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Abstract

In the early days of the Internet, one could send a packet from a source to a destination and it
would arrive unaltered. The deployment of so-called middlebozes in recent years ensured scala-
bility and manageability of the growing Internet with the drawback that they violate the classic
end-to-end principle by altering or filtering traffic for other purposes than packet forwarding.
This makes it very hard to innovate the Internet stack and deploy new features and protocols.

The discussions about engineering a solution are mostly backed by small datasets. This master
thesis developed the basis of a technical solution to this problem: a Path Transparency Obser-
vatory, where path transparency is defined as the probability that a stream of packets is received
at its destination as it was sent by its source. The observatory is built upon a common data
model of observations: an assertion, based on raw data, that a certain condition was observed
on a certain Internet path at a particular time. The collection of large numbers of observations
will allow new types of questions to be asked about path transparency: what is the Internet-wide
prevalence of certain impairments? What are the correlations among common impairments?

Observations are generated from various different raw data formats by observatory plug-ins called
analyzer modules. Observations can also depend on other observations. Because the expected
amount of input data is very large, the observatory utilizes cluster computing technology. The
process of detecting changes and updating the observations upon the addition of new data is
done efficiently by processing only a subset of data that has been determined based solely on
measurement time spans. By policy, raw data is never deleted from the observatory but can be
marked invalid if it is flawed. This information is automatically propagated to all descendant
observations.

The observatory allows users to query for a specific version of observations (e.g. to use it as a
reference in a paper) and records how each observation was derived and which raw data was
involved in its generation.
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Chapter 1

Introduction

In the early days of the Internet, one could send a packet from a source to a destination and
it would arrive unaltered. To ensure scalability and manageability, so called middlebozes have
been introduced in recent years. Middleboxes are networking devices that violate the classic end-
to-end design principle by altering or filtering traffic for other purposes than packet forwarding.
They have implicit assumptions on the protocol stack and often operate transparently within the
network. Examples are: firewalls, intrusion detection and prevention systems (IDS/IPS), wide
area network optimizers, network address translators (NAT), load balancers, etc.

1.1 Motivation

Although their usefulness is undisputed, the existence of middleboxes makes it very hard to
innovate the stack and deploy new features and protocols. The Internet becomes ossified. And its
architects are very well aware of this problem. Unfortunately, the discussions about engineering
a solution are mostly backed by small datasets. That is because measurement data is difficult to
obtain: it is a matter of trust, terms and NDA.

This master thesis develops the basis of a technical solution to this problem: a Path Transparency
Observatory, where path transparency is defined as the probability that a stream of packets is
received at its destination as it was sent by its source. The observatory is built upon a common
data model of observations: an assertion, based on raw data, that a certain condition was observed
on a certain Internet path at a certain point in time. The transformation of raw data into
observations makes it possible to respect data policy and enable research on measurements which
would otherwise be inaccessible to third parties. The collection of large numbers of observations
will also allow new types of questions to be asked about path transparency: what is the Internet-
wide prevalence of certain impairments? What are the correlations among common impairments
(e.g. that could be attributed to the same device or operational practice)?

1.2 Goals

e The observatory should enable analysis on large datasets by providing a framework that
manages automatic transformation from various application-specific measurement data for-
mats into a common data format.

e It should be efficient and avoid repeating the same data processing operations if possible.
For scalability, the framework should be based on cluster computing technology.

e The observatory should be a data vault in the sense that raw measurement data should
never be deleted once added. Because raw data can be flawed it should be possible to mark
them as invalid and not consider them for the analysis anymore.

e Every result of the observatory should be accompanied by detailed information on how the
result was derived and which raw data has been involved in its generation.
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e For the sake of repeatability, the observatory should also be able to provide results based
on the data available at a given point in the past. If a part of it is considered invalid today,
it should add a corresponding note to the result.

1.3 Code Archive

There is a zip file accompanying this thesis containing the complete code.



Chapter 2

Background

2.1 MongoDB

MongoDB[5] is a schema-less NoSQL database system. Records are stored in documents which
are order-sensitive key-value stores. Documents can be nested and also contain arrays. Examples
of documents can be seen in section 2.3 and 3.1.

A database consists of many collections and a collection consists of many documents. MongoDB
supports clustered operation: data can be partitioned (sharding) and replicated over many ma-
chines (Figure 2.1). MongoDB is scalable and includes a powerful aggregation framework which
will execute complex queries on all shards in parallel. For an aggregation pipeline example see
listing A.5.

2.2 Apache Hadoop and Spark

Apache Hadoop[8] is a framework providing a fault-tolerant distributed filesystem and data
processing services. In the observatory only the Hadoop Distributed File System (HDFS) is
used.

Apache Spark|[7] is a library for distributed data processing and is inspired by functional program-
ming. In contrast to Hadoop it also supports interactive programming sessions (e.g. JupyterHub,
Section 2.4). Spark is designed to run alongside Hadoop with the goal of exploiting data locality.
A simplified view of the architecture is shown in figure 2.2.
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Figure 2.1: MongoDB Architecture: The application connects to a router
which will issue queries to and collect responses from all shards with the
help of the config shard. Each shard is a replica set consisting of a primary
database server and several secondary database servers that mirror data
from the primary database server. Query, aggregation and map-reduce-style
operations are executed on the cluster and provide a high-performance data
processing environment.

Replication & Partition
s su
N:n?g?\?(fde¢77’ Hadoop Hadoop

4 Data Node Data Node
Spark [~ ~ ™| spark Spark
Master | »| Slave Slave

4

y

App

Figure 2.2: Apache Hadoop and Spark Architecture: The application con-
nects to the Spark master and provides it with tasks. The hadoop cluster
consists of a central name node and many data nodes. Data chunks are
replicated according to a chosen policy (e.g. two copies on hard drives and
one copy on a solid-state drive). The master builds an execution graph of
the tasks and orders the Spark slaves to load data from the Hadoop data
nodes. Spark tries to assign the subtasks to slaves that are close to the
needed data (data locality). The result of a data processing task is then
collected by the master and sent back to the application.
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2.3 Observatory Upload

The Path Transparency Observatory is part of the MAMI research project[1] and will hold large
amounts of measurement data relevant to path impairments. For uploading raw data into the
observatory a RESTful HTTP upload service has been implemented by developers from ZHAW.
The raw data files are kept in a HDFS storage, while the metadata is saved in a MongoDB
collection. This is an example metadata document:

