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Abstract

Nowadays covert command and control (C&C) communication channels are built using the
HTTP/HTTPS protocol, mainly because it is rarely blocked as well as malicious traffic
can hide inside huge amounts of daily benign browsing traffic. This thesis addresses the
problem of identifying malicious Web traffic and more specifically, post-infection traffic
(C&C communication). We have built a system to facilitate network traces’ analysis by
combining different existing tools. We collected and classified a large number of benign
and malicious network traces. Using this system, we performed an extensive analysis of
these traces and found common patterns occurring in them. Based on our analysis, we
found that C&C communication can be reliably detected by representing the dependencies
of HTTP/HTTPS traffic in a graph and complementing missing links. As a result, C&C
traffic stands out as unconnected nodes. We applied different classifiers on the graph and
found that a Gradient Boosting classifier can detect C&C traffic with 99% precision and
97% recall.
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Chapter 1

Introduction

Web traffic has become the ideal choice of communication with infected hosts for various
reasons. First and foremost, even security-aware corporate networks have not that strict
policies for inbound and outbound HTTP/HTTPS traffic as they need to allow their
employees to browse the Web. Moreover, HTTP/HTTPS channels have clear advantages
over some popular alternative options. They outperform Peer to Peer (P2P) channels, as
they are simpler and easier to use as well as IRC channels, since they are more resilient.
The latter is achieved by using IP and domain fluxing which increases the possibility of
compromised hosts to locate an online C&C server. In addition, P2P and IRC protocols are
blocked by companies and their traffic is suspicious. Finally, an HTTP/HTTPS channel can
be considered covert, because during everyday web browsing a huge number of requests and
responses are being exchanged. For instance, one user click to load http://www.20min.ch,
the popular Swiss news website, triggers approximately 400 HTTP/HTTPS requests.
Consequently, malicious traffic can hide inside benign traffic and, without appropriate
measures, avoid detection.

Cyber criminals use HTTP/HTTPS command and control (C&C) servers, in order to
communicate with compromised hosts, also known as zombies. Those hosts are primarily
used for exfiltrating sensitive data (e.g., personal information, credit card numbers,
industrial secrets), relaying traffic, gaining access to neighboring hosts inside their internal
network (pivoting), etc.

1.1 Motivation

To give an idea of the importance of the problem as well as the disastrous effects it can
cause, we present two relevant case studies we found interesting during our research.

1.1.1 Cyberespionage against RUAG

RUAG [30] is a technology company owned by the Swiss government that develops and
supplies military equipment. This firm was compromised and its case was made public
very recently (May 2016). According to security analysts from the Reporting and Analysis
Center for Information Assurance MELANI, who published a report [27] about that case:
”the cyber attack was related to a long running campaign of the threat actor around
Epic/Turla/Tavdig. The actor has not only infiltrated many governmental organizations
in Europe, but also commercial companies in the private sector in the past decade”. The
attackers followed a usual pattern where they first infected some easy to target hosts and

11
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12 CHAPTER 1. INTRODUCTION

afterwards, they moved laterally in the network by infecting additional devices and ele-
vating their privileges, in order to acquire the sensitive information they wanted to exfiltrate.

The chronology of the attack adapted from [27] is the following:

• 9.2014: Indicators of compromise (IOCs) already appear in proxy logs. However, they
were not detected at that time. Since there are not any proxy logs available before
this date, the initial vector is still unknown.

• 12.2015: Some suspicious IPs from an external organization appear in the logs. How-
ever, an in-depth search was not possible at that point because the proxy did not log
internal client IPs.

• 21.1.2016: A major incident was opened by MELANI/GovCERT.ch and RUAG be-
cause C&C servers and infected bots were identified in the proxy logs.

• 22.1-31.1.2016: This is the hot phase of the incident response and a task-force has
been established. The investigators performed forensic analysis of logs, disks etc. At
that point it was identified that the attack goes back to September 2014 where logs
end as well as that Turla/Tavdig Malware has been used.

• 1.2-29.2.2016: Monitoring has been established and several new C&C servers were
found. Moreover, exfiltration using HTTP over proxy in waves was found to have
taken place in June, July, September, October and December in 2015.

• 1.3-30.4.2016: Enhanced monitoring was established.

• 3.5.2016: Several press reports about the incident were made public. This leakage
heavily damaged the ongoing investigation rendering the ongoing monitoring useless.

The reason why this case is relevant is because the malware exfiltrated stolen data to the
outside world using HTTP POST requests. The total size of those data was approximately
23GB, however, this number cannot be estimated with high accuracy since they were firstly
compressed and then uploaded, some files were exfiltrated more than once and that number
includes beaconing requests to the C&C servers, as well.

1.1.2 Cyber attack on RSA Security

RSA Security LLC [29] is a USA-based company dealing with computer and network
security. It provides its worldwide customers with the essential security solutions to protect
themselves from cyber atttacks. One of its main products is the SecurID authentication
token which is used for two-factor authentication.

In 2011 the enterprise reported that they suffered a data breach and the anatomy of the
attack was similar to the RUAG Case described above. The attackers firstly targeted
specific employees using social engineering attacks. In particular, they sent spear phishing
emails with a malicious Excel file attached to them. When an RSA employee opened that
file, the malware exploited a zero-day vulnerability in Adobe Flash. After gaining access to
one of RSA’s machines, the attackers installed a difficult to spot Poison Ivy RAT variant,
in order to remotely control the internal machine. Subsequently, they pivoted inside the
network and gained access to more valuable machines. Finally, they exfiltrated the gathered
sensitive data to a remote compromised machine [28].
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This breach cost the parent company, EMC, $66 million [14] because it had to replace the
authentication tokens of its customers. The reason was that among the data leaked, there
was also a database containing the mapping of token serial numbers to secret token seeds
which would allow one to predict the generated sequence of tokens and to bypass the second
factor.

1.2 The task

Being able to identify malicious traffic inside benign traffic can be a really complex
task. In order to support investigators, tools like Hviz [18] have been developed. Hviz’
main focus is on visualizing the timeline of a client’s Web browsing, that is, to recon-
struct the sequence of Web pages visited by a user from network traces. It allows an
investigator to quickly understand the context of a security alert. This can consider-
ably speed up the bootstrapping of a forensic investigation because an analyst often
starts an investigation with only very limited information (such as an IDS alert pointing
to a supposedly infected client). A detailed description of Hviz can be found in section 2.1.5.

However, Hviz does not detect malicious network activities. In this thesis, we investigate
methods for detecting C&C traffic in HTTP/HTTPS. In a few words, this goal is achieved
by dividing the final task into the following sub-tasks. Firstly, we performed background
research on existing Web-based malware. Furthermore, we analyzed typical sequences of
events occurring during human Web browsing and compared them with the ones caused by
a malware running on a compromised host. Last but not least, we developed and evaluated
a detector for C&C traffic. Those functions can be added as an additional layer to a network
analysis system like Hviz and improve it. With all the above completed, the system could
assist a forensic investigator and be capable of classifying whether a Web request was due
to a human or a malware.

1.3 Related work

Burghouwt et al. (2011) [16] address the detection of social media C&C traffic. They
performed their evaluation with a malware that uses Twitter as C&C channel. The main
concept of this research is that whenever traffic from Twitter is observed, a validation step
is performed. It is checked whether within a small time-window there was also an event
from the mouse or the keyboard (e.g., press of F5 key to reload the page, or enter) which
could justify that traffic. However, their approach relies on recording user activity such as
mouse clicks and keyboard strokes together with network traffic.

ExecScent [25] can mine new previously unknown C&C domain names from network traffic.
The developers trained their classifier by grouping together similar C&C requests in the
following way. They detected strings that represent data of a certain type and replaced them
with tags using their data type and string length. For better understanding, an example
transformation is shown below:

GET /Ym90bmV0DQo=/cnc.php?v=121&cc=IT

GET /<Base64;12>/cnc.php?v=<Int;3>&cc=<Str;2>

Using that method, they managed to create ”high quality” clusters and thus, to identify
suspicious requests by comparing the corresponding distances to them.
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In their system called WebWitness [26], Nelms et al. (2015) reconstruct a client’s Web
activity by building a request graph similar to Hviz (see 2.1.5). In their situation, however,
the graph is weighted and the weights are added depending on the possibility that two
nodes are connected. Their goal is to find the cause (e.g., drive-by, social engineering or
update/drop for all the remaining cases) of a malicious executable file download. When
there is a node which corresponds to a download, the graph is traversed backwards,
following the highest weighted edges which lead to the actual cause. We use a quite similar
approach for complementing the request graph, however in contrast to [26], we show that
this approach cannot only identify the cause of known infections, but also detect new,
unknown infections based on the C&C traffic.

