly: Measure how close
another agent is and move away from him at a speed proportional to the inverse
(or an arbitrary function) of the distance. Generally, arithmetic expressions in
the human language system are non-existent, except for (in-)equalities. Granted,
there are ways and hacks to circumvent this problem, for example by creating
ten decisions, the input sentence of each monitoring an interval of distance from
the agent and each enabling a stronger output decision, the closer the interval is
to the agent. But this creates overhead and is very inelegant.

Some of the needs of our experiments clearly exceeded Miarmy’s offered deci-
sion sentences. So we looked at the code which is called by the Miarmy GUI, did
a little bit of reverse-engineering (due to lack of documentation) and managed
to overcome some of the boundaries of the human language system. The scripts
in the last experiment are an example: If an agent is close enough to the ball,
the execution of our custom script is triggered. But what if the condition of
something that needs to happen is too complex to form in an input sentence?
Then there is no “injection point” for our custom scripts. Or what if we need
a function to be called in every frame? Although there is an option for that,
the scope of the script called in each frame is local and there is no obvious way
to store data between frames or to communicate with the agents’ decisions. To
write to a file and read from it in every frame of the simulation in order to keep
track of global states is possible, but bulky and slow.

In the experiment Target Spots we used HP as a custom state and duplicated
a set of decisions to act as a state machine. Again, duplicating decisions that are
basically the same creates overhead both in simulation and setup (if it were not
for the script we wrote). What if we need to track more than one kind of state?
We can use MP for a second kind of state, but that is all (and what if the user
needs MP and HP for something else?). We attempted to use Maya attributes,
which can be added with Maya commands before simulation and then read with
input sentences. But they could not be changed during the simulation. After
contacting the developers, they published an update to Miarmy to enable this,
but we did not have time to test this new feature. Although it is great that
the developers understood and acted so quickly, this measure does not solve the
problem that the agents lack easily usable custom states with an interface to the
decision system.

Another example: If an agent must overtake another agent in front of it, it can
detect their relative speed, it can rotate to the left or right when it is close enough,
but how can it rotate back and assume its initial direction after overtaking the
other agent? It cannot, unless there is a way to either use timing sentences (i.e.
to perform an action for an arbitrary time span) or store measurements (like
how much it needed to rotate, how much it has deviated from its original path,
how long it has to be rotated in the opposite direction to find its own path and
direction again). All these things are either not possible, non-obvious or have to



4. Discussion 24

be implemented with a hack similar to what we used.

We simulated and rendered two videos which incorporate the methods we
developed. The first video represents a catastrophic event in a high-traffic area
like a train station. We wrote a script to automatically generate dozens of
decisions which are necessary for the desired agent behaviour: The agents seek
one of several destinations, approach it and then choose a new destination. This
would lead to streams of agents with the same target who have to avoid other
groups crossing their own path — if it were not for a huge ball crashing through
the scene, hitting agents who try to dodge it and run away.

The second video shows a dynamic simulation of a soccer-like game. Two
groups of human agents chase a ball agent and try to steer it into the opposing
group’s goal. The human agent decisions are set up with a master-slave script.
The ball’s behaviour is controlled by several scripts that are called based on
decision inputs. Most notably, the ball’s direction is set at an angle facing away
from the closest agent, if any agent comes too close. The angle is biased towards
the opposing team’s goal. Another script resets the positions of the ball and the
agents when a goal is scored, and the game starts anew. These scripts perform
actions which are not achievable with Miarmy decision sentences alone.

Although the need for such scripts is a point of criticism, the possibility
to use them is a great advantage of Miarmy. Another redeeming quality of
Miarmy is the developers’ eagerness to help and answer questions. The fact
that they basically published an update to their software just to satisfy our
needs is amazing. Miarmy will continue to be developed and although there are
many things to improve, it is already a good and usable tool for non-scientific
applications like the animation of film and video game scenes.



Bibliography

[1] van den Akker, M., Geraerts, R., Hoogeveen, H., Prins, C.: Path planning
for groups using column generation. (2010)

[2] Treuille, A., Cooper, S., Popovic, Z.: Path planning for groups using column
generation. (2006)

[3] GamerSpawn: Supreme commander 2 flowfield. https://www.youtube.

com/watch?v=jA2epda-RkM (2010)

[4] Dave, F.: I’ve fallen, and i can’t get up! https://www.youtube.com/watch?

v=daysCqmqd2Y (2014)

25

https://www.youtube.com/watch?v=jA2epda-RkM
https://www.youtube.com/watch?v=jA2epda-RkM
https://www.youtube.com/watch?v=daysCqmqd2Y
https://www.youtube.com/watch?v=daysCqmqd2Y

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Miarmy and Maya
	2.1 Agents
	2.2 Perception Objects
	2.3 The Decision System

	3 Experiments
	3.1 Basic Tests
	3.1.1 Agent Avoidance
	3.1.2 Road Following
	3.1.3 Dynamics and Densities

	3.2 Reproductions
	3.2.1 Flowfield
	3.2.2 Rotating Bar

	3.3 Further Scenes
	3.3.1 Target Spots
	3.3.2 Avoid Ball
	3.3.3 Train Station Hall Video
	3.3.4 Soccer Video


	4 Discussion
	Bibliography

