
Distributed
 Computing

Smart Running Route Generation

Masterproject

Jan Schulze

schulzej@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

30.11.2016

Abstract

In this thesis we introduce a model to assign and rank paths and routes with
the objective to find the best and most beautiful of these routes that have some
basic constraints. We show and discuss algorithms that find such best routes
based on our model. We apply the theory in an Android application based on
OpenStreetMap data, that finds optimized routes with adjustable length at any
location for outdoor sports activities like for example running, walking or going
for a walk.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 3

1.1.1 Optimization . 3

2 Theory 7

2.1 Problem Statement . 7

2.2 Modeling the Street Network . 7

2.3 Optimizing the Length . 8

2.4 Optimizing the Attractiveness . 8

2.4.1 Maximizing the Attractiveness by Restriction to Few Im-
portant Edges . 9

2.5 Optimizing the Route with Two Weights 11

2.6 Calculation of the Optimal Route 13

2.7 Computation of a Locally Optimal Route 18

2.8 Random Points Algorithm . 20

2.9 Shape of the Route . 24

2.10 Smoothing the Route . 25

2.11 Triangle Algorithm . 27

2.12 Dynamic Route Updating . 33

3 Implementation 35

3.1 Client Side versus Server Side Computation 35

3.2 Data . 36

3.3 Android Application . 40

3.4 Server . 41

ii

Contents iii

4 Evaluation 42

4.1 Performance Analysis . 42

4.2 Quality Analysis . 43

4.3 Summary . 44

4.4 User Feedback of the Application 45

5 Conclusion 46

5.1 Future Work . 46

Bibliography 49

Chapter 1

Introduction

Running is one of the most popular sports worldwide. Worldwide, millions of
people are running regularly. There are other activities that are very similar.
Examples are cycling, hiking or also just going for a walk. People do these
sports for several reasons like for example fun, fitness and health or relaxation.
While sometimes exploring the nature by oneself, and the freedom to be not
restricted to certain routes, are key parts of the activities, often experiences and
fun can be improved by selecting nice routes. For example, there are probably
very few people who like to run next to a motorway instead of a track that is
surrounded by a beautiful landscape. Bad road and path conditions also affect
the experience negatively. And lastly, extremely steep paths are most of the time
not welcomed and are only enjoyed by few sportsmen, especially if there is also
a less steep path leading to the same destination. Better experiences not only
result in more fun, but also in higher motivation, which in return can improve
the athletic performance. In the following, we will take running as an example
for all those activities.

If a runner wants to run a nice route, he can do several things to achieve this
goal. If the runner knows the area well, he might be able to decide during the run
where to go to get a nice route. This is actually a good approach, as it not only
results in good routes but also distracts the runner from the physical efforts he is
doing and therefore leads to better training results. But this approach works only
if we assume that the runner knows enough of the area to create nice routes with
his knowledge and is satisfied with restricting his running only to these areas.
Furthermore, the runner also has to be able to concentrate enough to create
those routes, which might not always be the case depending on the intensity of
his training. Additionally, if we do not have a runner but for example a person
going for a walk, the person probably does not want to plan ahead this much
and wants to just enjoy the landscape instead of thinking about his route.

Of course, the runner can also follow this strategy if he does not know any-
thing about the area he runs in. Because the runner does not know anything
about the area he does not have to concentrate on the route and plan ahead as
he only decides where to go next at crossings and forks of the path. In most cases

1

1. Introduction 2

this strategy of deciding online where to go next without knowing the area will
lead to at least decent routes. If the runner does not care about the landscape
this will often be a sufficient strategy. But the runner might miss many nice
routes as he only decides according to the near surroundings but if for example
there is a very nice landscape behind a large street and some houses the runner
cannot see, he will most probably miss it.

This strategy has one caveat which is that it is very difficult to get a route
of a desired length. If we do not care about the length, this is no problem. But
most of the time the length of the route does matter. First the runner might
have a training plan for which he needs a certain intensity of his training. Also
if the runner needs to be back at a given time a route with unknown length is
disadvantageous. And lastly the runner does not want to be already exhausted
if he is still far away from his home.

Another strategy that the runner can follow, is to stick to a nice route he
already knows. As these are mostly routes he ran before, the runner might get
bored after some time depending on how much variation he likes for his routes.

Luckily, the runner nowadays has many tools he can use to optimize his
routes. At first, he can create his own route using maps. This is most likely too
much work except if the user wants to stop by a certain place and even then it
takes some effort to work out the best route. The runner can also choose from
a wide variety of predefined or shared routes (e.g. the websites Runkeeper1 for
running, Contours2 for walking or Runtastic3 and MapMyRun4 which provide
both as well as an application as a website). The advantage of this method
is that the runner will get nice routes which are preselected and tested. The
disadvantages are that the routes most likely do not start where the runner wants
to start. Also, there are not infinitely many routes in each area and therefore
the runner is restricted to some routes with certain lengths. If the runner wants
to run a route with a specific length, he will not have a wide choice or maybe
even find no route that satisfies his denies. And last but not least, the routes
are static, therefore they cannot be adapted or changed during the run.

Using other technologies for routing also does not solve the problem, as rout-
ing services like navigation systems, Google Maps5 etc. are not aimed at nice
routes but only at the shortest, fastest or most fuel-efficient routes from a start
to a destination.

In our application, we implement a simple solution: Our application creates
a preferably nice route and adjusts it to the user’s preferences, like start point
and length.

1runkeeper.com: Runkeeper - Find the best running routes on Runkeeper
2contours.co.uk: Walking Scotland, England, Wales
3www.runtastic.com: Runtastic: Running, Cycling and Fitness GPS Tracker
4www.mapmyrun.com: MapMyRun
5maps.google.com: Google Maps

1. Introduction 3

Shop Caffeine per litre Volume Price

Starbucks 20mg
l 0.5 l 5 $

Italian coffee shop 100mg
l 0.1 l 2 $

Coffee machine at the office 10mg
l 0.3 l 0.5 $

Figure 1.1: Example for coffee supply

1.1 Related Work

Previous Bachelor Thesis

This work is based on the bachelor thesis On the Fly! - Automatic Running
Route Generation [1]. In that thesis, an application is presented, that gener-
ates routes automatically for the user. The routes are optimized to a length the
user chooses. The shape of the routes is approximated with a circle. The type
of roads used for the routes are not considered, thus even though we might get a
route with the desired length, the probability that it will be a nice route which
the user can enjoy is not very high.

1.1.1 Optimization

Optimization problems occur everywhere even in daily life. Where do we have
to buy our coffee to get the most caffeine for our money? What is the shortest
way to the supermarket? Which television do we buy - the cheapest one or the
one with the largest screen?

There are problems which only have one variable that we have to optimize
for example the first problem with the caffeine.

We get the solution intuitively by calculating the caffeine per money and
choosing the shop with the highest value.

caffeine

litre
· litre

money

In the Figure 1.1 this is the coffee machine at the office with a value of
6mg

$. To be more formal, we define a so called objective function f for every
optimization problem which we can maximize or minimize.

f : A→ R (1.1)

In our example, f(x) is the objective function which shows how much caffeine
money

we get when buying the coffee at the location x ∈ A = {xstarbucks, xitalian, xoffice}.

1. Introduction 4

We solved the maximization problem with max
x

f(x) by calculating all possible

outcomes of f for every shop x and selecting the best.

Usually, a maximization problem can be turned easily into a minimization
problem and vice versa by negating the objective function min

x
−f(x), which of

course returns the same results. If the codomain of f is not R but for example
either strictly positive (or negative) f : A→ R we can also turn a maximization
problem into a minimization problem by using the reciprocal of the objective
function min

x

1
f .

Shortest Path Problem

Given a graph G = (E, V) with its edges e ∈ E and nodes v ∈ V . Every edge
has a weight d ∈ R>0. We want to find a path from a node s to a node t such
that the the cost function of the resulting path is minimized. Usually we have
an additive cost function that adds up the weights of the edges contained in the
path. We show how to solve this problem using Dijkstra’s Algorithm.

