
Institut für
Technische Informatik und
Kommunikationsnetze

A Protocol Gateway for
the Internet of Things

Semester Thesis

Jonas Bächli

baechlij@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Felix Sutton
Romain Jacob

Prof. Dr. Lothar Thiele

June 10, 2016

mailto:Jonas B{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 a\egroup \spacefactor \accent@spacefactor }chli<baechlij@student.ethz.ch>

Acknowledgements

I would like to thank my supervisors Felix Sutton and Romain Jacob for the
excellent support, constructive criticism and late night emails.

In addition I would like to thank the Computer Engineering and Networks
Laboratory for the granted access to a personal workplace and the measurement
equipment.

And last but not least I want to thank Prof. Dr. Lothar Thiele and the De-
partment of Electrical Engineering and Information Technology at ETH Zürich
for giving me the opportunity to work on this thesis.

i

Abstract

The Internet of Things offers unique opportunities through the establishment
of connections between before unconnected devices. This thesis investigates the
feasibility of a protocol gateway which is able to connect the existing Low-power
Wireless Bus with a smartphone using Bluetooth Low Energy. Its implemen-
tation had to satisfy in terms of low power requirements as well as in terms of
bandwidth available. In order to develop this protocol gateway, suitable hard-
ware had to be selected. To implement its functionality in software, Bluetooth
Low Energy had to be explored while writing software on two platforms, on an
embedded System-on-Chip as well as on an Android smartphone, providing a
reliable connection for data transfers. In addition it involved a thorough eval-
uation, using the data obtained through measurements to derive a power state
model, making it possible to estimate the power consumption of a Bluetooth
Low Energy device by the means of its specifications. The developed system has
a deep sleep power consumption of only 4.29 µW, enabling it to be available for
over 600 days using a single coin cell.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 Selection of Hardware Components 3

2.1 System on Chip . 3

2.2 Processor Interconnect . 5

2.3 System Architecture . 7

3 Design and Implementation 8

3.1 Bluetooth Low Energy . 8

3.1.1 Overview . 8

3.1.2 Generic Access Profile Layer 10

3.1.3 GAP Configuration of the Protocol Gateway 10

3.1.4 Attribute Protocol Layer 11

3.1.5 Generic Attribute Profile 11

3.1.6 Recap and Actual Configuration 13

3.2 Embedded Software Design . 14

3.2.1 Low Power Management 16

3.2.2 Message Handling . 19

3.3 Android Software Architecture 20

3.4 Functional Behaviour . 22

3.4.1 Use Case 1 - IoT To Phone 22

3.4.2 Use Case 2 - Phone To IoT 22

iii

Contents iv

4 Experimental Evaluation 23

4.1 Power Analysis . 23

4.1.1 Experimental Setup . 23

4.1.2 BLE Advertising . 26

4.1.3 BLE Connecting . 28

4.1.4 BLE Connected . 29

4.1.5 Comparison of Power Consumption During Advertisement
and Connection . 31

4.1.6 Use Case 1 - IoT to Phone 32

4.1.7 Use Case 2 - Phone to IoT 33

4.2 Bandwidth Estimation . 34

4.3 Power State Model . 36

4.3.1 Derivation of the Model 38

4.3.2 Trade-offs . 38

4.3.3 Example . 41

5 Conclusions and Future Work 43

Bibliography 44

A Appendix A 1

A.1 Hardware Wiring . 1

B Appendix B 3

B.1 Embedded Source Code Organisation 3

B.2 Android Source Code Organisation 3

C Appendix C 4

C.1 Abbreviations . 4

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is not only a buzzword used by classical media
and social media alike, it is also challenge to overcome by means of electrical
engineering. The Internet of Things proclaims the idea of connecting everything,
be it a watch, a coffee machine, a home or a car, by establishing connections in-
between them, often by providing access to the internet, hence the name Internet
of Things. The promise made by the Internet of Things is the simplification and
optimisation of our lives; for example the electric car would warm up for its owner
and then drive itself in front of its owners home, because the coffee machine sent
information that the owner just had their second espresso and given the owners
usual pattern, they should leave the house in 3.4 minutes. The price to pay for
this luxury is the data provided by us, which, given the right algorithms may
reveal more than what we are comfortable with, but this matter shall not be the
subject of this thesis.

In order to enable devices to access each other, they first have to be connected
to a suitable network which may have limitations depending on their environ-
ment as well as their requirements. While this network might be a common
network, such as an Ethernet network or a WLAN of the IEEE 802.11 range,
which could provide direct access to the internet, it may very well also be a net-
work which is using a different protocol. In order to connect such a network to
other networks and/or devices, one would use so called protocol gateways, which
basically translate data from one protocol to another.

An example for a network using an uncommon protocol would be devices
connected together with the Low-power Wireless Bus [2] (LWB), a communi-
cation protocol which makes use of constructive interference, turning a wireless
multi-hop network into a wireless bus.

