
Distributed
 Computing

iOS Swipe

Bachelor Thesis

Timo Bräm

braemt@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Laura Peer

Prof. Dr. Roger Wattenhofer

August 21, 2016

Acknowledgements

I thank the members of the Distributed Computing Group, my family and friends
for the participation in the evaluation and for the feedback.

i

Abstract

There exist many onscreen keyboards for smartphones, but only a few of them
are capable to handle a swipe, i.e. the possibility to write a word without raising
the finger. In this thesis we classify the swipes based on a dictionary. Many
concepts are designed to achieve real time performance. The implementation of
the keyboard focuses on Apple’s operating system iOS. The evaluation shows
that the probability that the swiped word is suggested, i.e. the swiped word
appears in one of four words in total, is 96%.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

2 Design 3

2.1 Filters . 3

2.1.1 Start Point . 3

2.1.2 Start Direction . 4

2.1.3 End Point . 5

2.1.4 Length . 6

2.2 Dynamic Time Warping . 6

2.2.1 Basic Algorithm . 7

2.2.2 Improved Algorithm . 7

2.2.3 Locality Constraint . 9

2.3 Input . 10

2.4 Precalculation . 11

2.5 Cache . 11

2.6 Frequencies . 12

3 Implementation 13

3.1 Dictionary . 13

3.2 Multithreading . 14

iii

Contents iv

4 Evaluation 15

4.1 Device . 15

4.2 Dictionary . 16

4.3 Filters . 17

4.4 Input Swipe . 20

4.5 Multithreading . 21

4.6 Runtime . 21

5 Conclusion and Future Work 24

Bibliography 25

Chapter 1

Introduction

1.1 Motivation

Several years ago, when the first cellphones appeared, typing an SMS was hard
work. You had to press a key up to four times to write one single letter. With
the emergence of the smartphones typing a word got a lot easier. Now every
character has its own key. This is not the end of the journey, nowadays you
can write a word without raising your finger. It is called swiping and is shown
in Figure 1.1. A word is swiped by moving the finger over the screen from one
letter to the next in one stroke. This is very convenient to use, because the user
does not have to hit every letter perfectly and hence he can write faster. Words
with double letters are swiped as if they had no double letters, i.e. the words ‘of’
and ‘o↵’ have exactly the same swipe. The same concept is applied for special
characters. For example, ‘it's’ has the same swipe as ‘its’. The goal of this thesis
is to find a way to develop a keyboard for iOS that supports swiping, even if
the user does not always perfectly hit the letters he intended to swipe. This will
be done by looking through a dictionary and find the word that matches best.
Furthermore, the swipe feature will be integrated in an existing keyboard that
adapts to the user’s writing style.

Figure 1.1: The path that is drawn by a user swiping the word ‘duck’. The user
did not raise his finger until he reached the letter ‘k’.

1

1. Introduction 2

1.2 Related Work

Swiping is a text input method whose implementation has several di↵erent ap-
proaches. The implementation of our keyboard is centred around the Dynamic
Time Warping algorithm, which is a well known algorithm for measuring the
di↵erence between two temporal sequences. This approach was also mentioned
in the paper from Shumin Zhai and Oer Ola Kristensson [1], where a keyboard
was presented that supports swiping with a stylus instead of the user’s finger.
Smith, Bi and Zhai [2] investigated how it is possible to lower the error rate
caused by the ambiguity of swipes on the QWERTY keyboard. For this they
looked at di↵erent keyboard layouts.

There are some popular keyboards on the market that support swiping, for
example Swype [3], SwiftKey [4] or Gboard [5]. These keyboards were developed
by big companies and improved over time and therefore they are on a high
technical level. Besides typing and swiping, the Gboard keyboard o↵ers various
features, for example searching and sending videos, weather forecasts or sport
scores.

The Kännsch keyboard for iOS was presented in the bachelor thesis of Andres
Konrad [6]. It is a predictive keyboard that adapts to the user’s writing style.
Besides the German and English dictionary, Kännsch also supports a Swiss Ger-
man dictionary that evolves as the user writes. As part of our thesis we expanded
Kännsch such that it supports typing and swiping simultaneously.

