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Abstract

Quiz applications have been popular on smartphones for entertainment and help
improve general knowledge. Questions for these quizzes are created manually.
We introduce Wikidata Quiz, an automated quiz application that draws its ques-
tions from the knowledge base Wikidata. For any chosen topic, we query Wiki-
data for items related to the topic and create a graph thereof. This graph serves
as a basis to generate questions with four answer options and one correct solu-
tion. We conduct an evaluation of our algorithm whether it is comparable to
a manually generated quiz. Our results show that 50 percent of the questions
generated by Wikidata Quiz are rated well.
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Chapter 1

Introduction

Many mobile Quiz applications have been released on the market in the past and
proved to be popular and successful. Millions of users entertain themselves solv-
ing countless quiz questions. These questions are commonly designed manually
by humans and thus tedious to create. The advantage of manually created ques-
tions is that they guarantee a certain quality standard but risk being outdated.

The automated question generation approach has important advantages com-
pared to a manual one. Outdated questions can be regenerated automatically
when the knowledge base is updated. Moreover, a wide variety of questions can
be generated from the dataset of the knowledge base without manual work in-
volved. Furthermore, multilingual support is possible with a knowledge base, so
the questions do not have to be translated manually.

The knowledge base that we chose for our application is Wikidata. Wiki-
data [1] is an open knowledge base that acts as a central storage for structural
data and can be used for free. Wikidata also acts as a collaborative platform to
manage data for Wikipedia and its sister projects [2]. It can be read and edited
by humans and machines and is constantly updated like Wikipedia. Wikipedia
stores information as plain text for human reading. In contrast, Wikidata stores
its data in a format, so that machines can easily extract information. Wiki-
data now allows RDF (Resource Description Framework) exports as has been
proposed by Erxleben et al. [3].

Wikidata has grown significantly over the last few years and is also the most
edited Wikimedia project [4]. Knowledge bases have the potential to support a
variety of fields like automated question generation, question answering (QA) or
intelligent personal assistants.

Our quiz application draws questions from the data set of Wikidata related
to a topic chosen by the user. We propose an algorithm that generates relevant
questions with four possible answer options. We conduct an analysis of user
provided feedback to measure the quality of our generated quizzes.
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1. Introduction 2

1.1 Related Work

Our work is based on Fabian Bissig’s Bachelor thesis [5]. His code serves as a
basis on which we implement our improvements and algorithms.

Popular mobile quiz applications include QuizUp [6] and QuizClash [7] that
both have over 20 million users. Both games are focused on competing with other
players under time constraints over a predefined set of questions. Players also
have the possibility to submit their own questions which need to be examined
by the developers.

Automatic question generation has been researched in various fields. Brown
et al. [8] investigated automatic question generation for vocabulary assessment
on a lexical database. Heilman et al. [9] proposed an approach to overgenerate
questions and then applying a ranking system using a logistic regression model.
Kunichika et al. showed in their work [10] how questions can be automatically
generated about an English story. Their work is also part of question answering
(QA) which is a discipline in information retrieval and highly related to knowl-
edge bases.

QA is concerned with answering questions in natural language by querying a
structured database or knowledge base. Yao and Van Durme proposed question
answering in Freebase [11]. Freebase was a knowledge base that was shut down by
Google in May 2016 in favor of Wikidata. Yao also proposed a slot-filling method
with < topic, relation, answer > tuples to answer a question via a single binary
relation [12].

1.2 Outline

In Chapter 2 we explain the key concepts and terms of Wikidata. In order to
bring structure to the data of Wikidata we generate a graph which is elaborated
in Chapter 3. In Chapter 4 we demonstrate how we extract questions from the
generated graph. In Chapter 5 we show how the extraction and generation of
answers is conducted. Chapter 6 gives an overview of the technologies used. In
Chapter 7 we present the evaluation of the generated questions and a runtime
analysis. Chapter 8 gives a summary of our findings and suggests possible future
work.



Chapter 2

Background

2.1 Wikidata

Wikidata is a knowledge base that can be accessed under a free license and our
choice for our quiz application.

Wikidata stores each item with a unique identifier. Wikidata items can have
statements that consist of a claim and optional references. For instance, the
famous television series Game of Thrones is depicted in Figure 2.1 as a Wikidata
item with one claim and the identifier Q23572.