MongoDB Document ID (auto) '_id': ObjectId('5774a52d31e34a206bde8abc'),
HDFS path to sequence file 'path': 'hdfs://localhost:9000/uploads/
ecn-june/ecnspiderl-zip-csv-ipfix/0000.seq’,
Key in sequence file 'segKey': '20160629-a.zip',
Upload completed "complete': True,
Information supplied by uploader ~'meta’: {
'format': 'ecnspiderl-zip-csv-ipfix',
'msmntCampaign': 'ecn-june',

'seq': '0000',
'start_time': datetime(2016, 6, 29, 0, 0),
'stop_time': datetime(2016, 6, 30, 0, 0)},

Hash of raw data 'shal': 'c950536c56327b4b883abd6c7ebd214cal3770b9’,
Time of upload "timestamp': 1467262253,
User that uploaded the file 'uploader': 'gubser',

'action_id': {'prod': 27, 'dev': 130},

Action id of upload and current .
'valid': {'prod': True, 'dev': True}

valid status for each 3
environment. (Not part of
Observatory Upload)

2.4 JupyterHub

JupyterHub[3] is a multi-user interactive Read-Eval-Print-Loop (REPL) web interface running
on the observatory server. Originally made for Python, it supports a multitude of program-
ming languages today. The code is organized in notebooks and notebooks can be augmented
with formatted text, plots and images. It is widely used for explorative data analysis and rapid
prototyping.

2.5 Observation

An observation represents a statement that a condition has been observed on a given path at a
certain measurement time. Depending on the condition, the observation may also have additional
information attached.

A path consists of path elements which can be anything from IP addresses, subnets, AS numbers
and more. A ’*’ denotes that there is/are one or more unknown path elements.

e [P1.1.1.1°, ’%x>, 72.2.2.2°]
Path from an IP version 4 endpoint over an unknown number of intermediate devices to
an IP version 4 endpoint.

e [’aaaa:aaaa::12’, ’*’, 000b::12’]
Path from an IP version 6 endpoint over an unknown number of intermediate devices to
an IP version 6 endpoint.

e [’x2, 72.,2.2.2°]
Path from one or more unknown endpoints and intermediate devices to an IP version 4
endpoint.
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e [’1.2.3.4°, ’AS36°, ’2034:db8:1::33°, ’2034:db8:2::/48°, ’9.10.22.33"]
A complete route from an IP version 4 endpoint over an AS network over a IP version 6
gateway through a IP version 6 subnet to an IP version 4 endpoint.

e [’tag:123123.sources.observatory.mami-project.eu,
2016:c2756bf487aa826b0b3b13e833£352f26625ee5b’]
A pseudonymous path using RFC4151 tags[9].



Chapter 3

Observatory Design and
Implementation

The observatory architecture is depicted in figure 3.1 and consists of a raw data storage and
an upload metadata collection as well as a collection of observations. The dashed lines indicate
references to input data in order to be able to show the origin of observation and raw data.
Raw data from various data sources is uploaded through the upload interface (Section 2.3) and
is stored on a distributed filesystem (Section 2.2). The metadata of a raw data upload, such
as data format and the time of measurement, are stored in the MongoDB uploads collection
(Section 2.1). The observatory application itself is a small, easily installable Python 3.5 package
and includes unit tests and docstrings (Section 1.3).

The analyzer engine (Section 3.3) governs access to the storage and to computing services such
as Apache Spark (Section 2.2). Because of the diverse nature of input formats ranging from
low-level packet capture to high-level A/B-testing (e.g. PATHspider, Section 4.1.2), the actual
data transformation logic is not integrated into the observatory core itself. Instead it happens in
separate, versioned executables/scripts called analyzer modules. The analyzer engine supervises
the execution of analyzer modules which create observations based on the available raw data and
existing observations. All observations are stored in the observations collection.

The query engine (Section 3.4) performs higher-level analysis on top of these observations. There
is no direct contact with raw data anymore and it supports executing a query for a specific
version of observations.

The Hacking Console is a JupyterHub service (Section 2.4) for explorative data analysis (Section
3.3.4) and the development of analyzer modules in a REPL environment. REST-APIs are used
to control the operation of the system: Currently there are the upload interface (Section 2.3) and
the admin interface for managing analyzer modules and upload validation (Section 3.3.3).

Every time a piece of raw data is uploaded, the observatory needs to make sure that the ob-
servations reflect the new data situation. Regenerating all observations each time something has
changed is not a good solution because it will not be able to process terabytes of data in a
reasonable time without a huge computing infrastructure. A major goal of the observatory is
therefore to be able to execute an analyzer module over only a subset of data such that it yields
the same observations as if it would had been executed over the whole dataset (Section 3.2). A
subset that satisfies this is called a suitable subset in this thesis.

11
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Figure 3.1: Overview of the observatory architecture (Chapter 3). Raw data
is uploaded via the upload interface and transformed into observations in
the analyzer engine. The query engine allows querying for a specific version
of observations. The outside world is communicating via a Hacking Console
and REST-APIs with the observatory components.
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3.1 Observation

Based on the concept of an observation (Section 2.5), this is how the data is stored in the
observations collection:

{
List of conditions (string) conditions': [ ,
"ecn.connectivity.works',
'ecn.negotiated'
1
List of path elements (string) 'pr?lth' : ['188.166.146.182', '*', '199.91.102.136'],
Time interval time': { .
"from': datetime(2016, 6, 28, 9, 29, 37, 185000),
'to': datetime(2016, 6, 28, 9, 29, 42, 234000)
3
Associated Value (document) value': {},
Analyzer Module ID (string) 'ana;yzerfid': 'analyzer-ecnspiderl’',
List of documents, each with aC‘,C%Or,]TldS " [ .
{'id': 85, 'valid': True},
a valid status and an action id {'id': 82, 'valid': False},
when the status change happened {'id': 66, 'valid': True}
1,
Hash for comparisons "hash': 'We6Qgw3+FhfrTNBuJkPYCOHsSn4E=",
Reference to source actions ) ‘sources': {'upl': [14], 'obs': []}

The reason why the field conditions in an observation is a list instead of a single value as
described in section 2.5 is because 1.) this keeps a link between directly related conditions from
the same analyzer module, 2.) this is as convenient to query as if only a single condition were
allowed because the query language of MongoDB does not differentiate between a single value
and an array and 3.) this is more storage efficient because normally, multiple conditions arise
that have the same path, time, value, etc. (Note that argument 3 is weakened by the fact that
MongoDB applies collection-level compression).