Kim et al. (2014) have designed and implemented HAS-Analyzer [23], a system that detects
HTTP-based C&C servers using network traffic only. For each client, they extract the trees
that contain the head requests (user clicks) and the subsequent embedded ones such as
requests to load third-party content. Their analysis showed that an HTTP-based C&C uses
a small portion of network resources in order to stay undetected and that the content of
a request or a response is changed frequently among consecutive C&Cs. Based on those
two observations, they built a classifier that has approximately 96% accuracy, 1.3% false
positives and 5% false negatives without using any whitelists.

1.4 The lifecycle of an infection

There are several ways a host can get infected with a malware. In this section, we describe
a popular method (depicted in figure 1.1). A user visits a compromised website which has
a (hidden) malicious iFrame injected or a legitimate one where a malicious advertisement
is embedded. The iFrame/advertisement performs a drive-by attack by redirecting the
victim to a malicious server which hosts an exploit kit. The latter will scan the victim’s
system for vulnerabilities and try to exploit them. If the exploit is successful, the malicious
payload is run and then the victim becomes infected with a malware which in turn can
download various kinds of malicious tools. Finally, the post-infection traffic follows where
the malware communicates with the C&C server to receive commands to execute.

1.5 Overview

Chapter 2 introduces various tools that we have tested and describes how they were com-
bined, in order to build a traffic analysis system. In chapter 3 we present how we obtained
the datasets used, we compare benign with malicious traffic and explain common patterns
in them. In chapter 4 we introduce an algorithm which we developed to improve the quality
of the request graph as well as the process of building a robust classifier that is able to
distinguish between benign and malicious traffic. In chapter 5, the developed algorithm and
classifiers are evaluated with different setups. Finally, in chapter 6, we summarize our work,
state interesting open problems and offer some suggestions for future work.
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Figure 1.1: Exploit-Kit Attack Scenario - Adapted from [2].
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Chapter 2

System Architecture

In this chapter, we describe how we combined and used existing tools, in order to build a
system for detecting C&C traffic over HTTP/HTTPS. Firstly, we are introducing each one
of them and subsequently, we present the system architecture we have built.

2.1 Existing tools

The following tools belong to the classes of simulating human Web browsing, recording
network traffic, intercepting SSL/TLS and analyzing network traces. All of them were tested
in order to pick the appropriate ones for our system.

2.1.1 Browsing traffic generator

In order to efficiently collect a sufficient amount of traffic to perform our analysis, a Python
script developed for Hviz [18] which simulates human Web browsing was used. This script
is based on Selenium-WebDriver [31] which has an API that makes it easier to automate
Web browsing. This is the case because the Selenium-WebDriver API ”performs direct
calls to the browser using each browser’s native support for automation”. Even though
this script uses Firefox, this is not binding. It would be possible with minor adjustments
to record traffic using other browsers, since the WebDriver is compatible with most of them.

The script takes as input a list of websites which visits in random order. On each one of
them it makes 5 clicks per average and stays to each resulting page for a random time
interval. The time spent on each page has an upper bound of 30 seconds. What is more, it
provides the option to record only unencrypted HTTP traffic. This is achieved by visiting
the HTTP versions of the websites included in the input list. In case the website is forcing
SSL by redirecting the client to its secure version, the connection is terminated and the
next URL in the list is fetched. Otherwise, the script continues imitating a human.

2.1.2 Capturing network packets

Tcpdump

Tcpdump [33] is a popular command-line packet analyzer which uses the libpcap library
to capture packets. While the simulator is executing, tcpdump needs to be running in the
background at the same time, in order to record the generated traffic. Tcpdump is easy to
use and its output (in libpcap format) can be parsed and analyzed by Wireshark [13] and
BroIDS [10]. The latter is described in section 2.1.4.

17
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2.1.3 Tools to intercept SSL/TLS traffic

SSLStrip2 & dns2proxy

SSLStrip [32] was introduced in 2009, when its developer, Moxie Marlinspike, presented it
at Black Hat DC. Using this tool during a man-in-the-middle (MITM) attack, a network
attacker could ”prevent a web browser from upgrading to an SSL connection in a subtle
way that would likely go unnoticed by a user” [32]. The HTTP Strict Transport Security
(HSTS) specification [19] was subsequently developed to counter these attacks. In order to
bypass HSTS, SSLStrip2 (an updated version of SSLStrip written by another developer) in
combination with dns2proxy [7] (a DNS server proxy) has to be used.

SSLSplit

SSLSplit [9] is a tool that performs MITM attacks against SSL/TLS encrypted network
connections. It intercepts connections transparently through a network address translation
engine and redirects them to itself. ”SSLsplit terminates SSL/TLS and initiates a new
SSL/TLS connection to the original destination address, while logging all data transmitted”
[9]. This is accomplished by generating a certificate on-the-fly and signing it with the private
key of a CA certificate that the client has to already trust. It supports plain TCP, plain
SSL, HTTP and HTTPS connections over both IPv4 and IPv6.

Mitmdump-Mitmproxy

As their developers describe briefly on their website [5], ”mitmproxy is an interactive
console program that allows traffic flows to be intercepted, inspected, modified and
replayed” whereas mitmdump is actually ”tcpdump for HTTP”. Those tools perform the
same kind of man-in-the-middle attack on SSL/TLS as SSLSplit, however they support
more features (e.g., traffic flows can be intercepted, inspected, modified and replayed).

The three different intercepting options described above were evaluated and the one that
suited best our needs was selected. Mitmdump was used to record SSL/TLS traffic, whereas
mitmproxy to inspect and understand it. Apart from the fact that they are both very easy
to install and run, their decisive advantage the others lack is that they have a powerful
scripting API. This API is ”event driven - a script is simply a Python module that exposes
a set of event methods” [5]. It provides us with objects which hold each HTTP request and
corresponding HTTP response. Since Hviz already supports parsing mitmdump files using
the above API, mitmdump was the ideal choice for our situation. The reason why the other
options were not chosen are the following. SSLStrip & dns2proxy would not be useful since
the same result could be achieved much easier by configuring our script to visit only HTTP
webpages. In addition, websites that do not allow HTTP connections would not be visited
which means that our requirement to record SSL traffic is not fulfilled. Last but not least,
this method is never used in enterprise networks where usually a web intercepting proxy
that allows for SSL MITM is used. However, it is still an interesting approach as it could be
and is used for network penetration. As for SSLSplit, even though it is simple and efficient
(written in C), the main disadvantage of it is that its logs require a lot of effort to be parsed
in comparison to the ones of mitmdump.

2.1.4 Bro IDS

Bro IDS [10] is a powerful network analysis framework which provides many functionalities.
Bro’s output is a large amount of useful logs extracted by parsing the input network trace.
Some of them are output by default but one could write scripts using the Bro language in
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order to create logs of their choice. Some of the most useful logs that Bro outputs are the
following:

• conn.log: contains the IP, TCP, UDP and ICMP connection details such as the
originating and responding endpoint’s IP address and port, the protocol used, the
size of the sent and received payload, etc.

• dns.log: contains the DNS activity such as the domain name of the query, the query
type (e.g., A, AAAA, PTR), the kind of answer (e.g., authoritative), etc.

• ftp.log: contains the FTP session-level activity such as the username and the pass-
word for the FTP session, the commands issued by the client, the size of the transferred
file, etc.

• files.log: contains information about files transferred over the network such as the file
name and type, its size, its md5/sha1/sha256 hash, etc. This information is aggregated
from different protocols, including HTTP, FTP, and SMTP.

• http.log: contains information about the http requests and corresponding responses
such as the URI and the method (e.g., GET, POST, HEAD, etc.) used in the request,
the value of the referer header, the status code returned by the server, the value of
the User-Agent header, etc.

• ssl.log: contains information about the SSL handshakes such as the SSL version that
the server offered, the SSL cipher used, the MD5 hash of the raw server certificate,
etc.

• software.log: contains information about the software that are being used on the
network such as the IP address of the host running it, the port which it is listening,
its name, its type, its version, etc.

All of the above logs are useful for the analysis of a network trace since they separate
the information it contains in a meaningful way. Moreover, those logs can easily be parsed
by pandas [8], the well known data analysis library for python, in order to extract useful
results from them. However, in order to create the request graph (see 2.1.5), only the http.log
in addition to some extra information for each HTTP request/response extracted by Bro
scripts had to be used.