Each claim lists a property and a value which together with the Wikidata
item form a subject-predicate-object triple where the item is the subject, property
the predicate and value the object. The property value can be a linked value
which references another Wikidata item (with its unique identifier) or a value
of some complex type like integer, string or an URL. Wikidata properties are
also labeled with a unique identifier prefixed with a “P”. The subject-predicate-
object triple for the claim in Figure 2.1 reads Game of Thrones - cast member -
Peter Dinklage with P161 identifying cast member and Q310937 referencing Peter
Dinklage.

Claims can have an optional qualifier which adds additional information to
the claim. The term qualifier stands for the combination of the pair qualifier
property-qualifier value for additional information as well as only for the qual-
ifier property. In Figure 2.1 the claim includes one qualifier which is character
role - Tyrion Lannister and provides additional information. Qualifiers are also
properties but can often only be used as qualifiers.

Claims are of utmost importance for extracting information from Wikidata.
We distinguish between outgoing and incoming claims of a Wikidata item. These
two terms were originally defined by Fabian Bissig [5]. An outgoing claim is listed
under its Wikidata item like cast member - Peter Dinklage is an outgoing claim
of Game of Thrones. The Wikidata item is the subject in this case, in contrast
to an incoming claim where the item is the object. An example of an incoming
claim of Game of Thrones would be Tyrion Lannister - present in work - Game of

3



2. Background 4

Figure 2.1: Wikidata Schema demonstrated on Game of Thrones

Thrones. To take our example in Figure 2.1, we define the pair Game of Thrones
- cast member to be an incoming claim of Peter Dinklage. Incoming claims are
not directly listed in Wikidata and need to be queried specifically.



Chapter 3

Graph Generation

In order to generate questions, the data items provided by Wikidata have to be
in a structure that shows how the Wikidata items are related. The approach with
a directed graph has been shown to be useful and efficient by Fabian Bissig [5].
Each vertex in the graph is labeled with an identifier of a Wikidata item, so the
vertex and the corresponding Wikidata item can be used interchangeably.

This chapter elaborates how we generate the graph from a Wikidata item
selected by the user. We distinguish between fast graph and complex graph
generation. These two graphs are elaborated in Section 3.1 and 3.2, respectively.
Section 3.3 describes the filtering process in our graph generation to avoid drifting
too far from the original Wikidata item. Drifting too far means that vertices are
included to the graph that are deemed irrelevant or not desired by the user. For
example, if a user selects Game of Thrones, he does not expect questions about
the United States of America.

The fast graph generation ensures that the question generation time is tol-
erable for the user, as the question generation based on a complex graph can
take several minutes. The fast graph will be generated before a complex graph,
so that questions can be extracted from a fast graph without waiting for the
complex graph. As soon as the complex graph is completed, further questions
are extracted and the question set will be updated. The performance of both
variants are listed in Section 7.3.

3.1 Fast Graph

We start by defining the Wikidata item chosen by the user as the origin vertex
in our directed graph.

The outgoing claims of the chosen Wikidata item are then considered, quali-
fiers and incoming claims are ignored due to their performance impact and long
waiting times. All values of the claims that are linked values are added to the
graph as vertices and connected to the origin by edges that point away from the
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3. Graph Generation 6

origin. The vertices are labeled according to the values and the edges according
to the properties of the respective claims, as shown in Figure 3.1. For instance,
the claim Game of Thrones - based on - A Song of Ice and Fire results in two ver-
tices for Game of Thrones and A Song of Ice and Fire connected with a directed
edge from Game of Thrones to A Song of Ice and Fire that has the property based
on.

Furthermore, each corresponding Wikidata item of a vertex is checked for the
existence of an instance of property. Most Wikidata items possess one or more
instance of properties, such as United States of America is instance of country and
sovereign state. If instance of properties exist in a claim of a Wikidata item, then
the values of the corresponding claims are added to the graph as vertices and
connected with an instance of edge to the respective vertex that represents the
Wikidata item. This is depicted with the above example claim United States of
America - instance of - country in Figure 3.1.

The vertices which are connected by an instance of edge are essential for
generating answers which is discussed in Chapter 5.

Game of Thrones

Nikolaj Coster-Waldau

Peter Dinklage

Sophie Turner

human

United States of America

country sovereign state

English

natural language

A Song of Ice and Fire

instance of instance of

country of origin

original language

instance of

based on

cast member

cast member

cast member

instance of

instance of

instance of

Figure 3.1: Fraction of the Fast Graph of Game of Thrones

3.2 Complex Graph

The generation of the complex graph is based on the algorithm written by Fabian
Bissig [5] and is an extension of the fast graph, meaning that the fast graph is a
subset of the complex graph.