To simplify description, the condition will denote the observation type in the rest of this thesis.

The field action_ids is an array of subdocuments with fields id and valid. Each time the validity
of an observation changes, a new subdocument is pushed to the front of the array (Section 3.2.3).
So the first element always signifies the current valid status (Figure 3.2).

The field hash contains an SHA1 digest for comparing observations. This intermediate step is
necessary because comparing documents in MongoDB is order-sensitive. See section 3.2.3 for
details.

The field sources contains a list of action_ids of raw data uploads in (upl) and a list of ids
of observations in (obs). There are three kinds of observations: direct observations are inferred
from a single raw data upload, basic observations are inferred from one or more raw data uploads
and derived observations are inferred from zero or more raw data uploads and one or more
observations. With the information in sources and the action log (Section 3.2.1) it can be
derived which raw data uploads have influenced the creation of the observation.

The field value is a document whose shape is depending on the conditions. Each condition
requires a set of mandatory fields. An observation with multiple conditions needs to have the
union of all fields required by each condition.

3.2 Subset Analysis

In this section, a concept is presented to perform analysis on a subset of input data such that it
yields the same observations as if it would had been executed over the whole data.
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{id: 3, valid: true}

{id: 5, valid: false}

{id: 12, valid: true}

action__id: Observatory Timeline

? Valid Observation 6 Invalid Observation

Figure 3.2: Changing of the valid status in the course of the observatory
lifetime. The observation was added at action 3, marked invalid at 5 and
marked valid again at 12.

In the Internet measurement scope, most analysis procedures try to assess the state of the
Internet for a given time instance or over a given period of time. For example, analyzer modules
can compare flows within some proximity of time, aggregate events over specific time periods or
assess performance values month after month. Indeed, the measurement time span seems to be a
reasonable candidate to define a subset because all measurement datasets have a start time and
a stop time by nature.

In essence, the concept works as follows: the relevant input and output actions for each analyzer
module are mapped onto the measurement time axis. The time spans of input actions that are not
covered by the time spans of output actions define the time spans that contain unprocessed data.
Without knowing something about the methodology of the analyzer module it is not possible to
determine a reasonable suitable subset. That is why the analyzer module is asked to select and
modify the time spans such that they form a suitable subset. The observatory provides three
methods (basic, extend and margin) at the analyzer module’s disposal (Point 4 in Section 3.2.2),
but it can also implement its own methods.

For determining if the observatory is up-to-date, all actions that have an effect on the raw data
and observations are recorded in an action_log (Section 3.2.1). To build and interpret it, the
raw data and analyzer modules need to provide the following information:

The metadata of each upload of raw data has a format identifier and a measurement time span.

The analyzer modules declare what raw data formats and what types of observations they use
as input as well as what types of observations they generate as output. These three sets are
called input_formats, input_types and output_types respectively and they are for determin-
ing which actions are relevant to the analyzer module.

After selecting a suitable subset in terms of time spans, the analyzer module processes the
input data and stores the generated observations into a temporary collection. The content of the
temporary collection is then compared with the existing observations within the time spans and
committed into the observations collection (Section 3.2.3).

3.2.1 Action Log

The action_log is a collection that stores information about all actions that had an effect on
the data within the observatory. Each action is identified with an incrementing sequence number
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called action_id and a list of time spans that define the range of data that are affected by this
action.

There are four different actions:

e upload indicates that raw data has been added. Mandatory fields are: the format identifier
of the raw data and a reference to the upload entry from the upload engine.

e analyze indicates that an analyzer module has been executed. Mandatory fields are: the
version of the analyzer module and the output_types it has generated.

e The special action marked_invalid is used to declare that an upload should not be trusted
anymore. As stipulated in section 1.2, deleting an upload is forbidden. Uploads that are
invalid will be ignored by the analyzer modules and as a consequence the observations
based on the invalid upload will also become invalid (Section 3.2.3).

e The inverse action of marked_invalid is marked_valid. Initially, an upload is valid and
the action marked_valid is only necessary when the upload has been marked_invalid
before.

3.2.2 Determining Subsets

Normal and derived observations can depend on multiple uploads and/or observations. While
the method presented in this section also works for direct observations, it can be impractical. An
optimization for this case is presented in section 3.2.4.

For each analyzer module generating normal or derived observations, the following procedure is
carried out:

1. A list is compiled of every upload or (in)validation of raw data that matches the analyzer
module’s input_formats and every execution of analyzer modules that generate observa-
tions that matches the analyzer module’s input_types. This list is called input actions
and each action is associated with a list of time spans.

2. A list is compiled of all recent executions carried out by the current version of the ana-
lyzer module. This list is called output actions and each action is associated with a list of
time spans and the max_action_id that was considered as input at the time of execution
(explained in step 4). Note that if the version of the analyzer module has changed, the list
of output actions is empty because upgrading an analyzer module will need all data to be
processed again.

3. The two lists are combined and sorted by the time the action was carried out. Beginning
with the earliest action, its timestamps are entered or removed from a timeline as illustrated
in figure 3.3. The resulting time spans in the timeline describe the subsets of data that have
not been analyzed yet.

4. Now, the analyzer module itself is asked to choose and modify the time spans such that they
define a suitable subset. The analyzer module is allowed to choose to process a fraction of
all unprocessed data as long as this fraction is a suitable subset. This can be advantageous
for example to keep the execution time at a reasonable level. (The observatory will just
execute the analyzer module again if it notices that there is still unprocessed data.)

For convenience, the observatory provides three different methods at the analyzer module’s
disposal. Namely, basic, extend and margin which are illustrated in figure 3.4. Method basic
does not change the time spans at all, method extend stretches the time spans to the next
absolute boundary defined by a time period (full hour, full day, full month, etc), and the
third method margin stretches the time spans such that there are no measurements outside
of the boundaries within a given offset. This last method is explained in more detail in the
next section.