Figure 1.2: We convert the real world street network to a graph.

Dijkstra

Dijkstra’s Algorithm implements a breadth first search on the graph G. In Figure
1.3 we show an example of the algorithm.

Multi Objective Optimization

The third example, about the question what television we want to buy if we
consider the price and the size of the television, is a so called multi objective
optimization problem as we have several objectives - in our case two - the price
and the size of the screen, that we want to optimize.

1. Introduction 5

Algorithm 1: Dijkstra’s Algorithm

1 openList.add(s)
2 while openList not empty do
3 v = openList poll node with smallest cost
4 for neighbour in neighbours of v do
5 if openList contains neighbour then
6 neighbour.cost = v.cost + cost(v,neighbour)
7 end

8 end

9 end

Figure 1.3: Example of Dijkstra’s Algorithm

1. Introduction 6

With the given information, we cannot necessarily find the best television,
as the best television does not necessarily exist. For example, there might be
one television that is the cheapest and another that has the largest screen. So
we can have several constellations of television that are optimal in a way. We
can find televisions that are clearly not optimal, for instance if we compare two
televisions and one of them has a larger screen and is cheaper then this television
is better than the other. We can express this kind of optimality using the Pareto
Optimality. We use the definition from [2] that was partially taken from [3].

Definition 1.1. A solution is Pareto-optimal (i.e., Pareto-minimal, in the Pareto-
optimal range, or on the Pareto front) if it is not dominated by any other solu-
tions.

A vector x is partially less than y, or x < py when: (x < py) ⇔ (∀i)(xi ≤
yi) ∧ (∃j)(xi < yi) x dominates y iff x < py.

If we want to get a unique solution we have to introduce an additional con-
straint. For example by deciding that we have 300 Chf that we want spend on a
television that has a screen that is as large as possible.

Chapter 2

Theory

2.1 Problem Statement

We want to find the best routes from a start to a destination given a number
of constraints. Most of the time the destination is the same as the start, which
already makes our problem different to most of the routing problems out there.
The route shall have a certain length the user can choose. Those best routes
should be the routes which are the most fun and enjoyable to run for the runner.
But how do we find them?

2.2 Modeling the Street Network

We model the street network as a graph G = (V,E) consisting of undirected
edges E representing the roads, paths etc. and the nodes V representing the
crossings or meeting places of the those roads.

Figure 2.1: We convert the real world street network to a graph.

We assign two parameters to every edge. Every edge ei ∈ E has a length
parameter li ∈ R>0 that represents the length of the according road and a second
parameter ai ∈ R>0 that we call the attractiveness. The attractiveness represents
how nice or bad a route is depending on for example surroundings, road type or
condition. The higher the attractiveness of an edge, the nicer the corresponding
road section and the more enjoyable and fun it is to run on that path. For
example, an edge enice ∈ E that represents a beautiful path - like a path in
nature with a spectacular view of the landscape - will have a high attractiveness,

7

2. Theory 8

whereas an edge ebad ∈ E that represents a street with several lanes and much
traffic will have a low attractiveness. In our example with the two edges enice
and ebad, it holds that anice > abad. How the attractiveness is defined specifically,
we show later in this chapter.

We define a route R to be a path on the graph G that is optimized for
attractiveness, while having a given length. The route R may contain an edge
several times.

2.3 Optimizing the Length

First, we explain how we can find a route R whose length lR is as close as
possible to the desired length l, not regarding the attractiveness. We define
∆l = |l−lR| and minimize ∆l. We can see that this problem is more complicated
than the Shortest Path Problem. If we build up a path, ∆l decreases at first and
increases after the path gets longer than the desired length l. In the Shortest
Path Problem, there exists an optimal path from every node to the end node.
Thus, it is not necessary to look at all possible paths that exist from the start
to the end. In our problem we cannot determine such optimal partial solutions
and therefore, we have to look at all possible paths that exist between the start
to the destination.

2.4 Optimizing the Attractiveness

Maximizing Average Attractiveness of Route

One possibility to define a model is to optimize the average attractiveness of
the route. For this, we define the attractiveness for every edge ai as follows:
ai ∈ R>0. The average attractiveness of a route R is aR:

aR =
1

lR

∑
i|ei∈R

ai · li (2.1)

Therefore we try to get a route with many edges that have a high attractive-
ness. It is possible to have some edges with low attractiveness but following from
the definition this will only be the case if therefore there are many nice routes so
that the resulting route has still a high attractiveness. Note that this definition
is very similar to the definition introduced in ?? but with the difference that we
can compare the attractiveness of routes that do not have the same length.

2. Theory 9

Maximizing the Worst Edge of the Route

Another possibility is that we do not care as much about the average attractive-
ness as about the worst attractiveness aworst of the edge eworst that is con-
tained in the route R. The attractiveness of a route R is therefore aR =
aworst, aworst ≤ ai,∀i|ei ∈ R. With this model, we want to prevent routes from
having edges with a low attractiveness. But we do not have a guarantee that our
route contains edges with a high attractiveness. Also, if the route has to lead
through at least one edge with very low attractiveness because of the given con-
ditions, this optimization method is useless and we need to do many adjustments
to get more or less useful results.

Maximizing the Best Edge of the Route

A similar model is to maximize the best edge of the route. With this model we
want to get a route that has at least one very good edge. The problem with this
approach is that we have no guarantee that the over edges are somehow good.
We might argue that if we find a very nice edge that there are probably other
nice edges in the area but we do not have any guarantee for that. The worst case
is that we have a very short edge with a very high attractiveness and all other
edges have a very low attractiveness. Therefore, this model is not useful for our
purpose.

Comparison of the Models

In our opinion, the average attractiveness fits the needs of our purpose the best.
With the average attractiveness, the resulting route will have many nice edges.
Although the route may contain some bad edges, this does not matter much
because most runners will accept to have a short path that is not beautiful if
they therefore can run most of their route on very nice and beautiful paths.

For only decent routes on the other hand, even if they do not contain bad
paths, there is much less demand. Therefore, we do not maximize the worst edge
of the route. Maximizing the best edge of the route does also not lead to good
routes.

2.4.1 Maximizing the Attractiveness by Restriction to Few Im-
portant Edges

Even though we decided to use the average attractiveness, we will present a dif-
ferent noteworthy model that has some drawbacks and some benefits compared
to the average attractiveness. We define an alternative model of the attractive-

2. Theory 10

ness as aalternative ∈ R with a set of attractive edges Eattractive ⊆ E, a set of
unattractive edges Eunattractive ⊆ E and a set of neutral edges Eneutral ⊆ E with

Eattractive ∪ Eneutral ∪ Eunattractive = E

Eattractive ∩ Eunattractive = Eattractive ∩ Eneutral = Eneutral ∩ Eunattractive = ∅

The edges in Eattractive have strictly positive values, the edges in Eunattractive

have strictly negative values and the edges in Eneutral have an attractiveness of
zero. Moreover we define the attractiveness to only take values in {−1, 0,+1}
and therefore treat all very good edges equal, all neutral edges equal and all bad
edges equal.

Thus, we split up the set of edges in our graph into a subset of edges that we
want to have in our path if possible, namely the edges in Eattractive, into edges
we do not want to have in our path if possible, namely the edges in Eunattractive,
and in neutral edges. An neutral edge with the attractiveness of zero can be
interpreted as an edge that we do not care about whether it is in our route or
not. We only assign very few edges to the set Eattractive and very few edges to
the set Eunattractive. This should be the best and the worst edges regarding the
attractiveness of our graph. The majority of the edges are neutral so we do not
care if those edges are in our route or not.

Figure 2.2: Example of a graph. Green edges represent good edges, red edges
represent bad edges and black edges represent neutral edges.