Chapter 2

Design

A user who writes a word on the keyboard without raising his finger produces a
swipe. The swipe is a list of points (coordinates on the keyboard) tracking the
user’s finger. Later in this chapter we will introduce an algorithm that measures
how likely it is for a swipe to belong to a given word. Because this algorithm is
costly, the next section explains a method how to reduce the work for algorithms
of this kind.

2.1 Filters

Assume that there is an algorithm that takes a swipe and a list of words and
returns the word that matches best to the swipe by looking at every word in the
list. This algorithm can be made faster by shortening the list of words. There are
four such shortening techniques, referred as filters, that are used in our keyboard.
The order the filters are applied is the same as they are presented in this section.
That means, for example, that the second filter has to process much less words
than the first filter, because only the words that satisfy the criterions of the first
filter are passed to the second filter. How these filters a↵ect the runtime and the
quality of the output will be evaluated in Chapter 4.

2.1.1 Start Point

If a user starts to swipe on the right side of the keyboard, then he most probably
did not intend to swipe a word that starts with the letter ‘a’. In fact, if a user
wants to swipe a word, he tries to start at the location of the first letter of the
word. There is some variance in the precision of the user’s finger that has to be
taken into account and therefore more than one letter should be considered as
the first letter of the swiped word as shown in Figure 2.1. This filter is stable
in the sense that for every swipe at most four letters are considered as potential
first letters of the swiped word. This gives an upper bound for the number of
filtered words, i.e. the words that are included in the wordlist. In the English

3

2. Design 4

Figure 2.1: Example of a swipe of the word ‘still’. The first point in the swipe
defines the area with the potential first letters of the swiped word. In this case
these are only the letters ‘a’ and ‘s’, because the centre of these two keys are in
the blue area. That means ‘still’ is included in the list of potential swiped words.

dictionary [7] there are at most 360857 out of 1600606 words included (22.95%).
This is the case when the swipe starts between the letters ‘w’, ‘e’, ‘s’ and ‘d’.
With the start point filter the dictionary is reduced as soon as the user started
the swipe. The runtime of this filter is constant, because for each letter in the
alphabet one check is su�cient to determine whether this character lies in the
start point area. All words with the same first letter are stored together in an
array and therefore we only need to reference the corresponding arrays.

2.1.2 Start Direction

Another way to filter the dictionary right from the beginning of the swipe is to
consider the line that goes through the start point and a following point of the
swipe and then include all words in the wordlist whose expected start direction
does not deviate too much from the actual direction given by that line. In
Figure 2.2 the line goes through the first and the fifth point of the swipe. The
following point, in this case the fifth point, is chosen such that the length of
the swipe between the two points is about the same as the distance between
two neighbouring letters on the keyboard. This is because the following point
should not be too near to the start point to improve accuracy and it should not
be too far away, because the swipe should not make a turn until it reached that
distance. However, if a word starts with two letters that are neighbours on the
keyboard, for example ‘salt’ as in Figure 2.3, the user tends to make only a very
small stroke in the expected direction and then turns around. The direction that
is measured does not match the expected direction of the word the user intended
to swipe. Therefore, all words that start with two letters that are neighbours
on the keyboard get included besides the ones with an acceptable expected start
direction. This filter has a big variance in the number of words that are included.
In Figure 2.2 almost all words are included while in Figure 2.3 only few words
are filtered.

2. Design 5

Figure 2.2: The line from the first through the fifth point of the swipe indicates
the actual start direction. All words whose expected start direction is in the blue
area are filtered. The expected start direction of the word ‘still’ is indicated as
the green line. Since this line is in the blue area, ‘still’ is included in the wordlist.
Note that the green line is parallel to the line that goes through the letters ‘s’
and ‘t’ on the keyboard.

Figure 2.3: Example of a swipe of the word ‘salt’. The blue area does not include
the expected start direction of the word ‘salt’ (indicated as the green line).

2.1.3 End Point

The end point filter only takes the last point of a swipe into account. This filter
is closely related to the start point filter, i.e. only the words are filtered whose
last letter is near to the last point of the swipe (Figure 2.4). It has two main
di↵erences to the start point filter. First, the user tends to be more inaccurate
and hence there are more letters to consider and second, this filter can only
be applied after the user finished his swipe and therefore the words have to be
filtered while the user is waiting for the results of his swipe.