Again, we start with the selected Wikidata item as origin and consider each
claim of the original Wikidata item. Our algorithm uses a breadth-first search
which is driven by a queue. As the values of the claims are added to the graph,
we also add the corresponding Wikidata items to the queue. After adding all
claims of the original Wikidata item to the graph, we proceed to find claims of
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the Wikidata items contained in the queue and repeat to add their values to the
graph and queue. Our algorithm continues until the queue is empty.

An example is given in Figure 3.2 that illustrates a fraction of the complex
graph of Game of Thrones. Note that the fraction is not the same as the fast
graph in Figure 3.1, as the fast graph is a subset of the complex graph. Additional
nodes and edges are omitted for better visibility. The nodes directly connected
to Game of Thrones like Peter Dinklage or Sophie Turner are put into the queue
and their claims are further inspected which results in more nodes and edges like
actor or Jaime Lannister that are put into the queue again. The edges that have
a “Q:” as prefix are qualifiers which are a special case and covered in Subsection
3.2.2.

In order to prevent the algorithm to run indefinitely we define a level for each
vertex which symbolizes the distance to the origin and a maximum level. If the
corresponding vertex of our current Wikidata item in the queue has a level that
exceeds the maximum level, then the claims of the item are not considered and
the item is removed from the queue. Our testing suggests that the maximum level
should be defined as 2, as higher levels regularly produce irrelevant questions.

There are several ways of finding appropriate claims to a specific Wikidata
item. How our algorithm handles the different types of claims, namely outgoing
claims, qualifiers and incoming claims is elaborated in their respective subsec-
tions.

Game of Thrones

Nikolaj Coster-Waldau

Peter Dinklage

Sophie Turner

actor

human

Jaime Lannister

Tyrion Lannister

Sansa Stark

Kingsguard

House Stark

cast member

cast member

cast member
instance of

instance of

instance of

occupation

occupation

occupation

Q: character role

Q: character role

Q: character role

member of

brother

spouse

noble family

Figure 3.2: Fraction of the Complex Graph of Game of Thrones
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3.2.1 Outgoing Claims

This is the most common and most useful type of claim, as they are directly
related and thus relevant to the Wikidata item. The Wikidata item represents
the subject in an outgoing claim and we receive a set of predicate-object pairs.
Our graph generation algorithm creates a new vertex for the object and a new
edge connected to the current Wikidata item labeled with the predicate.

3.2.2 Qualifiers

As described in Section 2.1 some Wikidata claims have qualifiers which provide
additional information.

For instance, the claim Game of Thrones - cast member - Peter Dinklage has
a qualifier character role - Tyrion Lannister. We create a new vertex for Tyrion
Lannister and a new edge connected to Peter Dinklage that has the property
character role which is depicted in Figure 3.2. This allows our algorithm to put
Tyrion Lannister into the queue which can be processed later. However, we do
need to mark character role in the graph, as a question Peter Dinklage - character
role can be misinterpreted because Peter Dinklage can play other roles than from
Game of Thrones. Another example is Khal Drogo - cause of death - murder with
qualifier killed by - Daenerys Targaryen. The question murder - killed by makes no
sense.

Each edge that is a qualifier is marked and the information of the correspond-
ing property, property value and qualifier value are saved on it.

Question extraction is conducted specifically for qualifiers which is described
in Section 4.2.

3.2.3 Incoming Claims

The amount of incoming claims are often humongous, especially for countries
like United States of America. Therefore, incoming claims are only considered for
the origin vertex if other types of claims yield little results.

3.3 Filtering

Filtering is necessary in our graph generation algorithm to prevent our graph to
grow in a direction that is irrelevant to our original Wikidata item and to treat
generic terms specifically because our regular algorithm often yields few results.

We implement checks for geographical entities, languages and the alphabet
that are conducted after a new vertex is created in the graph and before the
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corresponding Wikidata item is put into the queue. If a check fails, then the
item is not put into the queue but stays in the graph, so that it can still serve
as an answer.

These checks are only considered in the complex graph algorithm, since the
fast graph algorithm does not propagate further to claims other than those of
the origin and has no queue. At the beginning of generating the complex graph,
the Wikidata item input by the user is checked for the three characteristics to
decide whether an item is relevant at graph generation. The following subsections
explain how the respective characteristics are determined and what conditions
need to be met in order to fail a check and thus stop the breadth-first search at
that item.