To avoid problems when new data is added while the analyzer module is running, the
analyzer module also has to declare the last action it considers for input. This number is
called max_action_id.
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Figure 3.3: An additional input action increases the total amount of time
while an additional output action decreases it. In situation a) the analyzer
module has not been executed yet and the resulting timeline consists of
the union of the input time spans. In b) the analyzer has been run over a
subset already (#3) and thus the remaining timeline consists of two smaller
time spans. The order of actions is important because in ¢) the input #4
is added after the execution of the analyzer module and thus this input’s
time span has to be evaluated again by the analyzer module.
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Figure 3.4: Three methods for achieving a suitable subset are implemented:
In a) all time spans that weren’t analyzed are considered to be unprocessed
(no modification). In b) time is slotted according to a custom period. The
time spans are expanded to match the slot edges. In ¢) time spans are
expanded in a way that there are no measurements outside of the selected
time spans within a custom margin.
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Margin Method

With the margin method, time spans are expanded in a way that there are no other measurements
within a given offset outside of selected time spans (Figure 3.4 c) ).

First, all time spans are added to a set pool. Another set, islands, is initialized empty. Each
island will define a suitable subset. Figure 3.5 illustrates the following steps. The small blue
rectangles are the time spans in pool and the grey rectangles are the time spans in islands.

1. A time span is popped from pool and its begin and end time are extended by offset (in
this case £12h).

2. Each remaining timestamp of pool that is intersecting the extended time span will be
popped. The minimum begin and the maximum end time of all intersecting time spans is
determined and extended by offset. This process is repeated until the minimum begin
and the maximum end time do not change anymore or pool is empty.

3. The resulting time span is called an island and is added to the set islands. The whole
process is repeated from step 1 until pool is empty.

3.2.3 Execution and Commit

Once the analyzer module has chosen a suitable subset of input data in terms of time spans,
it processes all valid data within these time spans and stores the generated observations in a
temporary collection. The corresponding set of all observations in the observations collection
generated by the same analyzer module within the same time spans is called the candidate set.

For each observation in the temporary collection, the hash field is computed by the SHA1 al-
gorithm from the flattened and alphabetically sorted fields conditions, time, path, value,
sources and analyzer_id.

For each observation in the candidate set the hash is computed in the same way. Then for each
candidate, its hash is matched against the hashes of all observations in the temporary collection.
If there is a match, the observation in the temporary collection is called the counterpart of the
candidate. For speeding up the counterpart search, the field hash is indexed.

Why compute hashes? There are two reasons why the hash is computed by the observatory
instead of using MongoDB’s built-in features: 1.) MongoDB document comparison is order-
sensitive but Python’s dict is order-insensitive. This means that executing the same analyzer
modules twice without using order-sensitive mapping types everywhere will create different doc-
uments because the order of the elements is non-deterministic. 2.) Hashed index over multiple
fields with some fields being an array is not supported[6]. This means querying for counterparts
would be unbearably slow.

After determining all counterparts, the observations are compared. These are all the possible
comparison outcomes (Figure 3.6):

1. add: When the analyzer module generates an observation that isn’t the counterpart of
any candidate, the observation is added to the observations collection. The array field
action_ids is initialized with [{’id’: <current action id>, ’valid’: truel}].

2. mark invalid: When the analyzer module does not generate an observation and there is
a valid candidate observation, the existing observation is marked invalid: A new element
{’id’: <current action id>, ’valid’: false} is prepended to the array action_ids
of the candidate.

3. mark valid: When the analyzer module generates an observation and there is an invalid
candidate observation, the candidate observation is marked valid. A new element {’id’:
<current action id>, ’valid’: true} is prepended to the array action_ids of the
candidate.
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Figure 3.5: Determining suitable subsets with the margin method (Section
3.2.2).
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Figure 3.6: When the input data changes, the analyzer module will eventu-
ally produce different observations than before. The five possible outcomes
are illustrated here and described in section 3.2.3.

4. keep valid: When the analyzer module generates exactly the same observation, the candi-
date observation is not changed-

5. keep invalid: When the analyzer module does not generate an observation and there is an
invalid candidate observation, the candidate observation is not changed.

The information stored in the field action_ids enables querying the observatory for results at
a given time in the past (Query engine, section 3.4).

3.2.4 Optimization for Direct Observations

It’s worthwhile to look at this special case because it is expected that many analyzer modules
will be generating direct observations only. Direct observations depend, by definition, only on
a single upload (Section 3.1), and therefore each upload already forms a suitable subset. The
analyzer module has to explicitly state that it only creates direct observations by setting the
field direct to true in the analyzer module specification file (Section 3.3.3, Listing A.2).

When many uploads are in close proximity of measurement time to each other and another upload
is added, the time spans approach presented in the previous section will force the analyzer module
to analyze all uploads again although only the newly added upload would need to be analyzed.

The first two steps are identical to the procedure in section 3.2.2:

3. A list of (upload, max_action_id) is derived from the input actions list where
max_action_id is the action_id of the last action related to the upload. Using the last
action takes into account that there can be multiple marked_valid or marked_invalid
actions after an upload action.

4. Remove those uploads from the list that were analyzed by an analyzer module with an
action_id larger than the last action related to the upload.
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Figure 3.7: The sensor detects changes and orders the supervisor to ex-
ecute analyzer modules which store their generated observations in their
respective temporary collection. Afterwards, the validator takes the obser-
vations and commits them to the observatory. The details 1-6 are described
in section 3.3.

3.3 Analyzer Engine

The analyzer engine consists of three services: sensor, supervisor and validator. In addition, there
is an admin interface designed as a REST-service for registering analyzer modules and marking
uploads (in)valid (Section 3.3.3). The process of detecting changes, executing analyzer modules
and committing results into the observations collection is illustrated in figure 3.7. Analyzer
modules are assigned a state (Figure 3.8) and depending on the state, they are being handled
exclusively by one of the services. The state is stored in a MongoDB collection, where the sensor,
supervisor and validator have access. There is no direct communication channel between them.

The numbers (1) - (6) refer to both figures 3.7 and 3.8.

Sensor In the sensing state, the sensor (Section 3.3.1) periodically scans the action log (1) and
determines if the analyzer module has unprocessed data. When the sensor decides that there is
unprocessed data or the analyzer module itself has changed, the sensor changes the state from
sensing to planned (2).

Supervisor Now the analyzer module is in the domain of the supervisor. The supervisor will
set up a temporary collection, grant access to the observatory services, put the analyzer module
from planned into executing state and invoke the analyzer module (Section 3.3.2). The analyzer
module chooses a suitable subset as described in point 4 of the list in section 3.2.2, generates
observations from its input data and stores them into the temporary collection. When the analyzer
module ended without error, the supervisor sets the state from ezecuting to evecuted @ If there
was a problem (e.g. non-zero exit code), the analyzer module is put into the error state instead
and has to be enabled by the user via the admin interface (Section 3.3.3).