The goal of this thesis was to develop and evaluate a protocol gateway for the
Low-Power Wireless Bus, establishing a connection to a smartphone, as shown
in fig. 1.1. It needs to have fairly low power requirements, suitable for use to-

1

1. Introduction 2

IoT
Low-Power Wireless Bus Protocol Gateway Smartphone

Figure 1.1: Protocol gateways enable new data transfer opportunities.

gether with the LWB and IoT in general. Bandwidth wise it should provide
reliable moderate to low data rate. Intended applications include the use as a
debugging interface in the field, for example in a LWB sniffer unit. The terms
Low-power Wireless Bus (LWB) and Internet of Things (IoT) are used inter-
changeably throughout this thesis.

Due to the low power requirements of both the Low-power Wireless Bus
as well as the Internet of Things in general it was necessary to find a suitable
communication interface. Since all recent smartphones support Bluetooth Low
Energy, this was the technology of choice. It was therefore necessary to find a
platform which was BLE capable and could connect to the LWB.

1.2 Contributions

The contributions provided in this thesis can be summarised as follows:

• Establishing a suitable hardware architecture to form the proposed protocol
gateway

• Selection of a BLE development platform

• The design and implementation of the system, spanning two platforms, a
SoC on one side and an Android smartphone on the other

• An investigation of Bluetooth Low Energy, explaining relevant aspects for
this thesis

• Evaluation, consisting of the following contributions:

– The power analysis, the capture and interpretation of power traces

– An estimation of the achievable bandwidth

– The derivation of a power state model based on the obtained data,
allowing the estimation of power consumption of a BLE device for
given specifications

Chapter 2

Selection of Hardware
Components

This chapter illustrates how the hardware components have been evaluated and
selected, forming the system architecture of the protocol gateway.

2.1 System on Chip

In order to select a suitable commercially available BLE development board, we
narrowed the search space by considering the following criteria:

• Software support

• Available peripherals

• Availability of examples for both the embedded as well as the Android
platform

• Availability at distributors

• Price

After investigating the commercial products, specifically the CC2650 Launch-
pad by Texas Instruments, the BLE Pioneer Kit CY8CKIT-042-BLE by Cypress
as well as the Multi-Sensor Development kit A20737A-MSDK1 by Anaren, we
selected the Cypress BLE Pioneer Kit because of the capable and free IDE and
the additionally included components.

The kit features two devices: a Cypress PSoC (Programmable System-on-
Chip) 4 BLE and a Cypress PRoC (Programmable Radio-on-Chip) BLE device.
The difference between the PSoC 4 BLE and the PRoC BLE lies in the additional
analog front end included in the PSoC 4 BLE device, containing additional low-
power opamps, low-power comparators and DACs. Since there was no use for

3

2. Selection of Hardware Components 4

those components in this project, the decision was made to use the PRoC BLE
module for this project, shown in fig. 2.1.

Figure 2.1: Photo of the PRoC BLE module by Cypress.

The PRoC BLE device is the CYBL10563 chip which provides the following
features, as shown in fig. 2.2

• A 32-bit, 48 MHz ARM Cortex-M0 CPU Core

• A BLE Subsystem (BLESS) consisting of a hardware block and a propri-
etary software protocol stack

• 128KB flash

• 16KB SRAM

• Ultra-Low-Power support, including a 1.3-µA Deep-Sleep mode

• Two serial communication blocks (SCBs) which may be configured as I2C,
SPI or UART

• CapSense

• and more features

The commercial kit further included the baseboard, which serves as a pro-
grammer and a pin breakout as well as a BLE capable USB dongle with an
additional programmable PRoC device on it. In combination with the Cypress
software CySmart this USB dongle can be utilised to debug BLE devices.

Something notable about the PRoC and PSoC devices is that they offer
extensive hardware customisation through programming it with a bitstream file,
similar to what is known from CPLDs and FPGAs. With the PRoC BLE we used
a lower end device, which is not as capable as the higher tier devices (even though

2. Selection of Hardware Components 5

ARM
Cortex-M0

SWD

NVIC
Flash

128 kB
RAM
16 kb

ROM
8 kb

CONFIG
512 B

System Interconnect

Clock Control

LVD BOD

IMO ILO

WDTXRES

Link Layer
Engine

RF PHY

ECO

WCO

Pe
ri

p
h
e
ra

l
In

te
rc

o
n
n
e
ct

12-bit
SAR ADC

CSD

4x TCPWM

I2S LCD

4x PWM

SCB0
I2C/UART/SPI

SCB0
I2C/UART/SPI

System Resources BLE Subsystem

CPU Subsystem

Figure 2.2: System architecture of the CYBL10563 by Cypress.[7]

one is, for example, still able to directly connect an input pin to an output pin in
hardware without having to write a single line of code). The higher tier devices
allow further configuration with predefined logic gates and extended components,
even the possibility of writing custom components in Verilog.

2.2 Processor Interconnect

To connect the PRoC BLE to the Low-power Wireless Bus, we decided to use
an existing platform tailored specifically for this application: BOLT.

The BOLT platform is designed explicitly for low power applications such as
the Low-power Wireless Bus. As depicted in fig. 2.3, it enables the exchange
of messages between two processors while decoupling them in terms of time,
power and clock domains. This makes it possible to design the two systems
without having to setup synchronisation between them. At the same time, the

2. Selection of Hardware Components 6

CONTROL

BOLT

Non-volatile Memory

. . .