With this approach we can reduce the complexity of the search for good
routes drastically compared to the average attractiveness, as we only have to
look at the clusters of good edges and how to connect them in a good way. The
large drawback of this definition is that we loose the information about all the
neutral edges which are the bulk of all edges. Thus this model is only useful if
the average attractiveness is for any reason too complex to implement or if we
really do not need these informations.

2. Theory 11

2.5 Optimizing the Route with Two Weights

Optimizing the route R according to both length and attractiveness yields an-
other problem. As there are many possible Pareto-optimal routes R (see Figure
2.3), which route do we choose?

Figure 2.3: Example of the rep-
resentation of attractiveness and
length in a Pareto Graph. We
marked the points in the Pareto-
Front red.

Figure 2.4: By introducing a
length constrain, we get a region
in which we can optimize over
the attractiveness.

We have to define an objective function to be able to chose the optimal route
Ropt. The attractiveness should be penalized if low and rewarded if high. The
length of the route lR should be close to l but for our purpose it is enough if ∆l
is not exactly zero but small. Therefore, we do not want to penalize small ∆l
much or at all. On the other hand, if ∆l is large we want to penalize this very
hard. We define our objective function as:

c =

{
a, if∆l ≤ lthresh

−∆l, if∆l > lthresh
(2.2)

With this objective function all routes that fulfill the condition ∆l < lthresh with
a predefined threshold lthresh is equal to the attractiveness of the route. This
means that for routes that are close to the desired length we only consider the
attractiveness of these routes to choose the best route. The region in which we
optimize for this case in the Pareto Graph is shown in Figure 2.4. If we do not
find any route which can fulfill the condition ∆l ≤ lthresh we select the route
that is as close to the desired length as possible regardless of the attractiveness.
Note that we have to set the threshold lthresh thoughtful. If lthresh is too small,
we might not find routes that fulfill the condition and therefore select a route

2. Theory 12

that can have any attractiveness. If lthresh is too large, we get routes that have
a length that is much longer or shorter than the desired length. We show an
example for a ranking using this objective function in Table 2.1.

Route ∆l aR c Rank

1 0 0.5 0.5 4

2 50 1.5 1.5 2

3 50 2.0 2.0 1

4 100 3.0 -100 6

5 60 1.0 -60 5

6 20 1.5 1.5 2

Table 2.1: The table shows an example of some routes. The length threshold is
lthreshold = 60. We can see that route four is ranked worst because it does not
fulfill the length condition even though it has the highest attractiveness. Route
two and route six are ranked equally although route six has a smaller ∆l.

All we have to do now is to maximize the objective function. Note that we
have to set the length threshold lthresh not too small as otherwise we will not
find any routes fulfilling the length condition and therefore only rank the routes
by their length.

2. Theory 13

2.6 Calculation of the Optimal Route

To calculate the optimal route, we first show an algorithm that returns the
optimal route in relation to the objective function in Section 2.5. The algorithm
uses a brute force approach as it builds up all possible routes and selects the route
with the highest value for the objective function. During the building process
we try to detect and sort out routes that cannot become the optimal route early
to improve the performance of the algorithm. We assume for this algorithm that
the route can contain any node at most once except the start and destination
node if it is the same. This is due to the fact that we want to avoid crossings
and that the route contains edges several times.

Algorithm 2: Brute Force Algorithm

Result: Optimal Route
1 Init
2 bestRoute = null
3 startRoute = [start]
4 priorityQueue.add(startRoute)

5 while priorityQueue not empty do
6 currentRoute = priorityQueue.poll route with highest a · l
7 if newRoute can be better than bestRoute then
8 neighbours = currentRoute.lastNode.getNeighbours()
9 for neighbour in neighbours do

10 newRoute = currentRoute.add(neighbour)
11 if currentRoute contains neighbour then
12 if neighbour == end then
13 if newRoute better than bestRoute then
14 bestRoute = newRoute

15 end

16 else
17 Deadend handling
18 end

19 else
20 if newRoute can be better than bestRoute then
21 priorityQueue.add(newRoute)

22 end

23 end

24 end

25 end

26 end
27 return bestRoute

2. Theory 14

In line 17 of Algorithm 2 we have to take care of the special case if the start
and destination are the same and lie in a deadend. In this case, we will not find
a bestRoute in Algorithm 2 because we have to pass the first edges of the route
also at the end to get back to our starting point.

Figure 2.5: As the start and end point lies in a deadend, we have to take several
nodes twice to complete the route.

Thus, as long as we have not found a route that consists only of unique nodes,
we have to take care of the best route, that does not fulfill the condition, that
we do not have several equal nodes. If the node we add to a route is already
contained in the route, we therefore start the Deadend handling. The Deadend
handling in line 17 of Algorithm 2 is shown in Algorithm 3.

Algorithm 3: Deadend Handling

1 bestRouteDeadend

2 if bestRoute exists then
3 continue
4 else
5 completeRoute = complete newRoute
6 if completeRoute better than bestRouteDeadend then
7 bestRouteDeadend = completeRoute
8 end

9 end

From the routes that contain several nodes twice, we only keep track of the
best of them. To determine the best of them, we add the first part of the route
to the end of the route, so that the beginning and the end of the route are equal.
Then we keep track of the best route until we find a route that consists of unique
nodes. If we do not find a route that consist of unique nodes, bestRouteDeadend
becomes our best route.

Next, we look at line 7 and line 20 in Algorithm 2. In these lines we try to
detect as early as possible whether a route can still become the best route or not.
For this, we calculate the minimum distances and the maximal possible average
attractiveness from every node to the end node.

2. Theory 15

First, we check if the route can still fulfill the length condition. After that,
we check if the route can still be more attractive than the best route we have
found so far. We can only sort out routes if we have already found a best route
because a bad route even if it does not fulfill the length condition is better than
no route. Therefore in line 6 we choose a route with a high attractiveness and a
long length to find an attractive complete route fast. If we find such a route we
can sort out worse routes. Afterwards, we can change to depth first regarding
only the attractiveness of the routes if desired.

Algorithm 4: newRoute can be better than bestRoute?

Result: Whether newRoute can still fulfill conditions or not

1 Input:
2 newRoute

// min distance from node to the end node:

3 minD = minDistToEndNode

// max average attractiveness from node to the end node:

4 maxA = maxAvAttrToEnd

5 if | bestRoute.length-length | > threshold then
6 return true

// no route found yet, that fulfills the length condition

7 end

// route can still fulfill length condition?

8 lenBestCase = minD(newRoute.lastNode) + newRoute.length
9 bool cond1 = lenBestCase < length + tolerance

// route can still be more attractive than best route

10 attrBestCase1 = maxA(newRoute.lastNode)·(length−newRoute.length+tolerance)
length+tolerance

11 bool cond2 = attrBestCase1 > bestRoute.averageAttractiveness

12 attrBestCase2 = maxA(newRoute.lastNode)·(length−newRoute.length−tolerance)
length−tolerance

13 bool cond3 = attrBestCase2 > bestRoute.averageAttractiveness

// route can still fulfill both conditions

14 if cond1 AND (cond2 OR cond3) then
15 return true
16 end
17 return false

The minimum distances from every node to the end node and the maximal
possible average attractiveness from every node to the end node are calculated

2. Theory 16

using Dijkstra’s Algorithm in a preprocessing step in line 1 of Algorithm 2.