3.3.1 Geographical Entities

This check is primarily used to prevent graphs to include a lot of geographical
Wikidata items, when the original item is not a geographic entity. For instance,
countries are often used in claims, such as Game of Thrones - country of origin
- United States of America. This can cause a quiz of Game of Thrones to pose
questions about the United States of America and its claims that likely contain
other countries, which is not desired.

To determine whether an item is a geographic entity we use the property
GeoNames ID which is connected to an identifier in the GeoNames geographical
database. If the item is connected with a GeoNames ID property, we assume that
it is a geographical entity, otherwise we assume it is not.

If the original item is not a geographical entity and the item considered is
one, then the check fails and breadth-first search is stopped for that item.

3.3.2 Languages

Languages often appear in claims like Game of Thrones - original language of work
- English and cause the graph to drift in a wrong direction if the original entity
is not a language.

We assume that an item is a language if it has a claim with property subclass
of that recursively leads to language.

Our check fails if the original item is not a language and the considered item
is one.

3.3.3 Alphabet

Sometimes Wikidata items are connected with letters in the alphabet and through
further propagation questions like “What follows A?” are generated which are
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not desired if the original Wikidata item is not related to the alphabet.

Here we check whether the current item has a claim with a value letter. If
this is the case, the item is deemed to be related to the alphabet.

If we conclude that the original item is not related to the alphabet and the
considered item is, then our check fails.

3.3.4 Generic Terms

Testing has shown that users often type in a generic term if they are asked for a
quiz topic such as film or movie. Unfortunately, those terms usually only have
a few claims in Wikidata which results in poor questions or none at all. We
assume that if a user types in a generic term, he intends to get a quiz about
some famous or relevant items that belong to the generic item.

As stated above the property instance of is defined in Wikidata which ex-
actly refers to an item belonging to some generic term. For example, the movie
Titanic has a claim with property instance of and the value film. This allows our
algorithm to find all items that belong to a certain generic term.

To determine if the Wikidata item chosen by the user is a generic term, we
check if it has incoming claims with the property instance of. Testing has shown
that the items with this characteristic are generic terms.

We further assume that a famous or relevant item in Wikidata has more
claims than one which is less famous. With this assumption we can generate a
list of items that belong to a generic term sorted by their number of claims. We
can now take the top items and generate complex graphs thereof and connect
them to the original generic term by an instance of edge. However, this ranking
procedure results in a big performance impact which is discussed at Section 7.3.
An example of the generic graph of film is shown in Figure 3.3 with the complex
graphs of the top five items omitted.

film

Iron Man

Pulp Fiction

2001: A Space Odyssey

Titanic

Star Wars: Episode I - The Phantom Menace

instance of

instance of

instance of

instance of

instance of

Figure 3.3: Fraction of the Generic Graph of film
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To prevent long waiting times for the user, we again implement a fast version
by taking some random items that belong to the generic term and apply the fast
graph algorithm described in Section 3.1. The fast version for film still looks
like the graph in Figure 3.3. However, the films are randomly collected from
Wikidata and are probably unknown.



Chapter 4

Extraction of Questions

Our generated graph from Chapter 3 consists of several vertices which represent
Wikidata items (e.g. Game of Thrones, English or human) and several edges that
represent Wikidata properties (e.g. original language or instance of).

We create potential questions in a straightforward manner by taking an edge
and its corresponding endpoints, meaning that each edge results in a potential
question. Potential questions need to pass all checks to become final questions
which are displayed to the user. For instance, we take the edge based on con-
nected to Game of Thrones and A Song of Ice and Fire and form the question
“Game of Thrones: based on” with the correct answer A Song of Ice and Fire. The
question and solution form a triple of subject-predicate-object, such as Game
of Thrones - based on - A Song of Ice and Fire where subject and predicate are
used for the question and the object represents the solution which is the correct
answer. We further define false answer options as the incorrect answers.

Question 4.1 shows a generated question. The second answer option is the
solution and the other three are false answer options.

Q: Game of Thrones: based on?

1. The Baroque Cycle
2. A Song of Ice and Fire
3. The Kent Family Chronicles
4. Alberta Trilogy

Question 4.1: Example Question about Game of Thrones

4.1 Question Filtering

Testing has shown that some potential questions are irrelevant or trivial for
humans to solve and need to be filtered out. In the following subsections we
describe our filtering methods to avoid irrelevant questions to be posed. Question
filtering is applied to both fast and complex graphs.