Figure 2.4: Example of a swipe of the word ‘still’. In this case all words are
included in the wordlist whose last letter is either ‘k’, ‘l’, ‘ö’, ‘n’ or ‘m’.

2. Design 6

Figure 2.5: The length of the green path is the expected length of the swipe of
the word ‘still’. The length of the blue path is the actual swiped length. This
length determines which words are filtered by the length filter.

Figure 2.6: The blue points are the expected swipe of the word ‘duck’.

2.1.4 Length

The length of a swipe is the sum of the euclidian distance between all following
points of the swipe, in Figure 2.5 this would be the length of the blue path. This
length ` is compared to the expected length of a given word `(w), that is the
length of the green path in Figure 2.5 for the word ‘still’. That means every
word that satisfies A · ` `(w) B · ` gets included in the wordlist, where A
and B are real constants. The analysis has shown that A = 0.75 and B = 1.5
are values that work well. Swipes of short words like ‘in’ or ‘was’ often times do
not fulfil this criterion. Therefore, an additional constant C � 0 was introduced
that also filters all words that satisfy `� C `(w) `+ C.

2.2 Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm to measure the di↵erence between
two temporal sequences, for example two swipes. By mapping a word to the
expected swipe, i.e. the swipe that is going from one character straight to the
next as illustrated in Figure 2.6, DTW is a measurement of how likely it is for a
swipe to belong to a given word.

2. Design 7

expected swipe

(3, 4) (3, 5) (2, 6) (1, 4) (2, 2)

(4, 4) +1 +2 +8 +9 +8

(2, 7) +10 +5 +1 +10 +25

(1, 4) +4 +5 +5 +0 +5

u
se
r
sw

ip
e

(0, 3) +10 +13 +13 +2 +5

Table 2.1: This is the DTW table with the costs between every pair of points of
the two swipes. A path from the top left corner to the bottom right corner is
searched that minimises the added costs.

2.2.1 Basic Algorithm

The DTW in his basic form takes two swipes (lists of points) and outputs the
minimal cost of the mapping of one swipe to the other. This is done by setting
up a table with the costs between every pair of points (Table 2.1). Then, a path
is searched that goes from the top left to the bottom right and minimises the
added costs. Since we are not interested in the path itself, but only in the costs,
this can be done by filling out the table t row by row. For each entry in t the
path with the minimal added costs up to this point is calculated. This can be
solved with the subproblems that were already calculated and we get

t[i, j] = c(s0[i], s1[j]) + min(t[i� 1, j], t[i, j � 1], t[i� 1, j � 1]),

where s0 and s1 are the two swipes and c denotes the costs between the two
points. In our keyboard the cost function c : R2 ⇥R2 ! R between two points
is chosen as the squared euclidian distance, i.e. c(x1, x2) = kx1 � x2k22. The
resulting table looks like Table 2.2. Algorithm 1 shows the pseudo code of the
DTW. The runtime is given by O(NM), where N denotes the number of points
in the first swipe and M the number of points in the second swipe.

2.2.2 Improved Algorithm

The more points the expected swipe contains, the better the basic algorithm
works. That is because a point of the user’s swipe may lay in the middle of
two points of the expected swipe (Figure 2.7) and therefore the cost is higher
than it should be. The downside of having more points in the expected swipe
is the higher runtime of the algorithm. This is the reason an algorithm was
developed that minimises the entries in the expected swipe and still works almost

2. Design 8

expected swipe

(3, 4) (3, 5) (2, 6) (1, 4) (2, 2)

(4, 4) 1 3 11 20 28

(2, 7) 11 6 4 14 39

(1, 4) 15 11 9 4 9

u
se
r
sw

ip
e

(0, 3) 25 24 22 6 9

Table 2.2: This is the calculated DTW table. Each entry denotes the best path
up to this point. The last entry is the final cost of the mapping.

Algorithm 1 Basic Dynamic Time Warping Algorithm

function BasicDTW(s0, s1)
M |s0|
N |s1|
dtw Array[0...M][0...N]

for i = 1...M do

dtw[i][0] 1
end for

for j = 1...N do

dtw[0][j] 1
end for

dtw[0][0] 0

for i = 1...M do

for j = 1...N do

cost c(s0[i� 1], s1[j � 1])
dtw[i][j] cost+min(dtw[i� 1][j], dtw[i][j � 1], dtw[i� 1][j � 1])

end for

end for

return dtw[M][N]
end function

2. Design 9

Figure 2.7: The mappings are more accurate as the number of points in the
expected swipe (blue points) increases.