Algorithm 5: Init

1 Init minDistToEndNode
2 Init maxAvAttrToEnd

Algorithm 6: Init minDistToEndNode

Result: Initializes minDistToEndNode

1 minDistToEndNode = Map<node→ minDist>
2 predecessors = Map<node→ predecessor>
3 for node in allNodesOfGraph do
4 minDistToEndNode.put(node→∞)
5 predecessors.put(node→ null)

6 end
7 minDistToEndNode.put(end→ 0)
8 openList.add(end)
9 while openList not empty do

10 node = openList.popNode
11 neighbours = node.getNeighbours
12 for neighbour in neighbours do
13 newDistance = minDistToEndNode(node) +

Distance(node,neighbour)
14 if newDistance < minDistToEndNode(neighbour) then
15 minDistToEndNode.put(neighbour→ newDistance)
16 openList.add(neighbour)
17 predecessors.put(neighbour→ node)

18 end

19 end

20 end

2. Theory 17

Algorithm 7: Init maxAvAttrToEnd

Result: Initializes maxAvAttrToEnd

1 maxAvAttrToEnd = Map<node→ maxAvAttr>
2 usedPaths = Map<node→ usedPathsForMaxAvAttr>
3 for node in allNodesOfGraph do
4 maxAvAttrToEnd.put(node→ 0)
5 usedPaths.put(node→ null)

6 end
7 openList.add(end)
8 while openList not empty do
9 node = openList.popNode

10 neighbours = node.getNeighbours
11 for neighbour in neighbours do
12 avAttrNode = maxAvAttrToEnd(node)
13 pathNode = usedPaths(node)
14 if pathNode does not contain neighbour then

// prevent infinite loops

15 pathNeighbour = pathNode.add(neighbour)
16 newAvAttr =

avAttrNode·pathNode.length+getAttractivity(edge=[node,neighbour])·Distance(node,neighbour)
pathNeighbour.length

if newAvAttr > maxAvAttrToEnd(neighbour) then
17 maxAvAttrToEnd.put(neighbour→ newAvAttr)
18 openList.add(neighbour)
19 usedRoutes.put(neighbour→ pathNeighbour)

20 end

21 end

22 end

23 end

2. Theory 18

2.7 Computation of a Locally Optimal Route

The brute force version of the algorithm gets very fast to its limits of being
able to compute the routes in reasonable time with increasing total path length.
Therefore, we developed another algorithm that uses a different approach.

The Expanding Algorithm 8 initializes with a short route which we call the
initial route. The route is then expanded every step of the algorithm by replacing
a route part with a longer route part. As there are many route parts that can be
replaced with a longer route part, we choose to replace the one that will give us
the highest gain for the average attractiveness of the route. Note that this does
not always have to be a positive gain as we always increase the length of the
route. This algorithm does not necessarily find the optimal route as the Optimal
Algorithm in 2.6 but rather a locally optimal route. Locally optimal does not
refer to the area that the graph represents but to the starting conditions of the
algorithm in our case the route we get during the initialization.

Step 1 Step 2

Step 3 Step 4

Figure 2.6: Example of the Expanding Algorithm

Thus, we can run the algorithm with any possible initial route in the hope
of that we will get the optimal route. But doing this needs much calculation
power and we try with this algorithm to decrease the need of resources. Thus,
we try to find one good initial route to start with. If we are lucky, we still get

2. Theory 19

the globally optimal route and if not we assume that the locally optimal route
we get is attractive enough to fulfill our purpose. If not all locally optimal routes
are attractive enough to fulfill our purpose, we have to select the initial route
carefully to be in an area of starting conditions, that lead to a good locally
optimal route. We did not examine how to do such an estimation but this could
be something that can be done in the future.

Algorithm 8: Expanding Algorithm

Result: An optimized route

1 route = initRoute()

2 finished = false
3 while not finished do
4 select best part of the route to replace
5 if route can be improved then
6 replace part in route
7 else
8 finished = true
9 end

10 end

Finding the best part of the route to replace is straight forward. We search
for every part of the route up to a defined maximum length of a route part for
the best replacement that increases the length of the route. We compute those
best replacements using brute force to a certain depth. The depth indicates the
maximal length of a replacing part.

2. Theory 20

2.8 Random Points Algorithm

In the last algorithm we do not look for the one optimal route anymore. Instead,
we just look for routes whose attractiveness is close the the attractiveness of
the optimal route. With this algorithm, we decide to go one step further. The
Optimal Algorithm in 2.6 is deterministic and returns the optimal route but is
limited in its performance. The Expanding Algorithm in 2.7 is deterministic and
returns a route that is at least locally optimal. So, the next step is to try a
nondeterministic algorithm that returns a route that is not necessarily optimal
but as attractive as possible.

For this, we developed the Random Points Algorithm. The algorithm is very
simple: We choose and connect random nodes of the graph using the Algorithm
9. If two nodes that we want to connect are close enough, so that we can compute
the connecting path directly we do this. Otherwise, we randomly select nodes
between the two nodes and build a connection by connecting all nodes using
this algorithm recursively. We compute this connection either with the Brute
Force Algorithm 2, the Expanding Algorithm 8 or the Shortest Path Algorithm
??. If we use the Brute Force Algorithm we get optimal connections between
two nodes in relation to the attractiveness. A drawback if we use this algorithm
is that the two nodes have to be very close to each other as the Brute Force
Algorithm can only compute short routes. With Expanding Algorithm 8 we can
create longer connections and are still optimal. The Shortest Path Algorithm
does not guarantee at all that we get attractive connections. The idea behind
using the Shortest Path Algorithm is, that because the shortest path between
two nodes is so easy to compute, we can do more executions of an the algorithm
and therefore have a higher chance of randomly finding an attractive route.

We do not assign every node the same probability to be chosen but a higher
probability if the node belongs to attractive ways and a lower probability if the
node belongs to unattractive ways.

If we run this algorithm once, the probability is very high that we do not
get an attractive route. Therefore, we have to run the algorithm many times
and choose the best route from the routes we get. We can do this because the
algorithm is very fast.

We can further adapt the algorithm if we do not select completely random
nodes, but limit the set of nodes we can draw from to a subset of all possible
nodes. If we do this intelligently, we can improve the expected attractiveness of
the resulting route even further. We did not study how to select such a subset
of nodes, but this can be done in the future. This could be done for example by
dividing the edges of the graph in good, neutral and bad edges like we describe
in Section 2.4.1. Then we select the subset as the set of nodes of those good
edges.

2. Theory 21

We choose randomly some
nodes. The red node is our
start and end node

If we can compute the connec-
tion of two nodes directly we do
this.

If not, we choose randomly some
additional points between the
two nodes.

We continue until we finished
the route.

Figure 2.7: Example of the Random Points Algorithm

2. Theory 22

Algorithm 9: Random Points Algorithm

Result: Random route

// Input:

1 start
2 end
3 n: number of target nodes

4 route = [start]
5 if start == end then
6 randomNodes = get n random nodes
7 targetNodes = order randomNodes

8 else
// start != end

9 if Distance(start,end) small enough to calculate Route directly then
10 route = BFAlgorithm(start,end)
11 OR route = ExpandingAlgorithm(start,end)
12 OR route = shortestPath(start,end)
13 return route

14 else
15 randomNodes = choose n random nodes between start and end
16 targetNodes = order randomNodes

17 end

18 end

19 targetNodes.add(end)
20 for node in targetNodes do
21 currentNode = route.removeLast()
22 routePiece = RandPointsAlg(currentNode,node,1)
23 route.add(routePiece);

24 end
25 return route

2. Theory 23

Algorithm 10: Complete Random Points Algorithm

Result: A random attractive route
1 n = 2

2 bestRoute = null
3 while time < predefined time do
4 newRoute = RandPointsAlg(start,end,n)
5 if newRoute.length larger than length condition AND n > 2 then
6 n–
7 end
8 if newRoute.length smaller than length condition then
9 n++

10 end

11 end

2. Theory 24

2.9 Shape of the Route

With the algorithms, that we introduced so far, we can compute routes with a
good average attractiveness. But sometimes, these routes, or at least some parts
of them, are not what we expect to be a good route because the shapes of some
parts of those routes are not desired.

Figure 2.8: Example for a un-
desired route shape because the
user has to run zigzag all the
time.

Figure 2.9: Although the overall
shape is better than in figure 2.8
changing the direction often for
no reason is not desired.

Figure 2.10: An enlargement of
one of the unwanted artifacts
from Figure 2.9.