Bro IDS - Zeus case study

In order for the reader understand better and get an intuition of the output logs of Bro IDS
as well as their importance, this section shows an example usage of it. In figure 2.1 some
fields of the dns.log of Bro are shown. A host with the IP address 192.168.254.194 contacted
Google’s public DNS server asking for the A record of among others, some suspicious Russian
domain names.

Figure 2.1: Parts of the dns.log of a host infected by Zeus trojan horse malware.

To investigate the issue further, an investigator could examine the HTTP activity inside
the http.log file. This is depicted in figure 2.2.
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Figure 2.2: Parts of the http.log of a host infected by Zeus trojan horse malware.

In this log the full URLs visited are shown. The host has performed a POST request and
received as response a file with the filename setusating.bin. Actually, this POST request
had the following POST parameters:

btn1=WIN7PRO_X86_000_74DEB1E36522DF69_26&sk1=[HASH]

This communication pattern is well-known for Zeus malware. The host performs the above
POST request to the command and control server with those variables that represent the
unique identifier of that host. Afterwards, the C&C server replies back with an encrypted
configuration file with the above filename. Subsequently, after approximately 30 seconds,
there are some POST requests to trapbath.ru/busted.php that are performed almost
simultaneously and then the same communication with the C&C server described above.

What can also be discovered from that log file is that two executables with filenames
umcc.exe and like.exe are being downloaded. Their md5 checksums can be found inside
files.log. Both of them had more than 85 percent detection rate in VirusTotal [12], the
popular web service that analyzes suspicious files and URLs.

From all the above findings we can conclude that this traffic is indeed malicious and that
Bro IDS’ logs are very useful for this kind of investigations.

2.1.5 Hviz

Hviz’s [18] primary goal is to facilitate the tedious work during a forensic investigation of
computer security incidents (e.g., online fraud, cyber crime, or data leakage). It achieves
this by reconstructing and visualizing the Web browsing activity of individual hosts, in
other words which websites a user visited, in a graph called the request graph. This graph
is built using the NetworkX Python library [6] which is used ”to create, manipulate and
study the structure, dynamics and functions of complex networks”. In this graph each node
”represents an HTTP request and the corresponding HTTP response. If an HTTP request
has a valid Referer header, there is a directed edge from the node corresponding to the
Referer header to the node corresponding to the HTTP request” [18].

For instance, when a user visits https://www.yahoo.com, many follow-up requests and
responses occur: the website will contact the appropriate CDN (e.g., Akamai, Amazon
CloudFront) to load its static content (e.g., images, javascript files), advertisement and
analytics providers, etc. Each request and response will be a node in the graph with
attributes such as the timestamp of the request, its URL, the request and response headers,
the length of the request/response etc. Those kind of requests that are issued without user
involvement are called embedded requests. Each node that was a follow-up request/response
caused by the initial one to https://www.yahoo.com, will be a destination node and a
directed edge will be added between the causing and the resulting node. Furthermore, those

https://www.yahoo.com
https://www.yahoo.com
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embedded requests might trigger other (e.g., a CSS file might load other stylesheets as well
as images) which will result in a more complex graph. The same would happen if after the
page has loaded completely, the user clicks a hyperlink to https://www.yahoo.com/news.
The request that is a consequence of a user click is called a head request.

Each node in the graph that Hviz builds is represented as a map data structure containing
key-value pairs. Here are the most important attributes of a node that were mostly used
during this thesis.

• code: the HTTP response status code (e.g., 200, 302, etc.)

• req URI: the requested URL (e.g., https://www.google.com)

• ts: the timestamp that the request was performed

• req length: the size of the request in bytes

• res length: the size of the response in bytes

• req headers: the HTTP headers of the request

• res headers: the HTTP headers of the response

• method: the HTTP method used (e.g., GET, POST, HEAD, OPTIONS, etc.)

• res body entities: the body of the HTTP response (e.g., the HTML, Javascript,
CSS code etc.), this field is only extracted for specific content types in order not to
make the graph’s size huge

• invalid ref : this field is True when the referer header field does not correspond to a
request URI of any previous node and False otherwise

• content type: the content type of the HTTP response extracted from the response
headers

• parent URI: the request URL of the parent node which is actually the value of the
referer HTTP header

Furthermore, NetworkX provides us with methods which could offer additional information
about the whole graph such as the number of nodes it is comprised which actually
corresponds to the number of HTTP requests in a network trace. What is more, it can
give us more details for each node such as the number of its neighbors which corresponds
to the number of requests that have this node’s request URI as a referer.

In order to understand how Hviz could assist forensic investigators with their analysis, some
of its key characteristics need to be stated. Firstly, Hviz can distinguish with approximately
80% accuracy between head and embedded requests. It is actually marking each kind of
request in the graph using different colors, in order to be visually easier to discern. Another
feature worth mentioning is that it tries to reduce the number of displayed nodes in the
graph by aggregating similar events, when this is possible. In a few words, Hviz groups
together requests with the same effective second level domain (domain aggregation). In
addition, it groups together third party domains that are the same for different pages of
the same website. This results in an overall event reduction factor of 19. As a consequence,
the graph that is displayed becomes simpler and thus, easier to analyze. Last but not least,
Hviz tags popular and special events. For instance, if the same requests happen between

https://www.yahoo.com/news
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multiple hosts in the same network they are probably harmless and marked accordingly.
In addition to that, file uploads are considered to be special events, since they can conceal
sensitive data exfiltration and thus, nodes representing them are tagged, as well.

Hviz - Zeus case study

The same case that was described in section 2.1.4 can be analyzed by Hviz, as well. The
output request graph of Hviz is shown in figure 2.3. From there an investigator can see
that there is some data exfiltration going on that Hviz has marked. To investigate the issue
further, one can examine the suspicious requests with their attributes as it is depicted in
figure 2.4. By viewing the request body attributes of them, it becomes obvious that the
traffic is malicious as it was described in the previous section.

Figure 2.3: The request graph by Hviz from a Zeus malware variant.

Figure 2.4: Examination of suspicious requests from a Zeus malware variant.
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2.2 Our traffic analysis system architecture

The system we built to perform the analysis of the collected network traffic is depicted
in figure 2.5. As one can see, benign and malicious captured files in the libpcap format
are provided as input to the system. Those files are initially processed by Bro IDS which
extracts inter alia the HTTP messages from them. Afterwards, the output of Bro IDS is
given as input to Hviz which builds the request graph. Finally, the request graph is being
analyzed by multiple scripts we have developed in order to find typical sequences of events
occurring during human Web browsing and to compare them with those occurring on an
infected host. The analysis is explained thoroughly in the following chapter.

Figure 2.5: The process of analyzing a libpcap file.
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Chapter 3

Baseline Analysis

Using the system introduced in section 2.2, we performed an extensive analysis of the
benign as well as malicious traffic. Firstly, we describe how the dataset was obtained and
subsequently, we present and explain the key findings of our analysis.

3.1 Datasets

Network traces were of key importance for the analysis and were needed to be provided
as input to the system. Both benign and malicious network traces were collected from the
following sources.

3.1.1 Benign traffic

Browsing simulation traffic

Both HTTP as well as SSL/TLS web traffic was recorded using the human-browsing
simulation script described in section 2.1.1. More specifically, 10 browsing traces of
approximately 40GB in total were recorded. For our purposes, an input list with the
top 250 Alexa websites in Switzerland was used, after it was filtered to remove some
websites with inappropriate content (e.g., adult content). The top ranked Alexa websites
are calculated using a combination of average daily visitors and page views each month.
The reason why this list was used, was to be as sure as possible that those websites would
be benign. What is more, since they are used by many people, the daily web-browsing of
most humans would be simulated.

ClickMiner traffic

ClickMiner [24] is a system which takes as input network traces and reconstructs interactions
between the user and the browser. This system is different than ours, since it uses an
instrumented browser to replay the recorded traffic in order to achieve the above goal. In
order to evaluate their system, the authors conducted a user study involving 21 different
participants. Each participant was requested to browse any website they wished for 20
minutes, given that they preserve their privacy (for example, they should not login to any
site displaying any personal information, like Gmail, Facebook, e-banking sites, etc.) The
authors of ClickMiner offer those full packet traces they collected during that study in their
website (http://clickminer.nis.cs.uga.edu). From this source, 24 different browsing
traces were accumulated.