Validator The validator periodically checks for an analyzer module that is in the ezecuted
state. It takes the observations from the analyzer module’s temporary collection, validates them,
adds an analyze action into the action log (5) (Section 3.2.1) and commits the observations into
the observations collections as described in section 3.2.3 (6). If everything went well, the analyzer
module is put into state sensing again.
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Figure 3.8: Executing an analyzer module and integrating the results into
the observatory involves several steps which are descirbed in section 3.3.

To avoid having to implement locking mechanisms, the validator is the only service that writes
to the action log.

Consequently, it is also responsible for inserting upload, marked_invalid and marked_valid
actions. It periodically scans the uploads collection for completed uploads and 1.) assigns each
upload document an action_id and a valid field (See section 2.3) and 2.) inserts an action into
the action log (Section 3.2.1). In the observatory configuration, a custom query can be specified
to, for example, only consider raw data uploaded by certain users or certain raw data formats.
Marking an upload (in)valid is a manual process initiated by the user via the admin interface
(Section 3.3.3).

3.3.1 Sensor

Most of the time, analyzer modules are in the sensing state. Upon request, the sensor can also
set analyzer modules to disabled and it will ignore them (Section 3.3.3). In the sensing state, the
sensor periodically scans the action log and determines if there is unprocessed data by comparing
input and output actions: The time spans that contain unprocessed data are the time spans of
input actions that aren’t covered by the time spans of output actions (Section 3.2, Figure 3.3).
Notabene, the sensor does not need to execute the analyzer module to determine if there is
unprocessed data and therefore avoids the overhead of execution.

But not only the input data can change, also the analyzer module itself is allowed to change.
The filesystem representation of an analyzer module is in fact a git repository[11]. The version
information in the analyze action in the action log (Section 3.2.1) is comprised of an url to a
repository and the commit hash. If the version of the last analyzer module run is different from
the current analyzer module version, the sensor decides that the whole input data has to be
analyzed again.

The encapsulation into analyzer modules also allows the observatory to execute multiple of
them simultaneously. There are two important reasons as to why parallel execution is preferable
to sequential execution: 1.) It reduces latency because short-running analyzer modules are not
delayed by long-running ones. 2.) When an analysis algorithm cannot be split up in enough
distributed tasks such that it cannot fully occupy the cluster computing infrastructure, the
utilization can be increased by running multiple, independent analysis algorithms at the same
time.

But when running multiple analyzer modules, the sensor needs to make sure that no input data
is modified during execution of an analyzer module. More precisely, it is not allowed to start an
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Figure 3.9: Steps involved when executing an analyzer module or an online
analyzer. Section 3.3.2

analyzer module that has a blocked output type or an unstable input type: An observation type
is blocked if it’s an input type of a running analyzer. And correspondingly, an observation type
is unstable if it’s an output type of a running analyzer.

When the sensor decides that an execution is necessary and allowed, the sensor changes the state
from sensing to planned.

3.3.2 Supervisor

The steps involved in the execution of an analyzer module are illustrated in figure 3.9. When the
supervisor detects an analyzer module in the planned state, it creates an agent (1), which will
create a database user and a temporary collection for the analyzer module (2). This step can be
extended to create accounts for Apache Spark, HDFS and other services. Currently, Spark and
Hadoop’s authentication are disabled due to its high initial setup effort.

Then, the agent executes the command line given by the analyzer module (3). The application
logic creates an AnalyzerContext (the observatory’s API for analyzer modules) (4, which in
turn connects to the supervisor via a token-based authenticated TCP connection and exchanges
line-separated json-encoded messages (5). The token is given by the agent via an environment
variable.

There are other ways to exchange information between analyzer module and supervisor. For
example standard input & output, text files, MongoDB collection etc. But the advantage of
the chosen method is that the code difference between analyzer module code and an interactive
console is very small, which makes developing analyzer modules easier (Section 3.3.4). Also, the
API is easy to extend with more sophisticated functionality (Section 6).

For convenience, the AnalyzerContext hides most of the complexity and provides functions to
choose a suitable subset and gain access to storage and computing services @ (Listing A.1). The
fact that the supervisor executes the analyzer module via an ordinary command line and the
exchange of messages is following a simple protocol should make it easy to port the Analyzer-
Context to different programming languages.

3.3.3 Admin Interface

The admin interface is a simple REST API powered by the flask microframework. Registering
an analyzer module requires only two pieces of information: an URL pointing to a git reposi-
tory and a commit hash. The remaining information such as input_formats, input_types and
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output_types is retrieved from a special specification file in the repository called ptocore. json
(Example Listings A.2 and A.3). This makes deploying analyzer modules very convenient. The
admin interface allows to enable/disable/cancel and change the version of an analyzer module
as well as marking uploads (in)valid.

There is one important drawback in the current implementation: Because the valid field in the
upload collection only holds the current valid status (Section 2.3) and is updated instantaneously
by the validator, the analyzer module will not notice when an upload has to be marked (in)valid.
A workaround is that the user manually needs to make sure that there are no analyzer modules
running. A solution to this is proposed in chapter 5.

Listing A.4 contains a sample code for interfacing with the API using the requests library[12].

3.3.4 Interactive Development

Often, the first steps for exploring a new measurement dataset happen in interactive environments
such as JupyterHub (Section 2.4). The observatory is designed to make the code transition from
these environments to analyzer modules as easy as possible.

Apart from analyzer modules, the supervisor supports so-called online analyzers. The main dif-
ference is that online analyzers are not executed by the supervisor and cannot contribute to the
observations collection. Instead, the supervisor creates credentials upon request, which can be
passed manually to an AnalyzerContext. After that, everything is the same except the observa-
tions stored in the temporary collection are discarded as soon as the online analyzer account is
deleted.

In the current implementation, the supervisor creates an online analyzer on startup and prints
the credentials to standard output.

3.4 Query Engine

Querying for a specific version of the observations collection is possible in an efficient manner by
inspecting the field action_ids using the MongoDB aggregation framework.

First, the desired version (= action_id) of the observation is chosen. Then, for each observa-
tion, the field action_ids is filtered, keeping only observations that existed prior to the chosen
action_id and that were valid at that time.