Figure 2.8: Example of the perfect swipe (red/blue segments) of the word ‘still’.

as good as with the expected swipe that contains a lot of points. To achieve this,
the expected swipe is no longer represented as a list of points, but as a list of
segments and it is called perfect swipe (the user’s swipe is still represented as
a list of points). The perfect swipe contains the segment from the first letter
to itself, the segment from the first to the second letter, the segment from the
second letter to itself and so on until it finally contains the segment from the last
letter to itself as illustrated in Figure 2.8. The cost function c of Algorithm 1 is
adapted such that it works with segments. An example for the new cost function
is the smallest distance between the point from the user’s swipe and the segment
from the improved swipe squared.

There is still one issue with this algorithm. In the word ‘still’ there is a
segment from the letter ‘t’ to ‘i’. A user who swipes back and forth between
those two letters (writing ‘stitititill’) produces a swipe that has the same costs
as a swipe that only goes from ‘t’ to ‘i’ once. This problem is solved by saving the
location on the segment where the current point of the user’s swipe is mapped
to. Every following point has to be mapped between the saved location and the
end point of the segment. This is a fast approximation of the basic DTW with
a lot of points in its expected swipe.

2.2.3 Locality Constraint

As seen in Section 2.1.4 with the length filter, only the words whose expected
swipe length does not deviate too much from the actual swipe length get filtered.
The same concept is applicable in the DTW algorithm. Instead of calculating

2. Design 10

Figure 2.9: Consider the red segment on the letter ‘u’ of the perfect swipe.
The black points of the user’s swipe do not satisfy the locality constraint and
therefore the costs are not calculated. The green points are in the range where
the mappings are possible.

the costs between every pair of segments and points, only the costs between the
segments and points are calculated whose length do no deviate too much so far.
Here the parameters are chosen in a more conservative way, such that the quality
of the predictions is only influenced as little as possible. Figure 2.9 shows that
for a given segment of a swipe only the costs of a few points are calculated.

2.3 Input

Depending on the speed the user swipes, there are more or less points in the
user’s swipe for the same path. That is because the operating system is limited
in the speed of reporting the points. The runtime of the improved algorithm
depends on the number of points in the swipe. Therefore, a slow swipe with a
lot of points is shortened such that it is similar to a fast swipe with less points.
This is implemented by looking at three points: the last point that was last
added to the swipe (A), the last point that was reported (C) and a point that is
in between the other two points (B). There are three criterions and if at least
one of them is satisfied, then point B gets added to the swipe (Figure 2.10).

1. No point was added to the swipe for a long time or the swipe contains less
than 2 points.

2. The area of the triangle ABC is bigger than some threshold.

3. The angle � between the lines AB and BC is smaller than some threshold.

The first criterion enforces that some points on a long straight swipe are included.
The second criterion is one that is more likely to be satisfied the further the three
points are away from each other and the bigger the turn of the swipe is, as long as
the turn is smaller than 90 degrees. If the turn is larger, then the third criterion
is the one that includes the point.

2. Design 11

Figure 2.10: The small black points belong to the user’s swipe reported by the
operating system. The three red points are the last added point (A), the last
point of the swipe (C) and a point that is in between the other two points (B).
The area of the blue triangle and the angle � are two features that determine
whether B is added to the input swipe.

2.4 Precalculation

So far, we have only considered how we can speed up our calculations after the
user finished the swipe. In this section, it is described how it is possible to start
some calculations while the user is still swiping. As we have seen in Section 2.2,
for every potentially swiped word a table is build that simplifies finding the best
mapping. Assume that we have such a table. Then, a new row can be added
to the table for every new point in our swipe, i.e. we construct the tables row
by row while the user is swiping. This is illustrated in Table 2.3 with the basic
DTW algorithm for simplification.

2.5 Cache

In the last section we have seen that we can add rows to the table as the user
swipes. When the user finished his swipe, the same thing can be done with the
columns of the table. Assume that we built a table for the expected swipe of
the word ‘grand’. Then we can add new columns to that table and calculate
the words ‘grandfather’ and ‘grandmother’ by calculating the table for the prefix
‘grand’ only once. In our implementation every prefix is cached and the calcu-
lations of a new word starts with the table of the longest prefix that is already
calculated.