25
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3.1.2 Malicious traffic

Malicious pcap files were downloaded from the following sources.

• Contagiodump Blog [1]: Contagio is a collection of malware samples, threats, ob-
servations, and analyses. From there, an archive of malicious traces that other users
have recorded and were willing to share was obtained.

• Malware-traffic-analysis Blog [4]: This blog contains a big collection of malware
samples from 2013 till today as well as recorded traffic in the libpcap format from
infected hosts. For each network trace it provides, there is an associated blog post
with an analysis explaining among others the following:

– How did the host get infected

– Which were the associated malicious domains/files used

– Which parts of the system were affected (e.g., registry values added)?

– What requests did it perform to the outside world

– How were data exfiltrated

This simplified the application of those traces considerably. After downloading files from
both blogs, we filtered and kept the ones that contained HTTP traffic that we are focusing
on this thesis. We ended up with approximately 500 malicious pcap files.

3.2 Some special malware C&C cases

In most of the collected malicious traces that we analyzed, we found the usual communica-
tion pattern between an infected host and the C&C server. More specifically:

• Perform an HTTP GET request to receive a command (polling the C&C) periodically

• Execute it and collect the results (if any)

• Send back the response in an obvious way (e.g., by appending various URL parameters
to the request, either in plaintext or encoded).

However, there were some special cases that were found to be interesting and thus, worth
mentioning:

• TrojanCookies: This malware was special because it communicates with the C&C
server in an interesting way. The commands as well as the responses are encoded in
the cookie and more specifically in the Set-Cookie HTTP header field. The variant
analyzed used Base64 encoding, however, there are variants that additionally perform
a single-byte XOR obfuscation. For example, decoding a corresponding Set-Cookie
value gives the following string.

command=GetCommand;clientkey=3954;hostname=victim;

The client is polling the C&C server to receive a new command by providing a unique
key as well as its hostname in order to be identified.

• GCAL: This malware uses Google Calendar to communicate with the C&C server us-
ing a hard-coded Google account. In order to get a command, the infected host down-
loads event feeds where each one of them contains one command from the attacker.
After executing it, the compromised host posts back the results to the corresponding
feed.
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• RSS Feeder Victims of the RSS Feeder malware periodically perform web requests to
RSS feeds in order to receive encrypted instructions/commands. Subsequently, after
the execution of the command has finished, they send back the response by performing
HTTP POST requests to another C&C server.

3.3 The Content-Type header field

According to the HTTP standard, the Content-Type [34] is a field in the HTTP headers
that specifies the nature of the data in the body of an entity. Using this field, a user
agent (e.g., the browser) can pick an appropriate mechanism to display the data to the
user or deal with the them accordingly. As it will be shown in the following sections, the
content-types of the HTTP responses played an important role in this thesis, thus, some
results regarding them are presented here.

During the analysis of the content types of benign and malicious traces the following
problem was encountered. Firstly, there exist different content types describing the
same kind of data. For instance, to describe a javascript file, the most appropriate type
(regarding the RFC) is application/javascript. However, other ones such as text/javascript,
application/x-javascript, text/js etc. can be used, as well. Furthermore, since content
types can be defined by each developer of the Web application, some careless mis-
takes (e.g., spelling) were noticed. Even though, most recent browsers are capable of
understanding how the data needs to be displayed, in our analysis, in order to be as ac-
curate as possible, those content types had to be merged and replaced with the proper ones.

Figures 3.1 and 3.2 depict the dominant content types in benign as well as malicious traffic,
respectively. In benign traffic, the most used content-type relates to image files, since a
regular webpage loads several of them to display its content. Moreover, GIF images are
mainly used in advertisements and analytics services that are present in nearly all popular
websites. For instance, Google Analytics [17] includes a script code block on web pages
which references a Javascript file that is responsible for user tracking. The collected data
are sent to the Analytics server via an HTTP GET request by requesting a single-pixel
GIF image with a list of parameters attached.

On the contrary, malicious traces mostly contain PHP scripts which correspond to the
C&C server communication whose content type usually is text/html. What is more,
several Javascript objects can be found as they are mainly used to exploit the victim.
Furthermore, it is shown that there are some application/octet-stream files which in this
case are malicious binaries. In addition, there are several responses where the content-type
is not set. This can happen unintentionally such as a 3xx redirect or intentionally by the
malware. The reason that there are not only HTML content types as one would expect,
but also image and CSS objects, is that some of the collected traces contain the infection
phase of the victim, as described in section 1.4.
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Figure 3.1: The top 10 content types found in benign traffic.
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3.4 Unrelated nodes

Analyzing the resulting request graph from Hviz, a node type with a special characteristic
was discovered. This node did not have any parent (ancestors) or children (neighbors), and
thus, it was named unrelated node. It turned out that this was a valuable finding which led
to further analysis and interesting results.

3.4.1 Unrelated nodes in malicious traffic

Graphs that were output from malicious traces consisted in their majority of unrelated
nodes. The reason why nodes extracted from malicious traces do not have neighbors is
that a malware running on an infected host sends one request and receives one response
periodically. In contrast to regular Web browsing, there are not any other requests that
have to be performed since there is not any additional content that needs to be loaded
from the C&C server (such as images, style-sheets, scripts etc.) Furthermore, the reason
why these nodes do not have a parent is that most malware do not set the referer header
when they perform an HTTP request since it is not necessary. Even if the referer was
set to something benign (e.g., https://www.google.com), if the host has not visited that
website before, there won’t be any connection. Finally, inside malicious traffic, there are
among others, requests to download other tools and malicious files, in order to perform
fingerprinting in the network, to escalate privileges, to install a ransomware etc. Therefore,
an investigator will see unrelated nodes in the time axis, representing requests to domains
as the ones depicted in table 3.1.

This finding is important because it is a by-design characteristic of C&C communication
and thus, it can be used to detect suspicious behavior. For instance, a malware like
TrojanCookies described in section 3.2, even though it tries to conceal the traffic it is
sending, can be very easily detected by displaying only the attributes of those unrelated
nodes.

ftp.newaol.com microupdate80.info www.g1ikdcvns3sdsal.info

www.f5ds1jkkk4d.info lpbmx.ru macedonia.my1.ru

jrsx.jre.net.cn squv.egozdq.com sydmwk.5558x7.com

wqiwkb.wtcvxu.com bsnf.bpfq02.com ipkipk.3322.org

Table 3.1: Suspicious domain names from a variant of Sality malware.

3.4.2 Unrelated nodes in benign traffic

A simple detector to identify malicious nodes would be to mark every unrelated node
as malicious and display its attributes to the investigator. Unfortunately, even though this
would work with network traces that contain only malicious traffic or not that many requests
(both benign and malicious), it would not in general. The reason is that one can find
unrelated nodes in benign traffic, as well. Actually, it turned out that approximately 6.7%
of the nodes in a benign network trace were unrelated. This percentage is not negligible. A
graph can have a huge amount of nodes and in our case it had roughly 70000 nodes (see
table 5.1.1). This means that a forensic investigator would have to go through approximately
4700 benign nodes in addition to the malicious ones which would be unaccepted.

https://www.google.com
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3.4.3 Why unrelated nodes exist in benign traffic

As explained in section 2.1.5, in order for a node to have a parent, a valid HTTP referer
header value needs to be present. However, this is not the case always for the following
reasons.

• The Online Certificate Status Protocol (OCSP) [21]: The OCSP is an Inter-
net protocol which is used as an alternative to certificate revocation lists (CRL).
It allows applications to determine whether a digital certificate is valid. An OCSP
client (e.g., the browser) issues a status request to the Certificate Authority (CA)
and suspends acceptance of the certificate in question until it receives a response.
Those requests/responses do not have a referer header set and do not cause any side
requests. Thus, the nodes corresponding to them are unrelated. These requests can
easily be identified by their content type which is application/ocsp-response.

• Favicons: As described in section 3.1, Firefox was used to collect the majority of the
benign network traces. We found that whenever Firefox sends an HTTP request to
retrieve the favicon of a website, it does not include the referer field in the HTTP
request headers. As it turned out, this happens due to the <link rel=’icon’ ....> tag
found in the HTML source code of web pages. There is a known bug associated with
the above behavior [15] which has been resolved but not fixed yet. Performing a test
with the latest version of Google Chrome, the same bug was not present.