The aggregation pipeline implementing querying for a specific version of the observatory is shown
in Listing A.5.



Chapter 4

Proof Of Concept

To show that the observatory works as expected, a small measurement study about ECN con-
nectivity and negotiation has been conducted.

The idea is that measurements are performed with two different versions of the ECN analysis
tool developed at ETH: ECNspider (Section 4.1.1), the software used in the 2014 ECN study[13],
and the new PATHspider (Section 4.1.2), a rewrite of ECNspider developed within the MAMI
project.

These tools measure the same thing but output completely different data formats. The use case
of the observatory is to transform the results of both tools into observations of a common shape
and then perform further analysis on top of observations independent of the raw data format
(Section 4.2).

4.1 Background

Explicit Congestion Notification[10] (ECN) is a TCP/IP protocol extension aiming to reduce
packet loss, latency and jitter. When there is congestion on the path between two endpoints,
the router experiencing the congestion can set a flag in the IP header which will be echoed back
from the receiving endpoint to the sending endpoint in a TCP flag. The sending endpoint will
then reduce its packet transmission rate and thus reduce the load on the congested router. To
be effective, both endpoints have to negotiate the use of ECN. This extension was disabled by
default in operating systems because old and faulty hardware have broken connectivity[13].

Two numbers are of primary interest: The probability that connectivity breaks when ECN is
enabled and the proportion of hosts that actually negotiate ECN.

For each host, two connection attempts were made: the first without ECN and the second with
ECN (Figure 4.1). Depending on whether the connection was successful, the measurement is
classified into ECN safe, ECN broken, nobody home and transient/other according to table 4.1.
Further, the classification whether ECN is negotiated or not negotiated is done by looking directly
at the SYN packets.

When performing the same measurement from different vantage points, it can be determined if
the connectvitiy is path or site dependent (Figure 4.2).

Connection | w/o ECN | w/ ECN
ECN safe success success
ECN broken success failure
nobody home failure failure
transient/other failure success

Table 4.1: Characterization of ECN safety based on the results of two con-
nection attempts.
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Endpoint address
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Figure 4.1: ECN connectivity test, first connect without the ECN feature
and second connect with the ECN feature enabled. Image from [14]

Figure 4.2: Measurement performed from multiple vantage points. When
some but not all vantage points fail to establish an ECN-enabled connection,
the connectivity is path-dependent. Image from [14]
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4.1.1 ECNspider

Performing a measurement with ECNspider[13] requires recording flows using Quality of Flow[15]
(QoF) at the same time. ECNspider outputs a csv file with each line corresponding to a con-
nection trial with the fields: destination ip, source port, ECN enabled, connection result, etc.
QoF outputs an ipfix file with each record corresponding to a flow: an exchange of packets be-
tween two endpoints characterized by source ip, source port, destination ip, destination port.
For this analysis, it records TCP/IP SYN-flags used later to determine if ECN was successfully
negotiated.

Note that for assessing ECN support, the two files have to be combined and it has to be searched
for the two connection attempts for each endpoint. This is not done by the ECNspider application
itself but happens in a separate analysis code instead.

4.1.2 PATHSspider

The new PATHspider[4] is a plugin-based generalization of ECNspider that integrates the func-
tionality that was originally provided by QoF. The ECNspider specific logic has been refactored
into a PATHspider plugin and is called ecnspider3'. The application outputs line-separated
JSON-encoded values with each line corresponding to a connection trial.

4.2 Design Of The Study

Figure 4.3 shows the setup of measurement tools, analyzer modules and observable condi-
tions. ECNspider and PATHspider raw data is uploaded by hand and is automatically analyzed
by analyzer-ecnspiderl or analyzer-ecnspider3 (see below) respectively. Based on observations
generated by them, another analyzer module analyzer-ecnspider-vp determines path- and site-
transparency.

analyzer-ecnspiderl and analyzer-ecnspider3 produce direct observations (subset selected as de-
scribed in section 3.2.4), whereas analyzer-ecnspider-vp produces derived observations (subset
selected as described in section 3.2.2 with margin method). Note that analyzer-ecnspider-vp is
raw data independent.

Due to the small production environment, just one single-core VM with 8GB RAM, it was found
unreasonable to assess the performance of the cluster computing components, namely Spark and
MongoDB. The proof of concept study therefore only assesses the functionality of the observatory.

Analyzer Module for ECNspider For assessing ECN support, the two files (Section 4.1.1)
have to be analyzed jointly outside of the ECNspider application. The analysis code used in the
original ECNspider has been refactored and integrated into the observatory as an analyzer module
with the name analyzer-ecnspiderl. It expects the raw data upload to be a zip file containing the
two files: an .ipfix-file (from QoF) and a .csv-file (from ECNspider).

Amendments to PATHspider and Analyzer Module for PATHspider The ecnspider3
plugin of PATHspider has been enhanced as part of this thesis to automatically merge the
two connection attempts and classify the test into ECN safe, ECN broken, nobody home and
transient/other. In addition, the output format has been changed to resemble the shape of an
observation (Section 2.5). The analyzer module reading PATHspider format is called analyzer-
ecnspiderd and is really simple because the analysis is already done in PATHspider.

Analyzer Module for Path- and Site-Dependency This analyzer module uses the mar-
gin method (Section 3.2.2) to select suitable subsets. Because the measurements were taken at
roughly the same time one week apart, the suitable subsets produced by the margin method
match the measurement runs.

The following procedure is implemented as a MongoDB aggregation pipeline:

I The reason it is version 3 is because the tool developed in [14] is ecnspider 2.
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Figure 4.3: ECNspider and PATHspider generate raw data which is analyzed
by three analyzer modules.
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1. Observations are grouped by destination IP address. For each destination IP: source IPs
and conditions are added to sets sips and conditions respectively.

2. At least three source IPs (vantage points) are required in sips; otherwise the record is
ignored.

3. Then, the conditions set is analyzed for each destination IP address: If there is at least
one ecn.connectivity.broken, the connectivity can be path dependent or site dependent.