...

Receive
Buffer

. . .

Tasks

B
O
L
T
A
P
I

Message Controller

DATA

CONTROL

DATA

Processor (A)
Receive
Buffer

. . .

Tasks

Processor (C)

B
O
L
T
A
P
I

Figure 2.3: Overview of the BOLT architecture.

power overhead of BOLT is neglectable compared to the power used by the main
processor, as shown in [9].

The communication interface consists of a three wire SPI bus (clock, MISO
(master in, slave out) and MOSI line (master out, slave in)), a very common
peripheral available in most MCUs, as well as four control lines. Figure 2.4
shows the sequence of the two operations provided by BOLT. The connecting
processors (referred to as ’Processor (A)’ or ’Processor (C)’ in fig. 2.3) have to
drive the lines marked by the dashed circles, while BOLT drives the lines marked
with the solid circles. R/W , REQ, ACK and IND hereby are the control lines,
while DATA represents the SPI bus.

Read Message

REQ

ACK

DATA
Write Message

REQ

ACK

DATA

IND

R/WR/W 1

2

3

4

5

6

72

3

4

5

7

1

Read OperationWrite Operation

IND
6

Figure 2.4: Figure showing the signal sequences for the BOLT operations Write
and Read.

2. Selection of Hardware Components 7

2.3 System Architecture

The selection of those components lead to the development of the following sys-
tem architecture, used throughout this thesis and depicted in fig. 2.5.

Bluetooth
Low Energy

USB BOLT
Adapter

BOLT
IoT
PC

Figure 2.5: System architecture of the protocol gateway.

The use of the BOLT platforms makes it easy to use a PC to emulate the Low-
power Wireless Bus. The device used in this project is the existing USB BOLT
adapter. In detail, the system architecture consists of the following components:

• A PC running a serial console, emulating the Low-power Wireless Bus.

• The USB to BOLT adapter board. This component features an FTDI
FT232R for a virtual COM port as well as a Texas Instruments MSP430
which provides a simple console to a connected PC and an UART to BOLT
converter. It is powered over USB. This board enables the PC mentioned
above to serve as a LWB replacement by providing a way data can be
written to and read from the system.

• The BOLT platform. It is powered by the 3.3V rail of the Cypress devel-
opment board.

• The Bluetooth Low Energy platform, consisting of two components:

– The PRoC BLE module which hosts the MCU and the BLE subsys-
tem.

– The Cypress Pioneer Board which provides the programmer/debugger,
power rails and breaks out the pins of the PRoC BLE module.

• And finally a Nexus 6 running Android 6.0.1 and a custom BLE app.

Chapter 3

Design and Implementation

This chapter explains the components involved to form the final product as pic-
tured in fig. 3.1. It goes over the most relevant features of Bluetooth Low Energy,
shows the design of the software and finally defines the resulting functional be-
haviour of the protocol gateway.

Figure 3.1: Photo of the final implementation.

3.1 Bluetooth Low Energy

3.1.1 Overview

Bluetooth Low Energy (BLE), also known as Bluetooth Smart, is a low-power,
low-range, low-data-rate wireless personal area network defined by the Bluetooth

8

3. Design and Implementation 9

Special Interest Group. It was first developed at Nokia under the name Wibree in
2006 before being integrated into version 4.0 of the Bluetooth Core Specification
in 2010 [1].

Logical Link Control And Adaption Protocol (L2CAP)

Host Control Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

User Applications

Attribute Protocol (ATT) Security Manager (SM)

C
o
n
tr

o
lle

r
H

o
st

Figure 3.2: The BLE Stack [6]

As shown in fig. 3.2, the BLE stack consists of the following layers:

• The 2.4 GHz RF Physical Layer (PHY) with a 1-Mbps data rate.

• The Link Layer (LL) that defines the timing and the packet format for the
PHY.

• The Host Control Interface (HCI) which provides an interface for the hard-
ware control layer and the firmware host layer.

• The Logical Link Control and Adaptation Protocol (L2CAP) assembles
and disassembles incoming and outgoing packets while providing data mul-
tiplexing and QoS for higher layers.

• The Attribute Protocol Layer (ATT) which defines how application data
can be accessed with the use of a client-server protocol.

• The Security Manager (SM) provides encryption options for BLE data.

• The Generic Attribute Profile (GATT) provides the actual application data
based on the ATT layer.

• The Generic Access Profile (GAP) controls connections and visibility of
the device.

In the following three subsections we provide a more detailed explanation of
the GAP, the ATT, and GATT layer, since those layers define the overall be-
haviour of a BLE device and introduce the functionality used by the application.

3. Design and Implementation 10

3.1.2 Generic Access Profile Layer

The configuration of the GAP layer defines the properties of a BLE device in
terms of discoverability, link management and connectivity to other devices. It
can be configured to one of four defined roles:

Peripheral

This is a passive role where the device sends periodic advertisement packets. It
can be discovered by a central device which is then able to establish a connection
from the central to the peripheral device, forming a physical link. On the link
layer the peripheral device is then a slave of the central device which acts as the
master. The peripheral device is not capable of more than one connection.