• Privacy: There are cases where the referer header can affect the user’s privacy. For
instance, a URL might contain personal information in its query strings in case of a
GET request. This was the case with Facebook in 2010 [22]. More specifically, adver-
tisers could track a user who clicked on their advertisement since its user ID was inside
the URL in the referer header. We found that this was the case with many advertiser
and analytic services. Thus, security-aware developers filter out those information by
providing only the hostname of the origin website or removing it entirely when per-
forming requests to an external website. In order to assist developers and offer them
the ability to control the referer header, the World Wide Web Consortium (W3C) has
developed a new standard called the referer policy [35].

Another case which belongs to the same category is the transition from an SSL/TLS
resource to an HTTP (downgrade). To avoid leaking sensitive information, browsers
”should not include a referer header field in a (non-secure) HTTP request if the re-
ferring page was transferred with a secure protocol” [20]. This could happen deep
inside the request graph and might be complicated to detect. For instance, a real
example from the collected benign traces is the following which happened with Me-
diamarkt’s website, the popular electronic shop in Switzerland. A client that vis-
its http://fotoservice.mediamarkt.ch is redirected to another page which among
other objects, loads some CSS files. One of those stylesheets fetches other ones from
an SSL enabled website which in turn retrieves some PNG images using HTTP (down-
grade) requests. Consequently, in those last requests the referer missing.

• OPTIONS HTTP method: ”This method allows the client to determine the options
and/or requirements associated with a resource, or the capabilities of a server, without
implying a resource action or initiating a resource retrieval” [3]. Even though, this
method is rarely used (in our benign traffic they account for the 0.07% of the total
requests), Firefox as well as Internet Explorer do not set the referer header when
performing an OPTIONS request, in contrast to Chrome. As a result, nodes that
relate to this HTTP method end up being unrelated.

http://fotoservice.mediamarkt.ch
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• Software polling for updates: The same way malware poll a C&C server for
new commands, benign software poll for updates. Some examples are Window’s and
Mozilla’s update services, a Twitter client which checks for new tweets, an antivirus
software that updates its signatures etc. Since these are just individual requests and
responses, they are represented as unrelated nodes too.

• Invalid Referer: The referer header can have an invalid value which means that it
does not correspond to a request URI of any previous node in the graph. Further
investigation showed that this was either a programmer’s or a browser’s bug.

• Redirect Implementation: There are several different ways for a user to be redi-
rected from a source to a destination website. Firstly, one way is with a 302 HTTP
status code combined with the Location value in the HTTP response headers. An-
other way, is by using a 200 HTTP status code and the Refresh header or an HTML
meta tag. In addition, a user can be redirected using Javascript. Depending on the
implementation of the redirection, there are different behaviors of browsers to either
keep or suppress the referer.
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Chapter 4

Building a Request Classifier

In the previous chapter the notion of the unrelated node was introduced. In section 4.1, we
describe an algorithm to connect each of them inside the graph. Furthermore, in sections
4.2 and 4.3, we present the process of building our classifier that can efficiently distinguish
between benign and malicious requests.

4.1 Adding the missing links in the graph

In order to make the request graph more complete as well as reduce the number of unrelated
nodes in benign traffic, an algorithm had to be developed. This algorithm uses similar
techniques as the one developed in [26], however their goal is different as explained in section
1.3. This algorithm takes as main input an unrelated node n and a graph G and outputs
the most likely parent in the graph or null if the node does not seem to belong in it. The
output size is not fixed and one should be able to output more than one possible parents.
Based on our analysis of unrelated nodes in 3.4.3, we developed the following algorithm.

4.1.1 The algorithm in high-level

As it is depicted in figure 4.1, the HTTP requests of an unrelated node’s possible parents
should have happened in a time-window some seconds behind. Thus, the candidate nodes
belong to this window whose size is provided as input to the algorithm, as well. For our
purposes, the time-window used was 60 or 6 seconds depending on the heuristic (described
below) used.

For each of those possible parent nodes, their response body attribute is examined. For
example, the response body of an HTML document will contain the HTML source code
of the web page. This means that we can examine all the href and src attributes inside it
and most of the times know whether the node in question is the actual parent. This can
provide us with valuable information because it can contain the whole request URI of the
unrelated node and thus, the parent. Furthermore, it can contain a relative path (e.g.,
/wp-content/uploads/images/logo.png) which needs to be combined with the current path
to create the whole request URI.

On the one hand, the main advantage of this method is its accuracy. On the other hand,
since it needs the response bodies of many nodes, it increases the graph size and the
processing time, as well. Taking this into account, only the response bodies for content
types that have been found to have the most neighbors are retrieved.
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Figure 4.1: The time-window of an unrelated node’s possible parents.

Regarding the favicons, even though the parents of a portion of them can be predicted
using the above method, they can also be found in an easier way. For instance, if the
unrelated node’s request URI is www.example.com/favicon.ico then, the parent’s should
be www.example.com. By default the favicon is placed in the root directory of the web
page and browsers know where to find it. However, it is a common practice that developers
place their favicons in other directories. In that case, the algorithm is again able to find the
parent using the domain name and the content type (text/html) of the possible parent nodes.

An important part of this algorithm is based on the nodes’ content types for the following
reasons. Firstly, there are certain content types which have more neighbors than others
and also some of them that do not have any. For instance, an HTML document is more
likely to perform more requests to load additional content (e.g., third party content)
than a Javascript file. In addition to this, a node representing a request to a PNG image
should not have any neighbors since it is not rational for this type of image to make
additional requests. Moreover, the content type attribute of a node is relative to the kind
of neighboring nodes it will have. For instance, a node whose content type is text/html is
usual to have neighbors with content types image/jpeg, text/css, application/javascript,
etc., whereas a text/css to have neighbors with image/png, image/gif, application/font-woff
etc. content types. It does not make sense, however, after a text/css content type node, an
application/octet-stream content type to be loaded. This is shown in figures 4.2 and 4.3.

Taking the above into consideration, the algorithm tries to match nodes of the same

www.example.com/favicon.ico
www.example.com
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Figure 4.2: The top-5 Content-Types loaded from an HTML page.

content type to the same parent taking at the same time the hostname into account. In
other words, an unrelated node is likely to be a neighbor of a node that already has as
neighbors similar to it such as nodes of the same content type and domain. Furthermore,
the algorithm takes as input the bi-grams of content types. Those were extracted by
traversing all the graphs of the collected network traces and counting the top length-two
sequences of the content types with most neighbors.

Finally, the algorithm uses a whitelist in order to filter out all those requests from benign
software that can be running in the host. Even though, this list in our case is small as we
did not have many of those requests, in a real case scenario one could adapt that list and
add the known benign hostnames and/or IP addresses that their network is contacting.
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More specifically, the algorithm for identifying a node n’s parent can be described by the
following steps.

1. Take as input the node in question n, the sorted by timestamp possible parents’ lists
L and L’ in the time windows tw1 and tw2, respectively and the sorted bigrams of
the content types BI.

2. Check whether any of n’s attributes such as its host, its content type etc. are
whitelisted and if they are not go to step 3.

3. Keep all the nodes of L that are related, do not have the same URL as n and a content
type relationship between parent and child node can be found in BI.

4. Traverse L backwards and examine each node’s response body (if exists). First priority
have the head nodes (user clicks), nodes with most neighbors and then, all the others.
In case n’s whole URL or relative is found inside the response body of a possible
parent, return this parent.

5. If n corresponds to a favicon request then its parent is being searched by finding the
initial head request to the same domain, as it was described in the example above.

6. Examine the nodes of L’ and find the ones that have neighbors of the same host and
the same content type as n. Sort them and return the most probable as the parent of
n.

The time windows tw1 and tw2 used in the above algorithm were 60 and 6 seconds, respec-
tively. The first time window, tw1 relates to the maximum time gap between two sequential
user clicks. The second relates to the maximum time that most of the embedded requests
will be performed after a user-click. This number should be adjusted depending on the
connection speed.

4.2 Simple classifier using only unrelated nodes

As explained in section 3.4.1, unrelated nodes in the request graph can be used to detect
malicious traffic. This feature became more robust by the reduction of unrelated nodes in
benign traffic which was achieved by adding the missing links in the graph. In figure 4.4
the pdf estimation of a boolean feature that shows if a node is unrelated is shown.

This feature can be used to separate the two classes (benign and malicious). Thus, a simple
classifier using only this feature can be built in the following way. After executing the graph
completion algorithm, every remaining unrelated node is marked as malicious and all the
others as benign.