2. Design 12

expected swipe

(3, 4) (3, 5) (2, 6) (1, 4) (2, 2)

(4, 4) 1 3 11 20 28

(2, 7) 11 6 4 14 39

(1, 4) 15 11 9 4 9

u
se
r
sw

ip
e

(0, 3) 25 24 22 6 9

(2, 2) +5 +10 +16 +5 +0

Table 2.3: The point (2, 2) is added to the user’s swipe. Then, the costs in the
new row are calculated. Next, the costs will be added and the best mapping will
have a score of 6.

2.6 Frequencies

There are a lot of words that have a similar swipe. For those words it is hard to
decide which one should be displayed. If it is known which word is typed more
often by the user, then the probability that this word was swiped is higher and
will therefore be displayed. The frequencies of the words is integrated in the
calculations as soon as the DTW returns the costs. Thus, it does not a↵ect the
cached or precalculated DTW tables.

Chapter 3

Implementation

The programming language used for writing the swipe keyboard is Swift. This
language is interoperable with Objective-C, the language that is used for the
Kännsch [6] keyboard on iOS, i.e. a predictive keyboard for flexible writing styles
that occur in languages like swiss german. We integrated our swipe feature in
the existing Kännsch keyboard. Some components of our swipe feature were
adapted such that it works better in an environment that has less words, but
a lot of them are user specific. In Chapter 4 we will investigate the runtime of
the swipe feature using Kännsch and the runtime of our swipe keyboard using a
larger dictionary.

3.1 Dictionary

The dictionary is the core element of our swipe keyboard. Only words that
appear in the dictionary might be suggested for a swipe. Therefore, it is useful
if the dictionary contains a lot of words. On the other hand, too much words in
the dictionary reduces the quality of the suggested words. For the algorithm of
Chapter 2 to work as fast as possible, an entry in the dictionary has to provide
the following information:

• word

• frequency of the word

• expected length of the swipe

• start angle

• distance to the second letter

• point of the last letter

• perfect swipe

13

3. Implementation 14

Since we are interested in a dictionary with a lot of entries, the memory con-
sumption is crucial. The iOS keyboard extension has a significant lower memory
limit than foreground apps [8] and therefore it is not possible to load 2000000
perfect swipes into memory. An approach to solve this is that the perfect swipe
is not stored, but is calculated each time it is accessed. This is the case several
hundred times per swipe as we will see in Chapter 4, but it saves a lot of memory.
The memory consumption of the other properties are optimised by choosing the
right data type. For example, the frequency is always an integer between 0 and
255 and therefore it can be stored as an unsigned byte instead of an integer,
which takes up four bytes. With those optimisations the dictionary fits into the
memory.

The data structure of the dictionary is optimised for the queries that run on it.
For example, at the beginning of every swipe the start point filter (Section 2.1.1)
is applied and the potential first letters of the swiped word are calculated. The
words of the dictionary are stored in a two dimensional array of words. The first
dimension denotes the first letter of the words stored in it. Therefore, we know
all filtered words by calculating at most four indices of the potential first letters.

The dictionary is made persistent with a database. The words in the database
with some of the properties listed above are loaded into memory each time the
keyboard is opened.

3.2 Multithreading

In the keyboard there are several parts that run in parallel. As explained in
the previous section, all the words are loaded into the memory as soon as the
keyboard is opened. This takes some time and the user does not want to wait
until all those words are loaded. Therefore, this is done in a background task with
some synchronisation, because the loaded words might be needed for processing
a swipe while the dictionary is still loading. In fact, all the calculations that are
not directly dependent on the user interface are processed in some background
task to keep the user interface responsive. Multithreading is also used is in the
calculation of a swipe. There are a lot of words that need to be processed and
the words do not a↵ect each other during the calculation. Therefore, the swipe
calculation can be sped up as evaluated in Chapter 4.