4. If there is no ecn.connectivity.works then the connectivity is classified as
ecn.site_dependent. Otherwise, if there is at least one ecn.connectivity.works, the
connectivity is classified as ecn.path_dependent.
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London P4 IP6 Both
Date total | broken pct | total | broken pct total | broken pct
2016-07-18 | 617602 249 | 0.04% | 24910 6 | 0.024% | 642512 255 | 0.04%
2016-07-27 | 613912 344 | 0.056% | 25980 4| 0.015% | 639892 348 | 0.054%
2016-08-04 | 611782 243 | 0.04% | 26871 5| 0.019% | 638653 248 | 0.039%
2016-08-10 | 610506 698 | 0.11% | 27574 11 0.0036% | 638080 699 | 0.11%

Table 4.2: ECN dependency measured at four dates from the London van-
tage point. Plotted in figure 4.4.

P4 1P6 Both
Date total | path pct | total | path pct total | path pct
2016-07-18 | 617602 | 444 | 0.072% | 24910 6 | 0.024% | 642512 | 450 | 0.070%

2016-07-27 | 613912 | 509 | 0.083% | 25980 2 | 0.008% | 639892 | 511 | 0.080%
2016-08-04 | 611782 | 465 | 0.076% | 26871 5| 0.019% | 638653 | 470 | 0.074%
2016-08-10 | 610506 | 1121 | 0.184% | 27574 14 | 0.051% | 638080 | 1135 | 0.178%

Table 4.3: ECN dependency measured at four dates from the London van-
tage point. Plotted in figure 4.4.

4.3 Results

Four measurement runs were performed roughly one week apart from each other from three
vantage points located in London, New York City and Singapore. The raw data is stored in the
observatory[l] and the analysis has been done there as well.

Comparing the percentage of ECN dependent connectivity (Table 4.2, Figure 4.4) with the num-
bers in the study[13] the values are smaller by a factor of 4 to 10. My assumption is that there
is a bug in the analyzer-ecnspiderl code such that broken connectivity is not detected properly.
Obviously this also affects the classification into path- & site-dependency (Table 4.3, Figure 4.5).

The percentage of successful negotiation (Table 4.4, Figure 4.6) aligns with the results in the
study.

Each measurement run at a vantage point tested roughly 600’000 endpoints which resulted in
a total of 7.2M connectivity tests. The compressed measurement raw data occupies 1.5 GB of
disk space. In total, there exist now 7°042’284 connectivity observations, 1’975’740 negotiation
observations and 1514 path- & site-dependency observations which results in a total of 9°019°538
observations.

Unfortunately, it was not possible to perform measurements with PATHspider due to a spurious
bug. Nonetheless the analyzer-ecnspiderl and analyzer-ecnspider-vp successfully analyzed the
data produced by ECNspider. Also marking raw data invalid is functioning and the invalid
status propagates correctly to all affected observations.

Date total nego ‘ pct
2016-07-18 | 642512 | 459122 | 71.457%
2016-07-27 | 639892 | 460562 | 71.975%
2016-08-04 | 638653 | 461247 | 72.222%
2016-08-10 | 638080 | 461362 | 72.305%

Table 4.4: Number of successful ECN negotiation measured at four dates
from the London vantage point. Plotted in figure 4.6.
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Figure 4.4: ECN dependency measured at four dates from the London van-
tage point.

e—e Path-Dep. IPv4
%—x Path-Dep. IPv6
0.15 || ** Path-Dep. Total

X 0.10

0.05
0.00
N A N N
N N N &
& & N &
S 8 8 8

Figure 4.5: ECN path dependency determined by comparing connectivity
tests from all vantage points.
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tage point.



Chapter 5

Conclusion

In this thesis the basis of a Path Transparency Observatory has been designed and implemented.
At the time of writing, the software is up and running on MAMI infrastructure[1]. The observa-
tory is able to analyze large datasets efficiently by providing analyzer modules access to cluster
computing technology, MongoDB (Section 2.1) and Apache Hadoop & Spark (Section 2.2). The
performance gain by using cluster computing in the observatory could not be assessed because
the server cluster was not yet ready.

The process of detecting changes and updating the observations upon the addition of new data is
done efficiently by processing a subset of data that has been determined by the analyzer module
based solely on measurement time spans (Section 3.2). By policy, raw data is never deleted from
the observatory but can be marked invalid if it is flawed (Section 3.2.1). The information is
automatically propagated to all observations that are directly or indirectly depending on the
invalidated raw data. Every observation is accompanied by information how it was generated
(analyzer module version) and which raw data has been involved in this process (Action log in
section 3.2.1 and field sources of an observation in section 3.1). In addition, observations are
versioned, which allows to query the observatory for a specific version of observations using the
query engine (Section 3.4).

A few thoughts about the chosen technologies MongoDB, Apache Hadoop and Apache Spark
(Chapter 2): MongoDB was a good choice because the document model aligns with the nature
of the observatory data model (nested documents, arrays) and the aggregation pipeline is very
powerful. In my opinion, the query language is a bit odd (e.g. matching a single value has the
same query shape as an exact match on an array, and matching an array element!) and it is
missing some important features (e.g. match documents where array size > a constant integer,
getting the last element of an array, or hashed indexes over arrays (Workaround in section 3.2.3)).

Apache Hadoop and Apache Spark work well together but introduce a massive overhead when
used from Python, they are very inefficient when storing small files and only support Kerberos
as authentification method. For the small files problem, there exists a workaround with using
SequenceFiles, but it makes the code unnecessary complex. A lightweight and pythonic alternative
for Spark would be the Dask+Distributed framework?.

The proof of concept was successful and has shown that the concepts for automated subset
analysis, observation versioning and derived observations fit together in practice. The observatory
is now ready to be loaded with analyzer modules and to be filled with raw data.