4.2.1 Evasion techniques

In this section we discuss some strategies that a malware could use to evade the above
or similar classifiers so that it avoids detection. First and foremost, a malware can
spoof the referer header of a malicious HTTP request to an innocuous website such as
https://www.google.com as it was observed in our traces. This technique alone, however,
is not adequate because there needs to be a request to that benign website before, in order
for the parent node to be present. Thus, the malware has the following two options in
order to forge a valid referer. Firstly, it can sniff the HTTP traffic and wait for the right
moment to perform its malicious request while a user is browsing the Web. However, this
might require privileges that the malware won’t probably have. Secondly, it can issue a

https://www.google.com


38 CHAPTER 4. BUILDING A REQUEST CLASSIFIER

0.5 0.0 0.5 1.0 1.5
0

2

4

6

8

10

12

14

16

De
ns

ity
Benign
Malicious

Figure 4.4: The estimated pdf of unrelated nodes in benign and malicious samples of the
training set, after the execution of the graph completion algorithm.

request to a benign website and afterwards use this Web site’s URL as referer.

Moreover, a malware could be controlled by abusing popular Web sites and using them as
C&C servers. In particular, social network sites can be an effective C&C channel. Using
a social network as control channel is achieved by the following simple steps. Firstly, the
bot master posts malware instructions in a comment on a message board, and afterwards
the malware visits the message board from the compromised machine, downloads the corre-
sponding Web site, and extracts the instructions. A malware that wants to evade the above
feature could partially load the social network’s page with some of the embedded requests.
This will imitate daily web browsing and will be challenging to detect.
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4.3 Robust classifier

As discussed in section 4.2.1, there are multiple techniques for evading a simple classifier.
However, each one of them increases the complexity of the malware and opens new windows
for being detected. Still, it is preferable to build a more robust classifier which could detect
obfuscated C&C traffic too. We describe a corresponding classifier in the following.

4.3.1 Feature selection

In order to make the classifier more robust, capable of detecting more sophisticated malware
and at the same time make the malicious developers’ task harder, more features have to
be introduced. This way a malware will have to succeed in many different ”challenges” that
each feature will pose.

Except from the unrelated node feature, multiple others were tried and evaluated. Here,
the intuition behind the decision to use them or not is explained.

• Connection Close: We observed that some malicious requests set the Connection
field in the request headers to Close instead of Keep-alive that every benign did.
Whenever a request is sent and the value of this header is Close, the server receives it,
sends back the response and closes the TCP socket. The client does the same when it
receives the response, as well. As a result, the infected host’s resources are not being
wasted and thus, the malware remains stealthy. Moreover, the malware’s infrastruc-
ture resources (e.g., a compromised Website) are consumed as little as possible.

• Node’s neighbors/predecessors: In order to relax the condition of a node’s neigh-
bors and predecessors, those two features were introduced. It is rational that a mali-
cious request does not have many children and any parent (unrelated node). However,
in case of a possible evasion, those features could contribute in the detection, e.g., if
fewer than the expected embedded requests occur. It is worth mentioning, that the
number of predecessors (in our case either 0 or 1) was extracted after the execution
of the graph completion algorithm.

• Request’s/response’s size: The intuition behind choosing those features is the
following. Firstly, the length of the request relates to the data exfiltrated to the outside
world or to the polling to the C&C server. Furthermore, the length of the response is
relevant, as well. For instance, it can happen that the C&C does not reply at all or
it just sends a small acknowledge back. Thus, we hypothesize that malicious samples
will have longer requests and shorter responses.

• Domain/URL: It is known that malware use domain generation algorithms (DGA)
in order to find one C&C server that is active. Thus, many C&C domain names
can have some special characteristics they inherited from their generation algorithm.
For example, a variant of Zeus trojan called Gameover Zeus uses between 23 and
28 characters (excluding the tld) domains [11]. Moreover, HTTP GET requests to a
C&C server can be have a long URL with several parameters having sensitive data
encoded in them. Consequently, the structure of the domain and the whole URL can
play an important role in distinguishing between benign and malicious requests. We
hypothesize that the malicious domains and URLs will be longer in malicious requests
than in benign.

• HTTP method: The HTTP method used in combination with other features could
be used. For instance, POST requests together with characteristics of the request
body (e.g., if Base64 encoded data are present) could trigger an anomaly. However,
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this feature was not used since the collected benign traffic did not have enough POST
requests. A reason is that the automated script did not submit any forms and thus,
the appropriate ground truth for both classes does not exist in order to train a model.

• Periodicity of C&C communication: An infected host needs to communicate with
the C&C server and this is most of the times done periodically. Many malware have
either a fixed period or a randomly chosen waiting time between subsequent requests
in a small interval. This by-design feature can be exploited in order to detect malware
that can communicate stealthily, such as the ones using social networking Websites
for C&C servers. This feature was not used in our case for the following reasons: many
of the malicious traces contained only a few interactions with the C&C server and the
rest were removed. What is more, each URL in benign traffic was visited only once
because of the way the automated script worked. Even though to avoid overclaiming
we did not use this feature, in a real case scenario it would probably be powerful.

• User-Agent: This feature can be really effective, since an unusual change in the User-
Agent header field could indicate an anomaly. The user agent is usually hard-coded
in the malware and can be used for authentication to the C&C server (e.g., the C&C
responds only to requests from predefined user agents). None of the collected malicious
traces used the same user agent as the one used to record the traffic. Therefore,
this feature was not used in our classifiers, because it would have led to inaccurate
better results (overclaim). However, in case one wanted to use this feature, they could
first whitelist all user agents that are known to the specific network and notify an
administrator whenever a change occurs.



Chapter 5

Evaluation

5.1 Evaluation of the graph completion algorithm

The goals of the algorithm are the following. First and foremost, it should reduce the number
of unrelated nodes in a graph by adding them to the most likely parent. Moreover, it should
not add links between unrelated nodes. In other words, it should not connect a foreign
node such as a benign node extracted from a different network trace or a malicious one to
the graph. Three kinds of evaluations were performed, as we will present in the following
sections.

5.1.1 Measuring the ability to reduce the number of unrelated nodes

To test the ability of the algorithm to reduce the number of the unrelated nodes in a graph,
we evaluated it with five randomly picked benign traces we have collected. Ideally, all
of the unrelated nodes should be connected in the graph. The results are shown in table 5.1.

Trace ID # of nodes # of unrelated nodes before/after Reduction factor

20160428 75306 5300/89 59

20160502 68489 4646/68 68

20160503 73413 5507/116 47

20160508am 68698 4220/135 31

20160508pm 63670 3832/87 44

Average 69915 4701/138 50

Table 5.1: The reduction of unrelated nodes by executing the algorithm on 5 random network
traces.

From this table the following conclusions can be drawn. Each graph generated by a benign
trace consists of approximately 70000 nodes, 6.7% of those are unrelated. After running
the algorithm the number of unrelated nodes were reduced by a factor of 50.

5.1.2 Injection of unrelated nodes of benign traffic into benign traffic

The algorithm should not connect nodes from foreign graphs (false connections). Thus, for
this evaluation, different traces of benign traffic had to be merged. More specifically, having
a randomly picked benign trace’s request graph, unrelated nodes of another (benign) trace
were injected at random timestamps into it. To visualize this test one can see figure 5.1.
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This evaluation is more an intermediate step (since it does not reflect reality) and was
performed, in order to get the intuition to conduct the following evaluation.

Figure 5.1: Evaluation setup - Injection of unrelated nodes of benign traffic into benign
traffic.

The evaluation run five times and the results are provided in table 5.2. In each execution,
the number of unrelated nodes injected was 3500, since this was close to the minimum that
can be found inside a single benign network trace.

Injected From Injected To False Connections False Connections (%)

20160428 20160429 45 1.2

20160502 20160516 53 1.5

20160508pm 20160507 48 1.3

20160428 20160508am 50 1.4

20160510 20160502 43 1.2

Average 48 1.3

Table 5.2: Injection of unrelated nodes of benign traffic into benign traffic.

1.3% of the nodes injected were misinterpreted and classified as part of the graph. The
reasons why this happened are the following. Firstly, the benign traffic was recorded using
the same list of websites (as described in section 3.1). Some of them might appear in both
the injecting and injected trace which means that it could be the case they get connected.
Furthermore, most of those websites use the same advertising and analytic services. For
example, an unrelated node that corresponds to Google Analytics service can be injected
in the right place (in terms of time) for another website using it too. Thus, this node will
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be identified as part of that traffic and falsely be linked to it. However, this traffic is benign
and as a result, the effect of a misclassification like that is negligible.