Central

This is the active counterpart to the peripheral role. The BLE device scans for
advertisement packets of peripheral devices. It can then establish a connection
to the peripheral device and operates as the master of the link. Contrary to a
peripheral device, a central device is capable of having multiple connections with
different peripheral devices at once.

Broadcaster

There is also a connection-less data transmission model in BLE. Contrary to the
the connection-bound model, it is the active BLE device sending advertisement
packets containing a small (up to 31 bytes) payload to be received by observer
devices.

Observer

This is the counterpart of the broadcaster role. The BLE device is listening for
advertisement packets which contain the data payloads.

3.1.3 GAP Configuration of the Protocol Gateway

The peripheral/central configuration forms a reliable link between two connected
BLE devices, while the broadcaster/observer configuration provides a simple way
of sending data from one BLE device to many others without the need for a con-
nection between the involved devices. However, those data transfers are limited
in size (max. 31 bytes) and there is no guarantee of reception. The fact that the
potential size of the incoming messages (BOLT supports messages with a size up

3. Design and Implementation 11

to 128 bytes) massively excels the capabilities of the Broadcaster/Observer con-
figuration, as well as the missing guarantees of delivery mark this configuration
as unsuitable for the given application.

Hence we decided in favour of the peripheral/central scheme, since supported
message size and the reliability heavily outweigh the drawbacks of having to
establish a connection between two BLE devices as well as the limitation of the
1-to-1 connection.

In the design of the protocol gateway the PRoC BLE is the peripheral device.
It sends periodic advertisement packet to be received by the smartphone, which
acts as the central device, scanning for the advertisement packets of the PRoC
and establishing the user-initiated connection.

3.1.4 Attribute Protocol Layer

In BLE, data is organised in so called attributes. They consist of the following:

• The Attribute Type, a 16-bit, 32-bit or 128bit UUID which defines the
type of data the attribute contains. The Bluetooth SIG provides a list of
preassigned UUIDs, but it is also possible to use 128-bit custom UUIDs.

• The Attribute Handle, a 16-bit address which provides access to the at-
tribute.

• The Attribute Value, the actual payload of an attribute with a (optionally
variable) size between 0 and 512 bytes.

• The Attribute Permission defines access, authentication, and authorisation
requirements. Those are managed by higher layers.

This layer implements a peer-to-peer protocol between an attribute server
and an attribute client. The ATT client can send commands, request and con-
firmation to an ATT server which sends responses, notifications and indications
back to the client.

The maximum size of the attribute values a device is able to support is called
the Maximum Transmission Size or MTU. The ATT layer itself uses up to 3 bytes
for additional information like the operation code. If an attribute is too large
to fit into one lower level package, it is automatically split into several packets,
transparent to the upper layers.

3.1.5 Generic Attribute Profile

The GATT layer is closely linked to the ATT layer and provides the actual
functionality of the server using attributes. They have the following organisation:

3. Design and Implementation 12

• Characteristics are a collection of attributes providing access to data. They
consist of the following attributes:

– Characteristic Declaration Attribute marks the beginning of a char-
acteristic.

– Characteristic Value Attribute contains the data. Those first two
attributes are mandatory.

– Characteristic Descriptor Attributes: There might be one or multiple
attributes with additional information about the characteristic, such
as the unit, a value range or an option to turn on notifications or
indications.

• Services are a collection of characteristics and/or other services. They
provide a way of ensuring hierarchy and grouping. There exist two types
of services, primary and secondary services. The primary services provide
access to the main functionality of a device while secondary services provide
additional data, such as the battery level.

• And finally the so-called profiles represent a collection of services required
for a certain application.

To access the data, Bluetooth Low Energy defines a client/server relationship
based upon the ATT layer. A device either operates as a GATT server (providing
the data) or as a GATT client (requesting data). After connecting to a server, the
client first issues a service discovery, to which in response it receives the provided
profiles, services, characteristics, and attributes. From this point on, the client is
able to exchange data by sending requests to the previously discovered attributes
on the server. Some of the more common request types are the read and the
write request. Furthermore, BLE supports so called notifications and indications.
Those message types enable the GATT server to push data to the GATT client.
The difference between notifications and indications is that notifications do not
require a response, making them faster and cheaper but less reliable.

Figure 3.3: A screenshot of the configuration used for the PRoC BLE device.

3. Design and Implementation 13

3.1.6 Recap and Actual Configuration

A visual representation of the two involved devices is shown in fig. 3.4. As
discussed earlier, the Cypress PRoC BLE is configured as the peripheral device
while the smartphone is configured as the central device. The PRoC hosts the
GATT server, publishing the custom BOLT profile [4], containing some generic
services which contain data such as the name of the device or its appearance as
well as the BOLT service (please refer to fig. 3.3 for the exact configuration).
The smartphone, which acts as the GATT client, can then connect to the server
on the PRoC, accessing and manipulating its data.

Below is a sequence diagram showing typical message sequences.