Figure 2.11: Examples for bad route shapes

So, we also have to consider the shape of the routes, if we want to create nice
routes. But finding a measure for determining whether a route has a good or
bad shape is so complicated that it would probably be enough work for an entire
new master thesis.

2. Theory 25

2.10 Smoothing the Route

We want to eliminate artifacts like these in in Figure 2.10. A generalization of
these kind of artifacts are small loops as shown in Figure 2.12.

Figure 2.12: General example for small loop artifacts. Although a direct path
exist we make a short detour, often around one or several houses. If the detour
is very large this is not bad. But if it is short, this detour makes no sense.
Therefore we want to eliminate these small loop artifacts.

To eliminate some of these artifacts, we do as follows. We design an algorithm
that checks if there exist such artifacts and replaces them with the direct path,
if possible.

Algorithm 11: Route Smoothing

Result: Remove unwanted artifacts from route

1 for node in route do
2 routePiece = [node]
3 while length of routePiece is smaller than a threshold do
4 nextNode = route.getNextNode(routePiece.lastNode)
5 routePiece.add(nextNode)

6 if distance of first to last node in routePiece is smaller than a
percentage of the length of routePiece then

7 SP = shortestPath(routePiece.firstNode,routePiece.lastNode)
8 if SP.length smaller than routePiece.length then
9 route = replaceInRoute(route, SP)

10 end

11 end

12 end

13 end

2. Theory 26

An artifact that we
might want to remove.

The artifact is removed
and replace with the
shortest path.

Sometimes there are
reasons why we have ar-
tifacts. In this example
there does not exist a
path that prevents this
artifact as there is no
shorter path because of
the river.

Figure 2.13: Example for the Route Smoothing Algorithm

2. Theory 27

2.11 Triangle Algorithm

In all algorithms we covered up to now, we only consider the attractiveness and
the length of the route. But as we have seen in section 2.9 we also have to
consider the shape of the route. Ideally an algorithm creates an attractive route
such that we do not need additional algorithms like for example the Smoothing
Algorithm 2.13. But developing a measure of quality for the shape of a route is
such a complicated task that it can easily take a whole new project. Therefore,
we keep it simple and try to approximate the shape of our route with a triangle.
Thus we ensure that the shape of our route will not be too bad.

The algorithm works as follows. At first we create two branches in different
random directions. Next we select pairs of nodes each containing one node
from the first branch and one node from the second branch. We calculate the
connections of the nodes so that we get many slightly different routes. From
those routes, we take the ones that fulfill the length condition and choose the
most attractive route.

Step 1: Create First
Branch

Step 2: Create Second
Branch

Step 3: Connect
Branches

Figure 2.14: Simple example for the Triangle Algorithm

The process in which we shorten the two branches in line 8 is straightforward.
Additionally we try to reduce the need for shortening the branches by choosing
a good estimate of the branch length in line 6 and 7. We connect the branches
in line 12 either with the Expanding Algorithm 8 or with the Random Points
Algorithm 10.

For creating the branches, we have tried out several ways to do so. At first
we tried keeping the branches as close to a given half line as possible. We show
this in Figure 2.15. Therefore, we create the half line starting at the start node
in the given direction. In the beginning, the branch only consists of the start
node. In every step, we choose the best neighbor of the last node of the branch.
We determine the best neighbor as follows. For every neighbor we calculate
the distance from the half line distV ert. We want to stay close to the half line
therefore we penalize large distances from the half line by calculating the weight
with the multiplicative inverse of distV ert. Then, we calculate how much further
we get away from the start node in the given direction. This distance disthoriz

2. Theory 28

Algorithm 12: Triangle Algorithm

Result: Route with a nice shape, at least a bit optimized

1 Input
2 start
3 length
4 angle = random angle in [30,120] degree
5 direction = random angle in [0,360] degree
6 branch1 = createBranch(start, direction, branchlength)
7 branch2 = createBranch(start, direction + angle, branchlength)

8 shorten branch1 and branch2 so that
9 route = branch1 + connection of ends of branch1 and branch2 + branch2

10 can fulfill length condition

11 bestRoute = null

12 routes = connect the last few nodes of the branches and save the resulting
routes

13 bestRoute = select best route out of routes

is the length of the projection of the line that has the current node as the start
point and the neighbor as the end point on the half line. As we want to reward
neighbors with a large disthoriz we multiply the weight with disthoriz. Because
we also want to have attractive routes, we want to allow the branch to use edges
that have a high attractiveness, although the corresponding neighbor of that
edge has a short disthoriz or a large distV ert. Therefore, we multiply the weight
function with the factor ab where a is the attractiveness of the edge and b is a
parameter to adapt how strong we want to weight the attractiveness. In practice
we discovered that b = 1.5 is a good choice. The weight for a neighbor is thereby:

w =
disthoriz
distvert

· ab (2.3)

The problem with this method is that most of the time we do not get very
nice shapes and have to do much postprocessing to smooth the routes. Often,
this is very difficult or not even possible as can be seen in the Examples 2.16.

2. Theory 29

Initialize the half line Calculate distances for
neighbor of the start
node. Select best neigh-
bor.

Continue until branch is
long enough.

Figure 2.15: Simple example for the Create Branch Version 1

Algorithm 13: Create Branch Version 1

1 Input:
2 start
3 directionAngle
4 length

5 halfLine = halfLine starting at start in directionAngle
6 branch = [start]
7 while Branch smaller length do
8 currentNode = branch.lastNode
9 neighbours = currentNode.neighbours

10 bestNeighbour = null
11 bestWeight = null
12 for neighbour in neighbours do
13 distVert = Distance(neighbour,halfLine)
14 line = line with start currentNode and end neighbour
15 distHoriz = ProjectionOnHalfLine(line).length
16 attr = edge(currentNode,neighbour).attractiveness

17 weight = distHoriz
distV ert · attr

18 if weight > bestWeight then
19 bestNeighbour = neighbour
20 end

21 end
22 branch.add(bestNeighbour)

23 end

24 return branch

2. Theory 30

Figure 2.16: Examples for bad branches created with the Create Branch Version
1 Algorithm 13

2. Theory 31

In the next method, we create each branch by always selecting the same
direction starting at the last node of every branch. This means that we do
exactly the same as in the Create Branch Version 1 Algorithm 13 except that
we create at a half line in every step starting at the last node of the branch.
We illustrate this in Figure 2.17. With this method we get much better and
sufficiently good shapes of the branches.

Initialize the half line Calculate distances for
neighbor of the start
node. Select best neigh-
bor.

Define a new half line
and continue until
branch is long enough.

Figure 2.17: Simple example for the Create Branch Version 2

The last step is to use one of the algorithms that we introduced above. We
can use the Expanding Algorithm 8 or the Random Points Algorithm 10. We
can select the node closest to the end point of the line segment that starts at the
start point and points into the given direction. Alternatively, we can define a
subset of nodes from which we want to choose a random node. If we have selected
the end node we can simply use the Expanding Algorithm or the Random Points
Algorithm to get a path from the start to the end node.