12
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4.1.1 Stop List

Some Wikidata properties commonly appear in claims which are not suited for a
quiz solved by humans. We have identified three main groups of properties that
are not suited for questions:

1. Meta data (e.g. topics main template, described by source, instance of)

2. Too scientific (e.g. parent taxon, taxon rank)

3. Common and incomplete data

(e.g. diplomatic relation, contains administrative territory)

Properties in these classes are either irrelevant for most users, too difficult
to solve or produce false answer options which are actually correct. This can
happen due to incomplete data in Wikidata. Instance of properties are extremely
common but mostly result in trivial questions and bad false answer options. The
properties that fit one of those criteria are listed as stop words and put into a stop
list. Properties that are in the stop list are not considered for further question
extraction.

4.1.2 Similarity

Sometimes, questions and solutions are too similar and thus trivial for the user.
Especially names or counting numbers are often encountered. For example, the
question is “Game of Thrones (season 4): part of” and the answer Game of Thrones
or “Game of Thrones (season 4): follows” with answer Game of Thrones (season
3). Our question extraction algorithm analyzes the similarity of question and
solution by string comparison and deletes a potential question if it is deemed too
similar to the correct answer.

4.1.3 Rating System

To detect irrelevant questions and therefore improving the quiz, we implement
a rating system where the user has the option to rate a question from 1 to 5.

If sufficient ratings are gathered and the weighted average is below a certain
threshold, the potential question will be discarded.

4.1.4 Other Filters

We remove a potential question if a label is missing in the question, solution
or false answer options. This is possible, as our application is multilingual and
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some Wikidata items or properties do not have labels in the language selected
by the user.

Furthermore, we limit the amount of questions by the same subject or predi-
cate. Testing has shown that a lot of questions with the same subject or predicate
tend to annoy the user.

4.2 Qualifier Questions

Qualifiers are additional information of a claim and therefore need special consid-
eration when extracting a question because they do not fit the subject-predicate-
object scheme. Vertices that are created from qualifiers are marked during the
graph generation, so they can be considered during question extraction.

We have to display the subject-predicate-object triple of the claim the qual-
ifier belongs to in order to understand the question. For example, the qualifier
reads character role - Jaime Lannister and the subject-predicate-object triple is
Game of Thrones - cast member - Nikolay Coster-Waldau. Without the triple, the
qualifier does not make sense. In this case, both Game of Thrones and Nikolay
Coster-Waldau are important to answer the question character role. We display
the question as 4-tuple: “Game of Thrones - cast member - Nikolay Coster-Waldau
- character role with the solution Jaime Lannister. The whole question is depicted
in Question 4.2.

Q: Game of Thrones: cast member
Nikolay Coster-Waldau: character role?

1. Steffon Baratheon
2. Jon Snow
3. Emmon Frey
4. Jaime Lannister

Question 4.2: Example Question with Qualifier character role



Chapter 5

Extraction and Generation of
Answers

The correct answer is given by the question extraction but false answer options
need to be found in order to create a quiz. We implement two approaches. The
first approach searches false answer options in the graph itself and is applied on
complex graphs only. The second approach is primarily used in fast graphs and
in case no false answer options can be found in the complex graph.

First and foremost, a false answer option needs to guarantee that it is not
correct. Unfortunately, we encountered incomplete data in Wikidata during test-
ing which resulted in false answer options that are actually correct. Therefore,
our algorithm can only be as correct as the data in Wikidata itself is.

5.1 Answers in Graph

In order to guarantee an answer option to be false for a particular question,
we examine the graph to find a Wikidata item that has one of the following
characteristics. The item is not connected to the subject of the question by an
incoming edge or possesses such incoming edges but only with different predicates
as the question. This indicates that the Wikidata item is a legitimate false
answer option according to the data provided by Wikidata. This analysis has
been proposed by Fabian Bissig [5].

Moreover, we want to prevent irrelevant false answers that give away the
solution and making the question trivial. Fabian Bissig has shown in his work [5]
that the predicate instance of is ideal for classifying items and hence finding
false answer options with a given solution to the question. Wikidata items can
be instances of multiple classes, such as United States of America is instance of
country and sovereign state. With this knowledge we search for Wikidata items in
our graph that are instances of as many same classes as the solution as possible.