5.1.3 Injection of unrelated nodes of malicious traffic into benign traffic

A similar to the above evaluation was performed, however, this time by merging benign
with malicious traffic. More specifically, 3500 unrelated nodes from several malicious traces
were injected into a randomly picked benign trace. Then, the algorithm was executed
and the number of false connections was measured. Here it is worth mentioning that
the traces from where the unrelated nodes were extracted did not only contain C&C
traffic. This evaluation’s results have more weight than the previous’s, since they are
closer to the task of detecting malware. That is an infected host which is browsing the
Web and at the same time activity by malware running on the background. Each false
connection (foreign unrelated node identified as part of the injected trace) would result
in an additional false negative for a classifier that displays an alert for every unrelated node.

Our hypothesis is that there will only be few false connections as the malicious traffic and
benign traffic traces that we have are uncorrelated in a sense that the domains contacted
are different. Thus, we expect not to observe connections like the ones in the previous
evaluation. The results can be seen in table 5.3.

Injected To False Connections False Connections (%)

20160428 4 0.1

20160429 4 0.1

20160502 3 0.1

20160503 4 0.1

20160507 3 0.1

Average 3.6 0.1

Table 5.3: Injection of unrelated nodes of malicious traffic into benign traffic.

Our hypothesis is confirmed by the results. Only 0.1% of the injected traffic was connected
to the benign graph. However, by further investigation it was found that those nodes were
actually not malicious. Some malware check the Internet connectivity of a compromised
host by contacting benign websites. For instance, some variants of Zeus banking trojan
contact https://www.google.com or https://www.bing.com. This kind of nodes were
the only ones that were falsely connected inside the benign graph.

5.1.4 Discussion

The graph completion algorithm succeeds in reducing the number of benign unrelated nodes
in the graph and at the same time it keeps the number of false connections low. The above
results confirm that we can use it to improve the simple classifier described in section 4.2.

https://www.google.com
https://www.bing.com
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5.2 Evaluation of the classifiers

5.2.1 Evaluation Setup

As described in section 3.1, we collected both benign and malicious traffic from various
sources. In order to be able to train a classifier and evaluate its performance, ground truth
had to be created. The latter consists of both benign and malicious samples where each
sample corresponds to an HTTP request and its response. In other words, each sample
consists of features extracted from a node in the graph.

Regarding the benign samples, we randomly chose them from several different benign
traces. As explained in section 3.1.1, those samples are assumed to be benign because they
correspond to requests to the most popular websites in Switzerland and made inside a
controlled, freshly installed virtual machine. In order to have as accurate results as possible,
we had to create the training and test sets from different processes. Thus, we randomly
extracted the samples for the training and testing set from the Browsing Simulation and
the Clickminer [24] recorded traces, respectively.

We performed a manual analysis of the malicious samples, in order to label each node
in the malicious traffic. The reason is that even though most of the traffic was indeed
malicious, the post infection traffic (C&C communication) had to be identified since this
was the one we were focusing on. In addition, some of the malicious traces contained
benign traffic (e.g., polling for updates, check for internet connectivity, etc.) which we had
to filter. We performed this time-consuming analysis on 65 malicious traces. Then, we used
samples extracted from the graphs produced by 80% of those traces for training and we
separated the remaining 20% entirely and kept them for testing.

Our target classes are benign and malicious. We define the following in the scope of the
malicious class:

• True Positives: The number of malicious requests that were classified as malicious.

• False Positives: The number of benign requests classified as malicious.

• False Negatives: The number of malicious requests classified as benign.

The following metrics were used for the evaluation.

Precision = True Positives

True Positives + False Positives

Recall = True Positives

True Positives + False Negatives

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall

We evaluated over the above metrics using 100 randomly chosen benign and 100 randomly
chosen malicious requests.
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5.2.2 Evaluation of the classifier using only unrelated nodes

We evaluated the simple classifier described in section 4.2 over the test set and found the
following results. This classifier is effective and achieved 97% precision, 92% recall and 94%
f1-score in our test set.

Precision Recall F1-score

0.97 0.92 0.94

Table 5.4: Evaluation of classifier using only unrelated nodes over the test set.

5.2.3 Evaluation of the robust classifiers

We evaluated various different classifiers in order to find the most suitable one. The optimal
feature selection was derived using 5-fold cross-validation in the training set with the goal
of maximizing the f1-score and is depicted in table 5.5. Different feature combinations were
evaluated and the one with the highest f1-score was used. The f1 scoring function takes
into account precision and recall which in this type of classifier are both important. This
maximizes the number of true positives while minimizing the number of false positives and
false negatives.

Classifier\Feature
Unrelated

node
Number of
neighbors

Number of
predecessors

Connection
close

Request
length

Response
length

Domain
length

URL
length

K-Nearest
Neighbors

X X X

Quadratic
Discriminant

Analysis
X X X X X X

Bernoulli
Naive Bayes

X X X X X

Adaboost X X X X X

Gradient Boosting X X X X X

Random Forest X X X X X

Decision Tree X X X X X

Table 5.5: Optimal feature selection which maximizes the f1-score.

The f1-score achieved by each classifier in the cross-validation sets using the optimal feature
combination is shown in table 5.6.

Classifier F1-score

K-Nearest Neighbors 0.95

Quadratic Discriminant Analysis 0.90

Bernoulli Naive Bayes 0.89

Adaboost 0.98

Gradient Boosting 0.97

Random Forest 0.98

Decision Tree 0.97

Table 5.6: Maximum average f1-score obtained by 5-fold cross-validation over the training
set for both classes.

In Table 5.7, we present the evaluation of different classifiers over the test set. The results are
close to the cross-validation estimations. Among all tested models, the Gradient Boosting
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classifier had the best performance in the test set with 99% precision, 97% recall and 98%
f1-score. This makes it the most suitable robust classifier for distinguishing between benign
and malicious requests in our case.

Classifier Precision Recall F1-score

K-Nearest Neighbors 0.98 0.97 0.97

Quadratic Discriminant Analysis 0.99 0.92 0.95

Bernoulli Naive Bayes 0.97 0.97 0.97

Adaboost 1.0 0.83 0.91

Gradient Boosting 0.99 0.97 0.98

Random Forest 1.0 0.93 0.96

Decision Tree 1.0 0.95 0.97

Table 5.7: Evaluation of different classifiers over the test set.
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Conclusion

6.1 Summary

This thesis aimed to provide a solution to the problem of detecting malicious Web traffic
(C&C communication). A traffic analysis system using existing tools has been built in
order to analyze network traces and detect C&C traffic. Benign and malicious traces were
collected and analyzed in extent and several common patterns in them have been discovered.
An algorithm has been developed in order to fill in the missing links in the request graph
which reduced the number of unrelated nodes in the benign traces by a factor of 50. Several
features have been extracted from the analysis of the collected network traces. Different
classifiers were evaluated in order to built a robust one which would be hard to evade. The
Gradient Boosting classifier has been found to perform best at detecting C&C traffic. It
achieved a 99% precision, 97% recall and 98% f1-score.

6.2 Outlook

There are many future directions this work could follow. Firstly, there is room for improve-
ment of the graph completion algorithm. More heuristics can be found by analyzing the
benign nodes that were not connected to the graph and be added into it. What is more,
the algorithm could be evaluated over logs recorded by different browsers and be adapted
accordingly to each one of them.

The developed algorithm is focused on adding the missing links of unrelated nodes in the
graph and is probably not suitable for connecting other than unrelated nodes. Thus, it
would probably be challenging to alter it so that it has the correct output for any kind
of node in the graph. In other words, given only a list of nodes that belong to the same
network trace, building the request graph without using the referer header field assuming
that user clicks happen sequentially. For instance, one could rely on the timestamps of the
requests and the time gap between them, the knowledge of the number of requests each
content type performs approximately, on a mapping of domain names to providers (e.g.,
analytics, cdn, advertisement) etc. In addition, one can use the heuristics provided in this
work such as the response body attribute of each node. An algorithm which addresses this
problem would be helpful since as it was stated, the referer header field can sometimes
not be an accurate metric to use to build the request graph (e.g., privacy addons in the
browser that remove the referer header, security-aware developers that suppress it).

Furthermore, the robust classifier can still be improved. Different features can be found and
evaluated. It can be upgraded in order to support additional classes such as the infection
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phase traffic, the data exfiltration, the malicious file download etc. However, this would
require a more extensive dataset to be created or obtained. In addition, an evaluation of
the classifier using traces from a corporate network would confirm the hypothesis that this
system is ready to be deployed.