2. Theory 32

Algorithm 14: Create Branch Version 2

1 Input:
2 start
3 directionAngle
4 length

5 branch = [start]
6 while Branch smaller length do
7 currentNode = branch.lastNode
8 halfLine = halfLine starting at currentNode in directionAngle
9 neighbours = currentNode.neighbours

10 bestNeighbour = null
11 bestWeight = null
12 for neighbour in neighbours do
13 distVert = Distance(neighbour,halfLine)
14 line = line with start currentNode and end neighbour
15 distHoriz = ProjectionOnHalfLine(line).length
16 attr = edge(currentNode,neighbour).attractiveness

17 weight = distHoriz
distV ert · attr

18 if weight > bestWeight then
19 bestNeighbour = neighbour
20 end

21 end
22 branch.add(bestNeighbour)

23 end

24 return branch

Algorithm 15: Create Branch Version 3

1 Input:
2 start
3 directionAngle
4 length

5 targetNode = closest node to length in directionAngle
6 OR
7 targetNode = random node in subset, subset defined accordingly

// use algorithm to get branch:

8 branch = RandPointsAlg(start, targetNode, 1)
9 OR

10 branch = ExpandAlg(start, targetNode, 1)

11 return branch

2. Theory 33

2.12 Dynamic Route Updating

The algorithms above all calculate a nice, but static, route. But what happens if
the user leaves the given route - be it either because for example he spontaneously
decides to run somewhere else during the run or because he unintentionally ran
the wrong way. We also want our application to handle this case. Updating the
route not at all is no option as the user then has no use of the application for
the rest of his run. Even if he finds back to the route later and follows it to the
end, the actual distance he runs is generally different from the desired length.
Sending the user back to the given route the way he came is also not desired, as
this is most likely not what the user wants. Generating a new route is an option,
but we want to try to avoid creating a new route because the user decided to
run the route in the beginning and therefore we try to keep the updated route
similar to the initial route. So we want to find a path back to the route without
using edges that the user already ran. Then we adapt the resulting route so that
it fulfills the length condition again.

We define the path the user ran as Rfinished and the path of the route that
the user did not run yet as Rto go. As long as the user stays on the route R it
holds that R = (Rfinished, Rto go). We want to find a path that connects the node
the runner is currently running towards with a node in Rto go. To implement this,
the first thing we do is we take the edge the user did not run which is the first
edge from Rto go, and the edges from Rfinished. We are not allowed to use these
edges for the path that shall connect both routes. Next, we connect the current
node with all nodes of the Rto go that are in a reachable radius. The routes we
get do not necessarily fulfill the length condition anymore. Therefore, we have to
adapt the length of those routes. To do this, we use the Expanding Algorithm 8.
If a route is too short, we expand the route like in the Expanding Algorithm. If
the route is too long, we use the same principle as in the Expanding Algorithm

2. Theory 34

but instead of increasing the length we decrease it.

Algorithm 16: Update Route

Result: Updated route

1 Input:
2 RouteRan
3 RouteLeft

4 forbiddenEdge = routeLeft.firstEdge
5 add forbiddenEdge to list of forbidden edges
6 add all edges in RouteRan to list of forbidden edges

7 currentNode = RouteRan.lastNode
8 targetNode = routeLeft.firstNode
9 bestRouteLeft = null

10 while targetNode is close enough to currentNode do
11 nextTargetNode = routeLeft.getNextNode(targetNode)
12 targetNode = nextTargetNode

13 connection = connectNodes(currentNode, targetNode)
14 newRouteLeft = connection merged with routeLeft

15 while newRouteLeft.length does not fulfill length condition do
16 newRouteLeft = adaptLength of newRouteLeft
17 end

18 if newRouteLeft better than bestRouteLeft then
19 bestRouteLeft = newRouteLeft
20 end

21 end
22 if bestRouteLeft fulfills length condition then
23 return bestRouteLeft
24 end
25 return new created route

Chapter 3

Implementation

In the previous chapter we introduced some algorithms which we can use to create
the routes we need. To get a running application we still have to get the data for
the algorithms for example about the street networks or the attractiveness. Then
we have to develop an application for the user devices. At last we have to set up
a server to either supply the application with the data that the application needs
to calculate the routes or to supply the application with the routes directly.

3.1 Client Side versus Server Side Computation

For the application and the server we have to make a decision. Do we want
to do server side or client side computation. Both methods have advantages
and disadvantages. If we run the algorithms on the devices of the users the
application works without internet access. This is beneficial for the cases if the
user does not have internet access on every part of the route for example in a
forest or if the user has no internet access at all for example not only if the
user has no mobile internet but also if the users wants to use the application in
a foreign country. The disadvantage is that the mobile devices our application
runs on usually have much less computational power and might also have few
available data storage. In addition the application also works if our server is
down for some time.

Server side calculation therefore has the opposite advantages and disadvan-
tages. The application does not work if the user has no internet access. Also
the application does not work if the server is down so we have to assure that our
server runs stable and has as few and short downtimes as possible. In contrast
we can run the algorithms much faster or more often as the server has higher
calculation power than the devices of the users. Additionally the application
does not need much storage space on the users device.

At first we tried to implement client side computation of the routes. Unfor-
tunately we had some problems with implementing the algorithms fast enough
on the android operating systems. Especially the fast reading from the stor-

35

3. Implementation 36

age into the memory was much slower than on normal Linux operating systems.
Therefore we implemented a server side computation of the routes.

3.2 Data

In this part of the chapter we explain how we get our data. Important for the
data is that it is not only locally restricted data. Even if those data has a high
quality like for example the traffic data of the engineering office of the Kanton
Zurich1 we need data that is globally (or at least nearly globally) available to
implement our application. Having many different sources of data for many
different areas of the world leads to too much manual data maintenance effort
and also to the problem that our application does not work equally well in every
part of the world.

Street Network Data

We take the data about the street networks from OpenStreetMap2. Open-
StreetMap is an open source project that provides map data of the whole world
under the Open Database License. The advantages of using OpenStreetMap are
that we can access all data freely in contrast to commercial organizations like
e.g. Google Maps3 that do not publish their data. We download the data from
one of the mirrors and extract the data we need using the tool osmosis4. The
raw data we get are so called ways and nodes.

Those ways and nodes have tags that explain what those ways and nodes
represent. The ways are an ordered sequence of node ids that can represent
anything from streets to buildings to country borders. As we are only interested
in the street network we select only the ways that have the highway tag as this
is the tag that shows that the according ways are streets, paths, motorways etc.
Next we only select the nodes that belong to those ways. The parameters of
the nodes that we need are the node id to match the nodes to the ways and a
coordinate. We now get a graph representing our street network by putting the
data together. The ways usually consist of many nodes to represent the shape
of the ways correctly.

In the graph for our street network we want to have as few edges and nodes as
possible. Therefore we merge as many edges as possible so that we get a graph
that is as small as possible like in figure 3.2. Additionally we sort out edges
that represent streets that we do not want to use for our routing for example

1Tiefbauamt Zurich: www.tba.zh.ch/internet/baudirektion/tba/de/laerm.html
2openstreetmap.org: OpenStreetMap[4]
3maps.google.com: Google Maps
4github.com/openstreetmap/osmosis: Osmosis

3. Implementation 37

<node id=”453781” version=”6” timestamp=”2012-11-22T21:53:31Z” uid=”334389”
user=”ueliw0” changeset=”13991903” lat=”47.3921507” lon=”8.5033225”>

<way id=”4310913” version=”21” timestamp=”2014-07-18T05:38:59Z” uid=”555807”
user=”Internethias” changeset=”24213710”>

<nd ref=”455590”/>
<nd ref=”2968383388”/>
<nd ref=”249092469”/>
<tag k=”ref” v=”1;3”/>
<tag k=”name” v=”Pfingstweidstrasse”/>
<tag k=”oneway” v=”yes”/>
<tag k=”highway” v=”primary”/>
<tag k=”maxspeed” v=”50”/>

</way>

Figure 3.1: Example of a node and a way from OpenStreetMap5.

motorways or private property. We have to keep the data about the shapes of
the streets because we need the exact shapes to draw the routes.

Figure 3.2: We merge as many edges of the graph as possible.

Attractiveness Data

The only thing that is still missing in our street network graph is the attrac-
tiveness. The attractiveness represent how enjoyable and how much fun it is to
run a certain path. How enjoyable a certain path is depends on many aspects.

3. Implementation 38

tag weight

highway:primary 0.1

highway:footway 2.0

tracks:steps 0.1

maxspeed:10 3.0

maxspeed:50 1.0

natural:forest 5.0

motor vehicle:no 5.0

Figure 3.3: Example of tags of
a way from OpenStreetMap and
how we weight them.