Cypress PRoC BLE

Peripheral Role

GATT Server
B

O
LT

 P
ro

fi
le

B
O

LT
S
e
rv

ic
e

BOLT Characteristic

Generic Attribute Service

Generic Access Service

Android Smartphone

Central Role

GATT Client

B
O

LT
 P

ro
fi
le

B
O

LT
S

e
rv

ic
e

BOLT Characteristic

Generic Attribute Service

Generic Access Service

Periodic Advertisement Packets

Advertisement Packet

Responds with Connection Request

Accepts Connection Request

Enters Service Discovery Routine

Upon Completion: Connected

Exchange of Periodic Packets

Read Request

Read Response

Write Request

Write Response

Notify

Periodic Advertisement Packets

Disconnect

Advertising

Connecting

Connected

Disconnect

Advertising

Figure 3.4: This figure shows the configuration of both the PRoC BLE device
and the smartphone and shows a sequence of typical messages.

3. Design and Implementation 14

3.2 Embedded Software Design

This section explains the design of the embedded software und highlights some
of the decisions made during development. To develop the software, the PSoC
Creator was used, a free IDE provided by Cypress, providing the ability to
configure, program, and debug the firmware.

The embedded software had to provide the following features:

• Ensure that the BLE device is discoverable by central devices while not
connected.

• Accept incoming BLE connections and issue a connection parameter up-
date request in order to make sure the connection parameters are suitable
for low power operation.

• Provide the structure to transmit, receive and handle BLE data.

• Provide the structure to transmit, receive and handle BOLT data.

• Enable transfer in between the BLE and the BOLT component.

Bluetooth
Low Energy

USB BOLT
Adapter

BOLT
IoT
PC

Use case 1: Transfer Data from the IoT to the Smartphone

Use case 2: Transfer Data from the Smartphone to the IoT

Figure 3.5: Use cases describing the functionality of the protocol gateway.

Furthermore, there exist two obvious use cases, illustrated in fig. 3.5, which
are referenced throughout this thesis:

Use case 1 enables the transfer of data from the Internet of Things, in this
case the Low-power Wireless Bus to the smartphone, involving the BOLT plat-
form and the BLE component.

Use case 2 is the exact opposite of Use case 1, defining the transfer of data
from the smartphone to the Low-power Wireless Bus.

Those requirements lead to the development of the two major components,
the BLE application and the BOLT application, being glued together in the main
loop, as explained below.

3. Design and Implementation 15

Figure 3.6 shows the flow of the designed embedded system. The following
paragraphs will describe each point in further detail.

Process BLE Events

BOLT Write

BOLT Read

Set BLE Buffer

Handle Low Power Modes

Power On

BOLT Init

BLE Init

BLE Data

Available

BOLT Data

Available

Yes

No

Yes

No

Main Loop

Initialisation

Figure 3.6: Diagram showing the embedded system control flow.

The Initialisation consists of the following blocks:

On Power On, the PRoC first runs through the proprietary setup code pro-
vided by Cypress which initialises the stack, the heap, the pin routing and similar
components as configured in the IDE PSoC Creator by Cypress. This is where
the software jumps to the user defined main function, containing user initialisa-
tion code as well as the main loop, running the actual application.

BOLT Init initialises the BOLT component. While this includes initialising
the SPI component, the GPIO components have already been initialised during
the first code segment provided by Cypress. Therefore, we only have to put

3. Design and Implementation 16

the SPI and GPIO components into their low power state as well as to set the
internal state of the BOLT application. It is notable that the BOLT component
manages its sleep state on its own, since it is heavily dependent on its current
inner state[3].

BLE Init initialises the proprietary BLE software protocol stack and registers
the callback BoltBleApp eventHandler through which the BLE stack connects to
the application, informing it of certain events and allowing the firmware to take
action if required.

After Initialisation the application enters the Main Loop:

Process BLE Events calls the CyBle ProcessEvents function to enter the pro-
prietary software protocol stack. This function manages the BLE subsystem
hardware block and the BLE software stack depending on its internal states.
The BLE stack informs the firmware of certain events by calling the Bolt-
BleApp eventHandler. Those events include events such as the connection /
disconnection of a central device, the reception of GATT requests and error
states. If data is received by the BLE component, it is copied to a buffer and a
flag is set.

BLE Data Available checks for the flag set by the Process BLE Events. If it
is set, it copies the buffer to the BOLT component and initiates a BOLT Write
sequence (see section 2.2). This corresponds to use case 2, as defined in fig. 3.5.

BOLT Data Available checks for pending BOLT data by reading the IND line
(refer to section 2.2 for details). If data is available, a BOLT Read sequence is
performed and upon success the data is stored in a buffer and forwarded to the
BLE component with Set BLE Buffer. The BLE component then takes care of
making this data available for read request of an ATT client and if notifications
are enabled, it also prepares the notification for the next connection interval.
This corresponds to use case 1, as defined in fig. 3.5.

Handle Low Power Mode finally puts the system to the lowest power mode
currently available as discussed in the subsection below.

3.2.1 Low Power Management

This subsection introduces the power modes supported by the PRoC BLE device.
Please note that the MCU and the BLE subsystem each have their own power
modes.