For questions whose solution is an instance of human, we apply two additional
checks to further reduce irrelevant answer options. The human class is treated

15
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particularly because Wikidata items that are instance of class human are by far
the most common in Wikidata. The first check examines if the predicate of the
question is gender related (e.g. mother, sister, brother etc.) and if this is the
case, discards all false answer options that do not have the same gender as the
solution. The second analysis checks if the false answer option has the property
of the corresponding predicate of the question as an incoming edge. For example,
the false answer options of question triple Game of Thrones - cast member - Tyrion
Lannister need to be instance of human and have an incoming edge with property
cast member.

5.2 Additional Answers

For fast graphs the above algorithm is not applicable, as we only examine claims
from the origin and as a result get no or few possible false answer option because
all vertices are connected with the origin which serves as the only available
subject of our questions. The vertices which are connected by an incoming
instance of edge are irrelevant because we do not consider instance of as a question
as explained in Subsection 4.1.1. Hence, we need another way of gathering false
answer options by directly querying Wikidata.

The additional answers algorithm ensures that the false answer options re-
ceived from Wikidata have at least one instance of in common with the solution
but no further checks are conducted. To ensure correctness we still apply the
same check as described in Section 5.1. Even though the fast graphs are only a
subset of the complex graph, they still connect with all possible Wikidata items
on the same level due to breadth-first search. This implies that all correct an-
swers to a specific property are also included in the fast graph, thus the same
analysis can be employed to check if an answer option is truly false.

The additional answers algorithm does not guarantee quality but is needed
for the answer generation in fast graphs, so that the user receives some questions
in a tolerable time span. Moreover, the additional answers algorithm is also
applied to questions that do not find any suitable false answer options in the
complex graph.
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Implementation

Our application is written in Python and runs on the Flask web framework.
The data of Wikidata is stored in a graph database. We use a Python software
package for the generation and working with graphs. We implement caching
with an in-memory data structure store. The technologies used are the same as
in Fabian Bissig’s work [5].

6.1 Wikibase RDF Query

Wikibase RDF Query is a software package that provides tools to import Wiki-
data dumps into Blazegraph, a graph database. The Wikidata dumps are pro-
vided in RDF (Resource Description Framework) by Wikidata and are essen-
tially a list of subject-predicate-object triples. Blazegraph is a scalable high-
performance graph database which can be queried by SPARQL.

The Blazegraph database and our web application run locally on our server
which is equipped with an SSD to improve performance. The Wikidata dumps
are compressed to 8GB which inflate into approximately 87GB of indexes.

6.2 Python Web Application (Flask)

We decided to use a web application for our quiz in order to provide universal
access for mobile devices. We chose Flask as the web framework which is based
on Python and Bootstrap for responsive design.

To query Blazegraph we use SPARQLWrapper which is a Python package
that forwards SPARQL queries to a graph database and returns nested dictio-
naries. The requested data can then be easily extracted.

17
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6.3 NetworkX

NetworkX is a Python software package that provides support for data structures
like directed graphs and includes many standard graph algorithms. We use Net-
workX to generate, modify and query fast and complex graphs that incorporate
Wikidata items and are needed for question extraction.

We use the Graphviz software package that uses the markup language DOT
to visualize our graph generated by NetworkX for debugging reasons.

6.4 Redis

Redis is a in-memory data structure store which maps key to values and ideal
for caching generated labels and questions.

Keys expire after a defined timeout, so that labels and especially questions are
regenerated periodically. As Wikidata is frequently updated, we can regenerate
questions, so that they are up to date.

Questions of a Wikidata item are stored in a Redis Set and are copied for
each user that accesses that specific item. Then the questions are popped from
the user-specific set one after another to be presented to the user. We decided
to implement a set because there is no ordering and the questions are shuffled at
random. This reduces the chance that the user receives multiple similar questions
successively. Testing has shown that this is a desired feature.

The Redis set that stores questions is associated with a key that is the iden-
tifier of the respective chosen Wikidata item. Question sets extracted from fast
and complex graphs are saved in Redis whereas questions from fast graphs are
stored first. The generation of the complex graph and hence its question extrac-
tion follow after the questions from the fast graph are saved. After the questions
from the complex graph are extracted, they are added to the same Redis set
that contains the questions from the fast graph. Duplicates are removed before
insertion. The update of the question set for the particular Wikidata item is then
propagated to all copies that users accessed, so they can see the newly generated
questions.