Chapter 4

Evaluation

This chapter evaluates the accuracy and the runtime of the di↵erent parts of
our algorithm. The swipes that are used for this evaluation are collected on an
iPhone 5 (997 swipes), an iPad 4th generation (749 swipes) and on an iPhone 6s
(799 swipes). There are 10248 words swiped in German and 10297 words swiped
in English. The German dictionary [9] that is used for the evaluation contains
2050828 words. The English dictionary [7] contains 1600606 words. If not stated
otherwise, the German swipes are always compared to the full German dictionary
and the English swipes are compared to the full English dictionary. The swipes
for the evaluation are collected with an app that displays randomly drawn words
and then the user has to swipe them. The probability that a word is drawn is
the same as the probability that the word occurs in the corresponding language
according to the dictionaries mentioned above.

4.1 Device

There are big di↵erences in terms of accuracy between the iPhone 5, the iPhone
6s and the iPad as Figure 4.1 illustrates. The bigger the screen is, the better are
the predictions. This is because the user’s finger is not always very precise and
therefore a small inexactness may lead to high costs on the iPhone 5, while the
same error does not really matter on the iPad. The accuracy of the predicted
word, i.e. the most likely word given a swipe, is about 5% lower than the accuracy
of the suggested words, i.e. the four most likely words given a swipe. This is
because some words have a similar expected swipe and it is hard to tell what the
user intended to swipe. If we take the average accuracy of the three devices, then
the probability that the predicted word is correct is 90.42% and the probability
that the swiped word is suggested is 96.05%

15

4. Evaluation 16

Figure 4.1: The e↵ect of the device on the accuracy of our algorithm. The
suggested words contain the four words that are most likely swiped. The word
that is most likely swiped is called the predicted word.

4.2 Dictionary

Assume that the swiped word is in the dictionary. In Figure 4.2 we analysed how
the number of words in the dictionary influences the accuracy. The accuracy of
the suggested words gets worse as the dictionary’s size increases. The accuracy
of the predicted word stays around the 90% mark. If we would add more and
more words to the dictionary, sooner or later the accuracy of the predicted word
will decrease.

4. Evaluation 17

Figure 4.2: The e↵ect of the number of words that are in the dictionary. The
probability that the swiped word is contained in the suggested words, i.e. the
four most likely swiped words, is between 95.64% and 98.19%. The probability
that the predicted word is correct, i.e. the word that is most likely swiped, is
between 89.59% and 90.22%.

4.3 Filters

This section evaluates the accuracy and runtime improvements of the filters
discussed in Section 2.1. The parameters of the four filters are chosen in a
conservative way, such that they do not influence the accuracy of the predictions
too much. In Figure 4.3 it is shown that for each filter in over 99.45% of all cases
the swiped word is included in the list of potential swiped words. The downside
of being that conservative in choosing the parameters is the higher runtime of our
algorithm. Depending on the dictionary’s size, one could adjust the parameters
such that real time performance is achieved. Even though the filters are chosen
that conservative, most of the time only a few percents of the whole dictionary is
filtered as Figure 4.4 shows. This means that the filters improve the runtime 264
times in the median case. The outliers are a problem, since they lead to a high
runtime. One solution would be that we only take the 10000 most frequent words
that are filtered. Another solution where we limit the runtime to 1 second will be
discussed later in Section 4.6. Figure 4.5 shows how much words are filtered for
each of the four filters. As we have seen earlier in Section 2.1.1, the start point

4. Evaluation 18

filter gives an upper bound of 22.95% for the English dictionary. The direction
filter has some outliers at 100%. This is because the length of the user’s swipe
is shorter than the distance between two neighbouring letters on the keyboard
and therefore the swipe ended before the direction was calculated. The outliers
of the direction filter are no problem, because there are only a few words that
have an expected swipe that short and hence the length filter works much better
than in the usual case.

Figure 4.3: The accuracy of the filters indicate how often the swiped word was
filtered, i.e. included in the list of potential swiped words.

4. Evaluation 19

Figure 4.4: Percentage of words that are filtered, i.e. how big the list of the
potential swiped words is compared to the full dictionary, using all four filters
together.

4. Evaluation 20

Figure 4.5: Percentage of the words that are contained in the list of potential
swiped words separated by the four filtering techniques.

4.4 Input Swipe

In Section 2.3 we have seen a way to to reduce the number of points in the user’s
swipe. In Figure 4.6 the speedup of this method is analysed. Since the iPad has
the biggest screen, the user swipes a longer time and therefore more points are
in the user’s swipe. That means that on an iPad more points can be ignored
and hence a higher speedup is achieved than on the other devices. This method
improves the accuracy of the predicted word from 86.92% to 89.98% and the
accuracy of the suggested words from 92.97% to 95.64%.