MCU Low Power Modes

Figure 3.7 represents the 5 power modes supported by the MCU. Due to the
long wakeup time, the power modes Hibernate and Stop are irrelevant for this
project. Therefore, the remaining power modes are Active, Sleep and Deep Sleep.

3. Design and Implementation 17

Power
Mode

Current
Consump-
tion

Code
Ex-
ecu-
tion

Digital
Periph-
erals
Available

Clock
Sources
Available

Wake
Up
Sources

Wake
Up
Time

Active
850 µA +
260 µA per
MHz

Yes All All - -

Sleep
1.1 mA at 3
MHz

No All All
Any in-
terrupt
source

0

Deep
Sleep

1.3 µA No

WDT,
LCD,
I2C/SPI,
Link-Layer

WCO, ILO

GPIO,
WDT,
I2C/SPI,
Link
Layer

25 µs

Hiber-
nate

150 nA No No No GPIO 2 ms

Stop 60 nA No No No
Wake-
Up pin,
XRES

2 ms

Figure 3.7: MCU low power modes as described in the user manual [5] by Cy-
press.

If it were not for the BLE subsystem, the Sleep mode would not be required.
However the BLESS does not allow the MCU to go to deep sleep for every internal
state. This means that the MCU has to choose the lowest possible power state
depending on the current internal state of the BLESS.

BLE Subsystem Low Power Modes

As shown in [5] the BLE subsystem comes with its own low power modes. Even
though the table is quite overwhelming at the beginning, one can reduce the
table to the following:

1. The BLESS supports 3 different low power modes: Active, Sleep and Deep
Sleep. Each of those low power modes is linked to some of the internal
states of the BLESS.

2. There is only one internal state which requires the MCU to be in the Active
power mode.

3. Design and Implementation 18

3. There are two internal states where the MCU is allowed to go to Deep
Sleep, one of those is the Deep Sleep state itself.

4. Every other internal state allows the MCU to go to Sleep, although not
into Deep Sleep.

This means, that the active / deep sleep interval of the MCU is disturbed by
some intervals where it is only allowed to go to sleep. It is also notable, that the
MCU is allowed to go to sleep during active intervals of the BLESS where either
the transmitter or the receiver is active.

Implementation of the Low Power Modes

Try to Put BLESS to Deep Sleep

BLESS in
Deep Sleep

BLESS Internal State
ECO_ON or
DEEPSLEEP

Sleep

On Wake Up Event

Deep Sleep

On Wake Up Event

BLESS Internal State
not EVENT_CLOSE

Sleep

On Wake Up Event

From Main Loop

Back To Main Loop

Yes

No

Yes

No

Yes

No

Figure 3.8: Diagram showing the low power mode control flow.

Given the facts presented in the last two sub-subsections, it is now clear that
the low power mode of the MCU depends on the low power mode of the BLESS.
As shown in fig. 3.8, the firmware first tries to put the BLESS into deep sleep. If
that succeeds (depending on the current internal state of the BLESS), the MCU
then has to decide whether it is allowed to go to deep sleep or if sleep is the
lowest allowed low power mode. In case the MCU was unable to put the BLESS
into deep sleep, it checks if the internal state of the BLESS is the one internal
BLESS state prohibiting the sleep mode of the MCU. If so, the function returns
back to the main loop, otherwise the MCU goes to sleep. If the MCU is able to

3. Design and Implementation 19

go to sleep or even deep sleep, with the current setup the only wake up event is
the BLE interrupt.

3.2.2 Message Handling

Advertising

Connecting

Disconnect

Advertising

Connected

BLE
Central
Device

BLE
Peripheral

Device

Low-power
Wireless

Bus

Advertisement

Advertisement

Connect

Discover Attributes

Enable Notify

Data Write
Notify

Data Write

Write Response Data Write

Disconnect

Advertisement

Advertisement

Use Case 2

Use Case 1

Figure 3.9: Sequence diagram of messages between the central device, peripheral
device and the Low-power Wireless Bus.

The sequence diagram depicted in fig. 3.9 shows the most important messages
in the system during a typical user interaction. We differentiate between 4
states and transitions: Advertising, Connecting, Connected, and Disconnect. The
following paragraphs will discuss further details.

During Advertising, the peripheral device periodically transmits advertise-
ment packets, unaware whether or not another device is receiving them.

When a central device receives an advertisement packet sent by the periph-
eral device, it has the opportunity to respond immediately after receiving the
advertisement packet with a connection request. This has to be done 150 ns (the
Interframe-Space (IFS) defined by the BLE specifications) after the reception
of an advertisement packet, since this is the only period the peripheral device
is listening for incoming transmissions. The connection request aims at the es-
tablishment of a connection, starting the Connecting sequence. The peripheral
device may choose to accept or decline this request. If the connection attempt

3. Design and Implementation 20

is successful on the link layer, the upper layers also start their respective con-
nection routines. On the ATT/GATT layer, this means that the client on the
central device initiates the service discovery routine to discover the GATT profile
published by the server on the peripheral device. As a final step, the client sends
a request to the server to set the notify enable flag for the data of interest, in
this case the BOLT characteristic.