Finally, the analysis system’s output (e.g., the request graph and the HTML file containing
all the requests) could be integrated in a web service where investigators would be able
to upload their network traces and receive the output. This would allow to evaluate how
the system behaves with different kinds of recorded traces and measure its efficiency. In
addition, it could help improve it since clients of the service could contribute with feedback
and interesting suggestions.



Bibliography

[1] Contagiodump Blog. http://contagiodump.blogspot.ch/. [Online; accessed
August-2016].

[2] Exploit Kits: Past, Present and Future. http://sjc1-te-ftp.trendmicro.com/

images/tex/graphs/exploit-kit-attack-scenario.jpg. [Online; accessed August-
2016].

[3] HTTP Method Definitions. https://www.w3.org/Protocols/rfc2616/

rfc2616-sec9.html. [Online; accessed August-2016].

[4] Malware-Traffic-Analysis Blog. http://www.malware-traffic-analysis.net/. [On-
line; accessed August-2016].

[5] Mitmproxy-Mitmdump. https://mitmproxy.org/. [Online; accessed August-2016].

[6] Networkx. https://networkx.github.io/. [Online; accessed August-2016].

[7] Offensive DNS-Server. https://github.com/LeonardoNve/dns2proxy. [Online; ac-
cessed August-2016].

[8] Python Data Analysis Library. http://pandas.pydata.org/. [Online; accessed
August-2016].

[9] SSLSplit. https://www.roe.ch/SSLsplit. [Online; accessed August-2016].

[10] The Bro Network Security Monitor. https://www.bro.org/. [Online; accessed
August-2016].

[11] The DGA of NewGoz. https://johannesbader.ch/2014/12/the-dga-of-newgoz/.
[Online; accessed August-2016].

[12] VirusTotal. https://www.virustotal.com/. [Online; accessed August-2016].

[13] Wireshark. https://www.wireshark.org/. [Online; accessed August-2016].

[14] BBC News. Security firm RSA offers to replace SecurID tokens. http://www.bbc.

com/news/technology-13681566y. [Online; accessed August-2016].

[15] Bugzilla. Bug 1282878. https://bugzilla.mozilla.org/show_bug.cgi?id=

1282878. [Online; accessed August-2016].

[16] P. Burghouwt, M. Spruit, and H. Sips. Towards Detection of Botnet Communication
through Social Media by Monitoring User Activity, pages 131–143. Springer Berlin
Heidelberg, 2011.

[17] Google Analytics. Tracking Code Overview. https://developers.google.com/

analytics/resources/concepts/gaConceptsTrackingOverview. [Online; accessed
August-2016].

49

http://contagiodump.blogspot.ch/
http://sjc1-te-ftp.trendmicro.com/images/tex/graphs/exploit-kit-attack-scenario.jpg
http://sjc1-te-ftp.trendmicro.com/images/tex/graphs/exploit-kit-attack-scenario.jpg
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.malware-traffic-analysis.net/
https://mitmproxy.org/
https://networkx.github.io/
https://github.com/LeonardoNve/dns2proxy
http://pandas.pydata.org/
https://www.roe.ch/SSLsplit
https://www.bro.org/
https://johannesbader.ch/2014/12/the-dga-of-newgoz/
https://www.virustotal.com/
https://www.wireshark.org/
http://www.bbc.com/news/technology-13681566y
http://www.bbc.com/news/technology-13681566y
https://bugzilla.mozilla.org/show_bug.cgi?id=1282878
https://bugzilla.mozilla.org/show_bug.cgi?id=1282878
 https://developers.google.com/analytics/resources/concepts/gaConceptsTrackingOverview
 https://developers.google.com/analytics/resources/concepts/gaConceptsTrackingOverview


50 BIBLIOGRAPHY

[18] D. Gugelmann, F. Gasser, B. Ager, and V. Lenders. Hviz: Http(s) traffic aggregation
and visualization for network forensics. Digital Investigation, Mar 2015.

[19] IETF. Http strict transport security (hsts). https://tools.ietf.org/html/rfc6797.
[Online; accessed August-2016].

[20] IETF. Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/

rfc2616. [Online; accessed August-2016].

[21] IETF. Online Certificate Status Protocol - OCSP. https://tools.ietf.org/html/

rfc6960. [Online; accessed August-2016].

[22] M. Jones. Protecting privacy with referrers. https://www.facebook.com/notes/

facebook-engineering/protecting-privacy-with-referrers/392382738919/,
2010. [Online; accessed August-2016].

[23] S.-J. Kim, S. Lee, and B. Bae. Has-analyzer: Detecting http-based c&c based on the
analysis of http activity sets. TIIS, 8(5):1801–1816, 2014.

[24] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms. Clickminer: Towards forensic recon-
struction of user-browser interactions from network traces. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, CCS ’14, pages
1244–1255, New York, NY, USA, 2014. ACM.

[25] T. Nelms, R. Perdisci, and M. Ahamad. Execscent: Mining for new c&c domains in live
networks with adaptive control protocol templates. In In Proc. 22nd USENIX Security
Symposium (USENIX Security 13), pages 589–604, Washington, D.C., 2013. USENIX.

[26] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Webwitness: Investigating,
categorizing, and mitigating malware download paths. In Proc. 24th USENIX Security
Symposium (USENIX Security 15), pages 1025–1040, Washington, D.C., Aug. 2015.
USENIX Association.

[27] Reporting and Analysis Centre for Information Assurance MELANI. Tech-
nical report about the malware used in the cyberespionage against ruag.
https://www.melani.admin.ch/melani/en/home/dokumentation/reports/

technical-reports/technical-report_apt_case_ruag.html, 2016. [Online;
accessed July-2016].

[28] RSA FraudAction Research Labs. Anatomy of an attack. http://blogs.rsa.com/

anatomy-of-an-attack, 2011. [Online; accessed August-2016].

[29] RSA-Security. https://www.rsa.com/en-us/company.

[30] RUAG. http://www.ruag.com/group/about-us/.

[31] SeleniumHQ. http://www.seleniumhq.org/. [Online; accessed August-2016].

[32] SSLStrip. https://moxie.org/software/sslstrip/. [Online; accessed August-2016].

[33] Tcpdump/Libpcap. http://www.tcpdump.org/. [Online; accessed August-2016].

[34] W3. The Content-Type Header Field. https://www.w3.org/Protocols/rfc1341/4_
Content-Type.html. [Online; accessed August-2016].

[35] W3C. Referer Policy. https://w3c.github.io/webappsec-referrer-policy/. [On-
line; accessed August-2016].

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc6960
https://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919/
https://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919/
https://www.melani.admin.ch/melani/en/home/dokumentation/reports/technical-reports/technical-report_apt_case_ruag.html
https://www.melani.admin.ch/melani/en/home/dokumentation/reports/technical-reports/technical-report_apt_case_ruag.html
http://blogs.rsa.com/anatomy-of-an-attack
http://blogs.rsa.com/anatomy-of-an-attack
https://www.rsa.com/en-us/company
http://www.ruag.com/group/about-us/
http://www.seleniumhq.org/
https://moxie.org/software/sslstrip/
http://www.tcpdump.org/
 https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
 https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://w3c.github.io/webappsec-referrer-policy/

	Introduction
	Motivation
	Cyberespionage against RUAG
	Cyber attack on RSA Security

	The task
	Related work
	The lifecycle of an infection
	Overview

	System Architecture
	Existing tools
	Browsing traffic generator
	Capturing network packets
	Tools to intercept SSL/TLS traffic
	Bro IDS
	Hviz

	Our traffic analysis system architecture

	Baseline Analysis
	Datasets
	Benign traffic
	Malicious traffic

	Some special malware C&C cases
	The Content-Type header field
	Unrelated nodes
	Unrelated nodes in malicious traffic
	Unrelated nodes in benign traffic
	Why unrelated nodes exist in benign traffic


	Building a Request Classifier
	Adding the missing links in the graph
	The algorithm in high-level

	Simple classifier using only unrelated nodes
	Evasion techniques

	Robust classifier
	Feature selection


	Evaluation
	Evaluation of the graph completion algorithm
	Measuring the ability to reduce the number of unrelated nodes
	Injection of unrelated nodes of benign traffic into benign traffic
	Injection of unrelated nodes of malicious traffic into benign traffic
	Discussion

	Evaluation of the classifiers
	Evaluation Setup
	Evaluation of the classifier using only unrelated nodes
	Evaluation of the robust classifiers


	Conclusion
	Summary
	Outlook