4. Evaluation 21

Figure 4.6: The amount of deleted points from the user’s swipe depending on the
device. Swipes on the iPad have a higher amount of deleted points and therefore
our algorithm has a better speedup on this device.

4.5 Multithreading

Most of the current iOS devices have only 2 cores. Therefore, the achieved
speedup is limited. For two cores the best achieved speedup is 1.41. This is
because there is still some sequential and synchronised code required, e.g. for
updating the list of suggested words. Theoretically, the speedup increases lin-
early with the number of cores until there are more cores than filtered words.

4.6 Runtime

In the last sections we have seen a lot of relative values. Now we will investigate
how long a user of an iPhone 6s has to wait until the swiped word appears on
the screen. In Figure 4.7 it is shown that the median runtime is 0.76 seconds.
The longest runtime is 27.89 seconds. This is far too slow to be called realtime.
This problem is solved by running the DTW for at most one second and cancel
the calculations as soon as the time limit is reached. The accuracy of the correct
words drops from 89.98% to 84.79% and the accuracy of the suggested words
drops from 95.64% to 89.86%. This loss has to be accepted to guarantee real

4. Evaluation 22

time performance for large dictionaries with over 2000000 words. The Kännsch
keyboard dictionary is a small one that contains the 50000 most frequent words
swiped by the user. In Figure 4.8 it is illustrated that the median runtime is
0.15 seconds and the maximal runtime is 0.71. Therefore, the time limit does
not a↵ect the accuracy.

Figure 4.7: Runtime of our algorithm using the full dictionary with 1600606
words (English) or 2050828 words (German).

4. Evaluation 23

Figure 4.8: Runtime of our algorithm using the Kännsch dictionary that contains
50000 words.

Chapter 5

Conclusion and Future Work

We developed a keyboard for iOS that supports swiping and we integrated this
feature into an existing keyboard and published it on the App Store. We have
chosen a deterministic approach that uses a dictionary and finds the words that
matches best to the swipe. Further, several concepts were derived that improved
the runtime. The most e↵ective concept is filtering. With four filters, the dictio-
nary was reduced 264 times in the median case. There are more concepts that
can improve the performance. Therefore, a future work may find and implement
more such concepts. The future work could also derive an algorithm that learns
how a user swipes and adapts some parameters in order to improve performance
and accuracy. In the Kännsch keyboard there is already a database that stores
the frequencies of bigrams, i.e. the probabilities of the next words given the last
one. This could be an interesting start point to improve the accuracy further,
e.g. by varying the frequencies according to the last swiped word.

24

Bibliography

[1] Zhai, S., Kristensson, P.O.: The word-gesture keyboard: Reimagining key-
board interaction. Commun. ACM 55(9) (September 2012) 91–101

[2] Smith, B.A., Bi, X., Zhai, S.: Optimizing touchscreen keyboards for gesture
typing. In: Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. CHI ’15, New York, NY, USA, ACM (2015)
3365–3374

[3] Nuance: Swype. http://www.swype.com Accessed: 2016-07-19.

[4] SwiftKey: SwiftKey. https://swiftkey.com Accessed: 2016-08-19.

[5] Google: Gboard. https://itunes.apple.com/us/app/gboard-search.

-gifs.-emojis/id1091700242?mt=8 Accessed: 2016-08-19.

[6] Konrad, A.: Kännsch - Adaptive Keyboard for iOS. Bachelor’s thesis, ETH
Zurich (July 2016)

[7] Android: English wordlist. https://android.googlesource.com/

platform/packages/inputmethods/LatinIME/+/master/dictionaries/

en_US_wordlist.combined.gz Accessed: 2016-06-28.

[8] Apple: Creating an App Extension. https://developer.apple.com/

library/ios/documentation/General/Conceptual/ExtensibilityPG/

ExtensionCreation.html Accessed: 2016-06-21.

[9] Android: German wordlist. https://android.googlesource.com/

platform/packages/inputmethods/LatinIME/+/master/dictionaries/

de_wordlist.combined.gz Accessed: 2016-06-21.

25