Additionally this is different from person to person. We try to select the most
important and general aspects of a path.

Attractiveness of the Path

An important aspect of how nice a path is, is the path itself. For example a
track, on which only pedestrians are allowed, is much nicer than a sidewalk next
to a main road with many lanes and much traffic. Also, the direct surroundings
of the path affect the attractiveness directly. A path surrounded by trees usually
is much nicer than a path leading through an industrial area.

We can easily get those data, as our data we take from OpenStreetMap
already contains these informations. All ways have several tags that describe
the type of path that they represent and some information regarding the path.
All we have to do is to take the tags that we need, weight them and calculate
the attractiveness for the path. We calculate the attractiveness for the path by
multiplying the weights that we assigned to all the relevant tags.

The Topography

Another aspect that influences the attractiveness of a route is the topography.
We can divide this aspect in two subaspects, first the elevation of the path and
second the view. As OpenStreetMap only provides very few topographic data
we had to take the topographic data from another source. We take our data
from the Shuttle Radar Topography Mission (SRTM) [5]. At first we wanted
to work with the data itself but we found a much simpler solution with the
osmosis-srtm-plugin6 for osmosis7 which is an easy tool to download the SRTM

6github.com/locked-fg/osmosis-srtm-plugin: Osmosis SRTM Plugin
7github.com/openstreetmap/osmosis: Osmosis

3. Implementation 39

Elevation welevation

>5% 0.75

>10% 0.5

>20% 0.1

Figure 3.4: Example of how we
penalize elevation.

data.

The steeper the path is the more exhaustive it is to use the path. Thereby it
does not matter much if we want to go uphill or downhill. Therefore paths that
are too steep should suffer a penalty. For this we introduce an additional weight
welevation that decreases if the slope is too high.

The view is another parameter that influences the attractiveness of a path.
The better the view the more attractive the path is. To get a measure for the
view we model the view by looking at the topographic data in eight directions.
We show an example in figure 3.5 If we look in one direction we look how far we
can go until we find a point that has a higher height than our current location.
We count the number of points in each direction nDirection. The larger nDirection

is, the further this point is away and the better our view is. The better the view
in the more directions the better is the overall view. The better the overall view
the more attractive is the path. Thus we define an additional weight based on
the view wview.

wview = 1 +
∑

D∈Dircetions

(1− 1

1 + nD
) (3.1)

Thus if we have no view wview = 1. The better the view gets, the larger gets
wview.

Merging the Weights

We have now the attractiveness of each path and for each path additional weights.
The easiest way to merge those is to multiply the attractiveness with the weights.
As the traffic, the elevation and the view is not equally important for every user
we show an easy method to personalize those weights. The user can rate the three
parameters traffic t, elevation e and view v. The user can set each parameter to
not important = 0, normal = 1 and very important = 2. We can calculate
the adapted attractiveness of a path by:

apersonalized = a · wt
traffic · we

elevation · wv
view (3.2)

3. Implementation 40

We check how far the view from
a certain node is in eight direc-
tions.

In this example we have a view
in three directions represented
by the green edges.

Figure 3.5: Example of how to determine the view.

3.3 Android Application

We developed an appliaction called Smart Route and have published it in the
Google Play Store 8. As we use the data of OpenStreetMap for our routing we
also use OpenStreetMap to display those routes. We use externally rendered
map tiles that are provided by Mapnik9 to display the map. For this we use the
libraries osmdroid10 and the osmbonuspack11.

The graphical user interface provides all necessary tools for the applications
purpose. The application keeps track of the users movement and displays it on
the map. The user can choose that the application follows the users position on
the map automatically and it is also possible to rotate the map in the direction
the phone is held/the user is watching.

For the creation of a route the user selects a start on the map, chooses the
desired length and then requests a route. This request is then send to the server
that responds with a route. This route is than displayed for the user.

Currently the application itself does not do any of the steps of the route
calculation itself. Yet it is possible to run our routing algorithms also on the
phone but the routing process is significantly slower than on more powerful
computers/servers. For more details see the chapter 4.

8play.google.com/store/apps/details?id=js.myroute: Smart Route
9mapnik.org: Mapnik

10github.com/osmdroid/osmdroid: Osmdroid
11github.com/MKergall/osmbonuspack: Osmbonuspack

3. Implementation 41

3.4 Server

For our server we use a simple tomcat12 implementation. The server itself has
two purposes, hosting the preprocessed data and generating routes on demand.
If a user demands a route with the application the server receives a request with
the necessary parameters. With a simple Java web applet the server generates
a route using the Triangle Algorithm introduced in section 2.11 in chapter 2.

If in the future the application will get the function that it can calculate the
routes locally only few lines of code are necessary to change the function of the
server so that the server provides the preprocessed data for the application to
download. The route generation can then be either turned off completely or kept
for slow devices, very large routes or saving mobile data volume if the application
does not have the data of the area stored internally and would have to download
it.

Currently we have preprocessed the whole data for Switzerland thus our
application can be used everywhere in Switzerland. But theoretically we can
generate routes in every region of the world as long as OpenStreetMap has stored
enough data for the specific region. We just need to preprocess the data of the
desired region and put it on our server.

12tomcat.apache.org: Apache Tomcat[6]

Chapter 4

Evaluation

4.1 Performance Analysis

In the following we will analyze the performance of the algorithms which we
introduced in chapter 2.

The Brute Force Algorithm

At first we want to take a look at the Brute Force Algorithm 2. How good does
the algorithm perform? We use a personal computer running Ubuntu (800MHz,
8 CPUs) for these measurements. We get the average times in Figure 4.1 for
the computation of a routes with several different length parameters. We use
the same start and end points for these measurements. Then, we examine if it
makes a difference whether the start and end point are close to each other or not.
We show the corresponding graph in figure 4.2. As we can see there is merely a
difference whether we use the same start and end point or not.

Figure 4.1: We plot the length
on the x axis versus the time on
the y axis for the Brute Force
Algorithm2. We use the same
start and end point.

Figure 4.2: A plot of the dis-
tance between start and end
point on the x axis and the time
on the y axis. Using a fixed dis-
tances of TBC

42

4. Evaluation 43

4.2 Quality Analysis

Quality of Data

Unfortunately the data we use are not perfect. OpenStreetMap is an open source
project that is build mostly on the work of voluntary helpers. As the data is
therefore not controlled by a company that has many resources to validate and
check the correctness of the data, it takes time to find and correct man made
errors in the data.

Figure 4.3: Example of errors in
the data...tbc Example of errors,
e.g. irchel radweg

Figure 4.4: Example of errors in
the data...tbc Example of errors,
e.g. irchel radweg

Especially non-consistent tagging of roads is a large source of error. Still the
data is good enough to show that our algorithms work and to create routes that
are useful not only in theory but in real life.

In contrast the height data we use from SRTM[5] has a very high quality and
is also very accurate as the accuracy is 3-arc-seconds what corresponds to about
90 meters depending where on earth we exactly are.

Quality of Attractiveness

In Section 3.2 we have defined various ways to get a measure for the attractiveness
of routes. We have to check if our measure does not contradict the real world. To
check this, we have created a map that represents the attractiveness of the region
of Zurich in Figure 4.5. For every pixel we have calculated an attractiveness by
averaging the attractiveness of the paths that lie in the pixel. Looking at Figure
4.5 we can see that there are no areas that in the real world are completely
different from the information in the attractiveness maps As this is only a very
coarse check whether our attractiveness data is good or not, we cannot state that
our data are very good but they seem usable and at least decent.

4. Evaluation 44

[
caption]Normal Map of Zurich,
taken from Google Mapsa

amaps.google.com: Google Maps

Corresponding attractiveness of
the roads and paths in the area.

Corresponding attractiveness of
the elevation weights in the area.

Corresponding attractiveness
of both roads and elevation
weights.