As our application is multilingual, we cache labels in different languages
which are needed by available questions. If a label is not yet in the cache, it is
fetched from the local Wikidata dump and put into the Redis store.
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Results

To evaluate our quiz we implement a rating system which was briefly mentioned
in Subsection 4.1.3. It allows users to rate each question they solve. Each
question can be rated from 1 to 5 which symbolizes terrible to excellent. Fabian
Bissig used the same rating scheme in his work [5], so our results are comparable
to his.

7.1 Evaluation of Questions and Feedback

Our application was run for several weeks to gather ratings and we also received
feedback from participants personally. Overall, we received 1155 ratings with
over 40 people participating.

Over 50 percent of our ratings were a 4 or a 5, meaning that on average every
other question is a good one. Very few questions were rated both terribly and
excellently, so the ratings we received appear to be genuine and make evident
that our quiz generation algorithm does produce good questions.

Public evaluation has shown that most people find our quiz interesting and
entertaining but also uncovered areas in which our quiz does not perform well.

7.1.1 Questions extracted from fast or complex Graphs

Our rating system does not distinguish between fast and complex questions. By
analyzing the log of the ratings, there does not seem to be a difference between
the ratings of the first few questions of each topic and those that follow later. We
conclude that questions extracted from fast graphs may have worse false answer
options but the quality drop is insignificant.

However, we encountered terms which were unheard-of from questions ex-
tracted from fast graphs of generic terms. Because the instances are randomly
selected as described in 3.3.4, such terms are unfortunately common in fast
generic graphs.

19
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7.1.2 Incomplete or imprecise Data

We received feedback that some questions are incorrect where false answer op-
tions were actually true. Question 7.1 is a good example to show the issue. In
fact, all answer options in this question are legitimate answers, as all belong
to characters in Harry Potter. Unfortunately, only Severus Snape of the answer
options is listed in the claim Harry Potter - characters on Wikidata and therefore
the only solution. Furthermore, Severus Snape is instance of wizard in the Harry
Potter universe and our algorithm looks for such instances that are not connected
to Harry Potter - characters. Hence, we receive Question 7.1 which is incorrect
due to incomplete data in Wikidata.

Q: Harry Potter: characters?

1. Serverus Snape
2. Minerva McGonagall
3. Luna Lovegood
4. Horace Slughorn

Question 7.1: Incorrect Question about Harry Potter (fantasy literature series)

During testing we encountered an even more peculiar question which is listed
as Question 7.2. Through debugging we found out that those “independence
days” were from different countries but have the same label. Only the descrip-
tions make those “independence days” distinguishable. Like the previous exam-
ple, all answer options are instance of the same Wikidata item. In this case it is
(another general) independence day.

Q: United States of America: public holiday?

1. National Independence Day
2. Independence Day
3. Independence Day
4. Independence Day

Question 7.2: Ambiguous Question about the United States of America

Other problematic properties include occupation or genre. Questions that
are extracted from these properties often receive bad ratings because their false
answer options are frequently ambiguous. An example is given in Question 7.3.
Michael Jackson was certainly not a nurse but could be considered a performer or
a singer-lyricist, however, composer is the only correct solution.

7.1.3 Generic and Umbrella Terms

Public evaluation has also shown that our algorithm still cannot handle generic
or umbrella terms fully. The approach with instance of works well with film or
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Q: Michael Jackson: occupation?

1. performer
2. composer
3. singer-lyricist
4. nurse

Question 7.3: Ambiguous Question about Michael Jackson

human but does not with umbrella terms that do not have direct instances like
medicine, science or mathematics. Our results show that generic terms which have
no incoming claims with property instance of mostly yield no questions. Further
investigation needs to be conducted to find other properties that connect those
umbrella terms in order to find suitable questions.

7.1.4 Relevance and off Topic

The biggest issue in our algorithm is still that questions are posed of a Wikidata
item that is connected to the chosen topic but are deemed to be irrelevant by
the user. Regularly, the user cannot see a relation between these questions and
his chosen topic and therefore rates the question badly.

Question 7.4 with the topic chocolate looks irrelevant at first glance but Émile-
Justin Menier was a chocolatier and owned the Menier Chocolate company. After
some acquisitions, the former Menier Chocolate company is now part of Nestlé.
With this knowledge, Question 7.4 seems more relevant.

Q: Émile-Justin Menier: occupation?