While two BLE devices are Connected, they exchange periodic packets to
keep up the link, even if no data needs to be transferred. During this state, the
two use cases come into play. Use case 1 starts with data arriving at the Low-
power Wireless Bus, which is then written to the BOLT platform. Then the Main
Loop (as defined in fig. 3.6) checks for and reads the BOLT data and transfers
it as a BLE notification to the smartphone, where it is received an displayed.
Use case 2 starts with the user entering data on the smartphone, which then
transmits this data to the connected peripheral device. The peripheral device
receives said data, confirms the reception with a write response to the phone and
writes the data to BOLT. The LWB component may now access this data from
BOLT, whenever convenient.

3.3 Android Software Architecture

In order for the user to be able to access the data captured on the Low-power
Wireless Bus and transferred to the smartphone by means of the protocol gate-
way, a user interface is required. This user interface should enable the user to
discover BLE devices, connect and disconnect from them, as well as the ability
to display and enter data exchanged with the PRoC BLE device.

To develop and debug the Android app, the software suite Android Studio
was used. The Android app is based on the BLE Example App provided within
Android Studio, expanded with some custom code and constants. Out of the
box, the example is able to discover BLE devices and display them in a list.
The connection can then be established by clicking the appropriate item in the
list. This initiates the service discovery routine, so the client on the smartphone
fetches the services published on the server on the PRoC BLE. The discovered
services are then displayed on screen as shown in fig. 3.10. Clicking on a char-
acteristic reads said value and sets the notify flag on the PRoC BLE server, so
updates are pushed from the PRoC BLE to the smartphone immediately. Data
can be entered by pressing the ’Terminal’ button, which opens a dialog through
which text can be entered and then be sent to the PRoC BLE.

3. Design and Implementation 21

Figure 3.10: A screenshot of the Android app. One can see the received message
as well as the discovered services.

3. Design and Implementation 22

3.4 Functional Behaviour

This subsection shows how the current implementation works. It covers the two
use cases but leaves out the IoT, starting direct at the BOLT platform.

3.4.1 Use Case 1 - IoT To Phone

After reading data from BOLT, the peripheral device forwards this data to the
BLE-Tx-Buffer and prepares the data to be transferred over BLE. Upon recep-
tion by the smartphone app, the data is then displayed to the user. While the
BOLT platform is currently configured to a packet size of 48 bytes, it is designed
for a maximal packet size of 128 bytes [9]. The tests which included BOLT used
its maximum supported message size of 48 bytes, while there were separate tests
conducted, using only the BLE connection with message sizes up to 128 bytes.

3.4.2 Use Case 2 - Phone To IoT

Sending data from the phone to the peripheral device is also a straightforward
data transfer. However, the SPI component used in the PRoC BLE has a ten-
dency to cut off/scramble the last one or two bits of a transmission. Therefore
we decided to add 2 additional bytes: One at the beginning of the message con-
taining the amount of bytes of the message (without the additional bytes) and
one at the end to guarantee the correct transmission of the message. That means
the receiver is always able to read the full message, is aware of its size and can
get rid of additional, possibly scrambled bytes.

Chapter 4

Experimental Evaluation

This chapter illustrates the experimental setup used for the evaluation, discusses
and interprets the results obtained in order to finally conclude whether or not
the requirements in terms of low power consumption and sufficient bandwidth
are met.

4.1 Power Analysis

4.1.1 Experimental Setup

Figure 4.1: The experimental setup for the measurements.

23

4. Experimental Evaluation 24

To log the current the Agilent N6705A DC Power Analyser was used. Addi-
tionally the Saleae Logic 8 logic analyser was used to log further data:

• BOLT REQ line

• BOLT ACK line

• BOLT IND line

• BOLT SCLK line

• BLE INT (goes high when entering the BLESS interrupt service routine,
low when leaving it)

• Sleep (High when the MCU is in sleep)

• Deep Sleep (High when the MCU is in deep sleep)

For convenience there are also 2 additional signals generated from the logged
data as explained below:

• BOLT Active is defined as ’(BOLT REQ or BOLT ACK or BOLT SCLK)’

• MCU Active is defined as ’not (Sleep or Deep Sleep)’

4. Experimental Evaluation 25

The use of the logic analyser made it possible to later on match the traces
produced by the power analyser and the logic analyser, giving insight to the
inner workings of the system.

1

1

1

A
d
v
e
rt

si
n
g

C
o
n
n
e
ct

in
g

D
is

co
n
n
e
ct

in
g

Advertsing
Time [s]

0 5 10 15 20 25 30

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [s]

0 5 10 15 20 25 30

0

0

0

BOLT Active
BLE INT
MCU Active

Connected

Use
Case 1

Use
Case 2

Figure 4.2: A full power trace: From advertising, connecting to a device, ex-
changing messages, disconnecting and back to advertising.

Figure 4.2 shows a trace of every possible state of the system. You can
see the power profile on top as well as the logic lines below. The first spike
is an advertisement event. Then the central device establishes the connection
and discovers the services of the GATT server on the peripheral device. This
triggers the peripheral device to issue a connection parameter update request to
the link master, which increases the connection interval to save power. There are
2 BOLT transmissions representing the two use cases, each containing 8 bytes.
Afterwards, the smartphone disconnects and the peripheral device goes back to
advertising.