Thttps://docs.mongodb. com/manual/tutorial/query-documents/#query-on-arrays
’http://distributed.readthedocs.io/en/latest/
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Chapter 6

Outlook

e A public website on top of this work is being implemented by the MAMI team.

e The array action_ids in the observation (Section 3.1) is not necessary, two action id fields
would suffice: an insert_action_id and a deprecation_action_id. When an observation
is added to the observations collection, the insert action id is set. When the observation is
marked invalid, the deprecation action id is set. Now in the case that the same observation
appears again, it is inserted as a new observation into the observations collection. This
will result in a duplicate observation with different action ids. It is expected that the
impact on storage requirements will be marginal, because MongoDB employs collection-
level compression, and querying for specific version will be less complex and faster, because
the costly $unwind and $group aggregation stages in the query engine can be eliminated
(Appendix A 4).

e Currently when raw data is marked invalid and an analyzer module has generated direct
observations from it, the analyzer module is executed again. In this case the analyzer module
needs to exit without generating any observations. It would be better that the observations
are marked invalid directly without needing to execute the analyzer module.

e Users should be able to order online analyzer accounts (3.3.4) through the admin interface.
The admin interface needs to forward this request to the supervisor.

e The sources field of an observation (Section 3.1) could be extended to hold more detailed
format-specific information such as the line number in the raw data file.

e The AnalyzerContext can be extended to allow analyzer modules to report their progress
and also allow them to complain about raw data. These complaints can then be monitored
for example by the validator and the validator can automatically mark raw data invalid.

e The problem that the user needs to make sure that no analyzer module is running when
raw data is being marked (in)valid (Section 3.3.3) can be solved the following way: The
admin interface sets a flag that prevents the supervisor to start any more analyzers. The
validator waits until there is no analyzer module running anymore, performs the marking
and resets the flag so that the supervisor is no longer blocked.
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Appendix A

Example Code

A.1 AnalyzerContext Example

from ptocore.analyzercontext import AnalyzerContext
from ptocore.sensitivity import extend, extend_hourly

# establish connection to supervisor
ac = AnalyzerContext ()

# use extend method to expand to hourly time spans
max_action_id, timespans = extend(extend_hourly, ac.action_set)

# declare suitable subset
ac.set_result_info(max_action_id, timespans)

# get uploads within suitable subset
uploads = ac.spark_uploads ()

# write a function to extract interesting values from raw data

def prepare(upload):

# write a function that takes values and generates observations
def analyze(values):

# execute on cluster with spark
analyze (uploads.flatMap (prepare)).saveToMongoDB (ac.temporary_uri)

Listing A.1: Mockup of analyzer module code. Usage example of Analyz-

erContext.

A.2 ptocore.json

All analyzer module need to have a file called ptocore. json which includes all necessary infor-

mation about the analyzer module.

{

"input_formats": ["ecnspiderl-zip-csv-ipfix"],

"input_types": [],

"output_types": ["ecn.connectivity.works",
"ecn.connectivity.broken",
"ecn.connectivity.transient",
"ecn.connectivity.offline",
"ecn.negotiated",

"ecn.not_negotiated"],
"command_line": ["python3", "master.py"],
"direct": true

Listing A.2: ptocore.json for analyzer-ecnspiderl (Section 4.2).

"input_formats": [],
"input_types": [
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"ecn.connectivity.works",
"ecn.connectivity.broken",
"ecn.connectivity.transient",
"ecn.connectivity.offline",
"ecn.negotiated",
"ecn.not_negotiated"],

"output_types": [
"ecn.path_dependent",
"ecn.site_dependent"

1,

"command_line": ["python3", "master.py"l],

"direct": false

Listing A.3: ptocore.json for analyzer-ecnspider-vp (Section 4.2).

A.3 Admin Interface Client

import requests

# depends on your flask configuration variables
base_uri = ’http://localhost:33425’

def create_analyzer (analyzer_id, conf):
ans = requests.post(base_uri + ’/analyzer/’+analyzer_id+’/create’, json=conf)
print (str(ans))
return ans

def update_analyzer (analyzer_id, conf):
ans = requests.post(base_uri + ’/analyzer/’+analyzer_id+’/setrepo’, json=conf)
print (str(ans))
return ans

def an_list():
return requests.get(base_uri + ’/analyzer’).json()

def an_enable(analyzer_id):
return requests.put(base_uri + ’/analyzer/’+analyzer_id+’/enable’)

def an_disable(analyzer_id):
return requests.put(base_uri + ’/analyzer/’+analyzer_id+’/disable’)

def an_cancel (analyzer_id):
return requests.put(base_uri + ’/analyzer/’+analyzer_id+’/cancel’)

def ul_valid(upload_id:str):
return requests.put(base_uri + ’/upload/’+upload_id+’/valid’)

def ul_invalid(upload_id:str):
return requests.put(base_uri + ’/upload/’+upload_id+’/invalid’)

# example: register analyzer-ecnspiderl from github

ans = create_analyzer(’analyzer-ecnspiderl’, {
"repo_url": "https://github.com/gubser/analyzer-ecnspiderl.git",
"repo_commit": "7d15a2169a4672724c1569608£74a09baf774bf7",

b

print (ans.text)

# example: update analyzer-ecnspider-vp to another repository and/or version

ans = update_analyzer (’analyzer-ecnspider-vp’, {
"repo_url": "https://github.com/gubser/analyzer -ecnspider-vp.git",
"repo_commit": "6678ba09%9aa86e9e5df869d92cfcdc8bb64aacb7al",

b

print (ans.text)

# example: list all analyzers
print(an_list ())

# example: enable analyzer-ecnspiderl
ans = an_enable(’analyzer-ecnspiderl’)
print (ans.text)

# example: disable upload
ans = ul_invalid(’5767a53731e34a6c3925a72b’)
print (ans.text)

Listing A.4: Python functions for interfacing with the observatory using the
requests library.
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42 APPENDIX A. EXAMPLE CODE

A.4 Query Engine Aggregation Pipeline

# maximum action id to consider (= version of the observatory to query for)
max_action_id = 112
# pipeline stages
pipeline = [
# unwind action_ids array
{’$unwind’: ’$action_ids’},
# keep all that exist before max_action_id
{’$match’: {’action_ids.id’: {’$lte’: max_action_id}}},
# take the first document = most recent action at that time
{’$group’: {
>_id’: ¢$_iad’,
action_ids_x’: {’$push’: ’$action_ids’},
’obs’: {’$first’: >$$CURRENT’}
3},
# restore the shape of an observation
{’$project’: {
Jaction_ids’: ’$action_ids_x’,
’path’: ’$obs.path’,
‘time.from’: ’$obs.time.from’,
’time.to’: ’$obs.time.to’,
’conditions’: ’$obs.conditions’,
’value’: ’$obs.value’,
analyzer_id’: ’$obs.analyzer_id’,
’sources’: ’$obs.sources’
33,
# only consider valid observations
{’$match’: {’action_ids.0.valid’: Truel}
# insert your query {’$match’: <query>} or additional pipeline stages here:
]
# execute pipeline
cursor = observations_coll.aggregate(pipeline)

Listing A.5: Pipeline stages for implementing query for a specific version.
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