Figure 4.5: In these figures we show how attractive the areas in and around Zurich
are according to our weights. The brighter the pixels are the more attractive are
the paths in these area on average.

4.3 Summary

From the algorithms we introduced in section ?? the Triangle Algorithm 12 is
the best choice for our demands. It is fast even for large routes and the drawback
that it does not return good routes for short distances does not matter as our goal
is to create longer routes than routes that are only one or two kilometers long.
Therefore, we have implemented the application with the Triangle Algorithm.

4. Evaluation 45

As mentioned in section 3.1 we first tried to implement the application with
client side computation. As we were not able to accomplish this in some time,
we decided not to waste more time on this, and instead implement a server
side computation. Nonetheless, we believe that the advantage of the client side
computation that no internet access is required, once the data of the area was
downloaded, like mentioned in 3.1, justifies to give it another try. Theoretically,
depending on the size of the data it should be possible to accomplish a much
faster reading of the data on Android.

4.4 User Feedback of the Application

We have run a closed alpha test with the members of our group. After that we
have published the application called Smart Route in the Google Play Store
1. As we did not have the time to advertise the application we do not have (at
least we believe so) any users, that were not asked by us to test the application,
yet.

1play.google.com/store/apps/details?id=js.myroute: Smart Route

Chapter 5

Conclusion

In this thesis we have introduced a model for the attractiveness which allows us
to create attractive routes. We have introduced several different algorithms. We
have seen that the computation of an optimal and therefore best route is only
feasible for very short distances. For longer distances we have to trade off the
optimality for faster computation of the routes. But this is not as severe as it
sounds as our non-optimal algorithms create sufficiently attractive routes.

We have developed an Android Application that implements the Triangle
Algorithm. This application provides the user with routes at any given start
point in Switzerland. The application can theoretically be used in any area of
the world as long as there is enough data available in OpenStreetMap for this
area. We just have to preprocess the data and add it to the server.

The Quality of our data is good. Even though there exist wrong data as
shown in Section 4.2 most of the time this does not affect our routes. In the few
cases, in which we get a bad route or a route with a section that cannot be used
by pedestrians or bikers, the user just can demand a new route quick and easy.

5.1 Future Work

Model of the Attractiveness

We could choose a different version of the model for the attractiveness. Maybe
it might be possible to create a model of the attractiveness by using Fuzzy Logic
(see for example [7]) and by defining three sets of edges - good, bad and neutral
edges like in Section 2.4.1 - but not as a normal set but as Fuzzy Sets. Then the
edges are not strictly good or bad but instead have a higher or lower affiliation
to one set. We could also choose another maybe better cost function if we study
how this can improve our routing.

46

5. Conclusion 47

Algorithms

The algorithms can be improved further. For the Expanding Algorithm we can
study how to initialize the algorithm best to get the best possible locally optimal
route.

In the Random Points Algorithm we can study how to select a good subset of
nodes to choose our random points from so that we get the best possible results
for our routes. For example, an algorithm can be implemented that rewards
routes that move away from the start point fast and do not approach the end
point until the route is long enough. This can be easily based on the Brute Force
Algorithm, for example.

Also an algorithm might be able to build a route with a nice shape without
using such a trick as in the Triangle Algorithm 12. This might be accomplished
for example by penalizing every angle between two edges, the larger the angle
the larger the penalty. Also, if two edges are not close to each other in regard
to the route, we can penalize them if they are too close in regards of their real
distance.

We also can try to develop completely new algorithms for example an evolu-
tionary (see for example [8]) algorithm. In fact we already have everything we
need to sketch a simple evolutionary algorithm which we do in Algorithm 17. If
we want to combine routes this might not be possible with every routes. But
as all routes have the same start and end point it is very likely that many the
routes have some identical nodes so that we can recombine some parts of these
routes easily. We could also try to define some more complex recombination
method that allows to combine any two routes. If we want to evolve a route we
can do this already. The Expanding Algorithm allows us to grow the route and
if we redefine it also to reduce the size of the route. If this is not enough, we can
define some other algorithms to evolve a route for example by replacing a part
of the route with one of our algorithms.

Android Application

As already mentioned above, one task to do is to implement client side compu-
tation at least for medium routes. Additionally we did not yet accomplish to
implement the automatic route update so that it runs completely stable.

The Data

Our data can also be improved. We could improve our graph, that represents the
street network. As this graph in some areas still has a very large density of nodes
per area, we can decrease the size of the graph by sorting out unnecessary edges
for example edges that we really do not want to use for our routing because they

5. Conclusion 48

Algorithm 17: Sketch of an evolutionary algorithm to generate routes

1 Routes = get some initial routes, e.g. random Points Alg or Triangle Alg;
2 while time is not larger than predefined time do
3 for some actions do
4 routesToRecombine = take best + some random routes from

Routes;
5 combinedRoutes = recombine(some routes in routesToRecombine);
6 for route in combinedRoutes do
7 if RandomBool then
8 route = evolve(route);
9 end

10 newRoutes.add(route);

11 end
12 Routes = select best and some random routes from newRoutes;

13 end

14 end

have such a low attractiveness. We have to take care though that we can only
do this in parts of the graph that are connected good enough so that routing will
be still possible without those edges without any problems. We also can ask our
users if we can get anonymized data about the routes they actually run. With
this data, we can improve the street network graph, e.g. finding new edges that
we do not have in the graph yet due to faulty data or deleting edges that cannot
be used by pedestrians and that is only in our graph because of faulty data.
We also can adapt our measure of attractiveness according to the real running
behavior of the users. The attractiveness can also be improved further by adding
more influences of the surroundings of an edge. For example, information about
positive surroundings, like nature, a lake, forests but also negative surroundings
like close large streets with much traffic, that is not directly given for the edges
can be added. This can for example be done by calculating the attractiveness of
an area by taking all these things into account. Then, the edges in these areas
are adapted accordingly. We did some experiments with calculating such an area
score for traffic density but unfortunately did not have the time to implement it.

Bibliography

[1] Linggi, T.: On the fly! automatic running route generation. online at
disco.ethz.ch/theses.html (3 2016)

[2] Bentley, P.J., Wakefield, J.P. In: Finding Acceptable Solutions in the Pareto-
Optimal Range using Multiobjective Genetic Algorithms. Springer London,
London (1998) 231–240

[3] Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning.
Machine Learning 3(2) (1988) 95–99

[4] OpenStreetMap: Openstreetmap (2016)

[5] Rabus, B., Eineder, M., Roth, A., Bamler, R.: The shuttle radar topography
mission a new class of digital elevation models acquired by spaceborne radar.
{ISPRS} Journal of Photogrammetry and Remote Sensing 57(4) (2003) 241
– 262

[6] Apache: Apache tomcat (2016)

[7] Zadeh, L.: Fuzzy sets. Information and Control 8(3) (1965) 338 – 353

[8] Bäck, T., Fogel, D., Michalewicz, Z., eds.: Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing, Bristol
(2000)

49

	Abstract
	1 Introduction
	1.1 Related Work
	1.1.1 Optimization

	2 Theory
	2.1 Problem Statement
	2.2 Modeling the Street Network
	2.3 Optimizing the Length
	2.4 Optimizing the Attractiveness
	2.4.1 Maximizing the Attractiveness by Restriction to Few Important Edges

	2.5 Optimizing the Route with Two Weights
	2.6 Calculation of the Optimal Route
	2.7 Computation of a Locally Optimal Route
	2.8 Random Points Algorithm
	2.9 Shape of the Route
	2.10 Smoothing the Route
	2.11 Triangle Algorithm
	2.12 Dynamic Route Updating

	3 Implementation
	3.1 Client Side versus Server Side Computation
	3.2 Data
	3.3 Android Application
	3.4 Server

	4 Evaluation
	4.1 Performance Analysis
	4.2 Quality Analysis
	4.3 Summary
	4.4 User Feedback of the Application

	5 Conclusion
	5.1 Future Work

	Bibliography