1. non-fiction writer
2. entrepreneur
3. businessperson
4. software engineer

Question 7.4: Bizarre Question about chocolate

Still, knowing that a related item is relevant does not mean that all facts
about that item are important. Our algorithm cannot distinguish relevant claims
from irrelevant ones except with the use of stop words as described in Subsection
4.1.1.

Our results show that of all questions with ratings 1 or 2 approximately 30
percent have a property associated with human and about 10 percent have a
property associated with country. These indicate that questions about humans
and countries tend to drift away from the original topic and deemed irrelevant by
users. For example, questions about France or Germany appear in a quiz about
Switzerland because both are neighboring countries of Switzerland.
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7.2 Rating Comparison

Figure 7.1 illustrates the ratings we gathered from our quiz application in green.
We gathered 1155 ratings in total with over 40 participants. Fabian Bissig’s
results [5] of his version 0.5 are depicted in red. He received 1191 ratings for his
three versions 0.1, 0.4 and 0.5.

Figure 7.1: Ratings from 1 to 5 (terrible to excellent) compared to Fabian Bissig’s
Ratings

As can be observed in Figure 7.1, we received similar ratios like Fabian Bis-
sig’s ratings. We received many ratings with 1 that is possibly due to high
expectations of our participants. Many users were expecting a quiz as good as
a manual one because we did not provide several versions and few participants
were aware of the previous versions of Fabian Bissig.

We also implemented a simple algorithm to form sentences out of the ques-
tions which gave the impression that the quiz was manually created. Unfortu-
nately, participants tended to rate more harshly when the question could not be
formulated as a sentence or was badly formulated.

Nevertheless, we could observe that we gathered more ratings with 5 and also
received positive feedback that some questions are excellent. According to our
results, every fifth question is an excellent one and can compete with manually
created questions.

7.3 Runtime

Runtime is an important part for an application querying a knowledge base and
a big challenge. Unfortunately, our algorithm is a lot slower compared to the
one of Fabian Bissig [5]. This is primarily because of our filtering mechanism
described in Section 3.3. We decided to improve quality in favor of performance.
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Our algorithm spends the most time on querying Blazegraph over the SPARQL-
Wrapper where the bottleneck lies. Particularly, the generic graph generation
causes long waiting times as a GROUP BY is needed in the SPARQL query to
rank the Wikidata items by the count of the number of claims.

In Table 7.5 the runtime of the question generation with a fast and complex
graph of various popular Wikidata items is depicted. The performance impact
to create a generic graph can be clearly seen with the example film. Table 7.5
shows evidently why fast question generation is needed, as we cannot let the user
wait a whole minute for a quiz.

Wikidata item fast complex

Game of Thrones 3s 1min 37s

Switzerland 10s 2min 33s

The Simpsons 2s 57s

Albert Einstein 7s 1min 8s

film 9s 9min 50s

Table 7.5: Question generation times of popular Wikidata items

Table 7.6 lists the amount of questions generated out of a fast and a complex
graph for the respective Wikidata items. The questions generated from a fast
graph are only a fraction of what is extracted from a complex graph.

Wikidata item fast complex

Game of Thrones 28 121

Switzerland 35 89

The Simpsons 24 104

Albert Einstein 67 154

film 47 302

Table 7.6: Number of questions generated of popular Wikidata items
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Conclusion and Future Work

With Wikidata Quiz we introduced an application and algorithms to draw ques-
tions from Wikidata automatically. Our algorithm uses a graph to structure the
data received from specific Wikidata items and extract questions and answer
options thereof. We built a website according to responsive design to give our
users a good mobile experience with our quiz application.

Our ratings suggest that our application can generate questions that can
compete with manually created ones. However, there are still many that are
deemed irrelevant. Our results indicate that Wikidata still has a lot of incomplete
and imprecise data. We showed that questions from generic terms can be created
and an approach to generate questions fast.

Wikidata has grown over 50 percent in the past year according to our Wiki-
data RDF dumps and will grow even more in the future. During the development
of our application we experienced that an update in Wikidata’s data set does
impact our quiz and makes it more precise. Furthermore, our quiz application
can be used to detect incomplete Wikidata items in an entertaining manner.

We propose that future work invests in creating more diverse questions with
values other than linked values like strings or integers. Questions could be posed
with aggregates over these values like highest or greatest. Moreover, generic and
umbrella terms are still poorly included and would be a valuable addition.
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