During normal operation the deep sleep current was measured at 1.3µA.
However, due to the use of the additional GPIOs for the logic analyser, the
deep sleep current went up to 4.5µA during the measurements. However, the
1.3µA measured before was used during calculations, as it was a well established
number at that point.

4. Experimental Evaluation 26

4.1.2 BLE Advertising

When the peripheral device is in the advertisement state, it periodically trans-
mits one to three advertisement packets. Each BLE activity including one or
more advertising packets is called an Advertising Event. There are 3 advertise-
ment channels used in BLE (channels 37 through 39). During the advertisement
event one packet is sent to each channel, however, it is possible to disable the
transmission for one or two channels. Optionally, the device listens for a scan
request after each transmission, issued by a device which received the advertise-
ment packet and would like to receive more data, not included within the original
advertisement packet. If the peripheral device receives a scan request, it would
respond directly afterwards with the scan response. The peripheral device is
configured to have an advertisement interval of 3 seconds. During deep sleep the
BLESS clock is driven by the WCO (watch crystal oscillator) which is used to
generate timer interrupts. The intervals depend on the current state the device
operates in.

In Figure 4.3 we can see the power profile during one advertisement event.
We can observe the following sequence:

1. At t=0ms the system is in deep sleep.

2. A BLESS interrupt wakes up the system and turns on the external crystal
oscillator (ECO), then goes back to deep sleep.

3. When the ECO reaches a stable amplitude, it fires a second interrupt. The
device has to wait for the ECO frequency to stabilise. The system goes to
sleep.

4. When the ECO has a stable frequency, it changes the BLESS clock from
the WCO to the now stable ECO, wakes the BLESS link layer from deep
sleep, and generates another interrupt.

5. The CPU wakes up and the BLESS enters active mode. If there is no pro-
cessing required, the CPU can go back to sleep until the BLESS operation
completes.

6. The actual transmission consisting of

(a) The transmission of the advertisement packet itself, on channels 37,
38 and 39.

(b) A waiting period: the Inter-Frame Space, a time interval of 150 µs
to allow the RF component to reconfigure between transmission and
receiving.

(c) The peripheral device listens for a packet of a peer device. If it times
out it stops listening.

4. Experimental Evaluation 27

(d) The interval between advertisement packets is called Inter channel
delay which is defined as 1.25ms.

7. After the last transmission sequence the BLESS generates an end-of-event
interrupt to wake the CPU which can then process event-specific or app-
specific requests. After this processing period, the CPU changes the BLESS
clock source back to WCO and puts the BLESS back to deep sleep.

8. The last interrupt signalises that the BLESS is now in deep sleep and the
CPU can now also safely go to deep sleep.

The duration of this advertising event was 7.414 ms and it used 23.921 mW
of power.

Time [ms]
0 1 2 3 4 5 6 7 8

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [ms]
0 1 2 3 4 5 6 7 8

BLE INT
Sleep
Deep Sleep

1 2 7 8

53

4 6.a

6.b

6.c

6.d

6.a

6.b

6.c

6.d

6.a

6.b

6.c

Figure 4.3: Power profile of one advertising event.

4. Experimental Evaluation 28

4.1.3 BLE Connecting

Figure 4.4 shows the transition from the advertising state to the connected state.
First the central device responds to an advertisement packet with a connection
request which contains all the required data to establish a connection (1). Af-
terwards, one can see the GATT service discovery routine (2) which fetches the
available profiles, services and characteristics. When the GATT service discov-
ery routine has finished, the peripheral device requests a connection parameter
update (3) from the central device to increase the connection interval to 200ms
(from 50ms as propagated by the central device). Then the connection is kept
until either the central or the peripheral device initiate a disconnect (4).

Time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

BLE INT
MCU Active

1 2 3 4

Figure 4.4: The power trace of a connection establishment

4. Experimental Evaluation 29

4.1.4 BLE Connected

A connection for data transfer is established between a central device (master
at the link layer) and a peripheral device (slave at the link layer). Each of those
packet exchanges is called a Connection Event. The central device initiates
each periodic connection event by a transmission. Afterwards the devices may
alternately transmit packets until they stop the exchange or the limit of allowed
transmissions (for example due to either the capabilities of the device or the
beginning of the next connection event) is reached and then close the connection
event.

Figure 4.5 shows the power profile during one connection event. We can
observe the following sequence (similar to the advertisement sequence):

1. At t=0ms the system is in deep sleep.

2. A BLESS interrupt wakes up the system and turns on the ECO, then goes
back to deep sleep.

3. When the ECO reaches a stable amplitude, it fires a second interrupt. The
device has to wait for the ECO frequency to stabilise. The system goes to
sleep.

4. When the ECO has a stable frequency, it changes the BLESS clock from
the WCO to the now stable ECO, wakes the BLESS link layer from deep
sleep, and generates another interrupt.

5. The CPU wakes up and the BLESS enters active mode. If there is no pro-
cessing required, the CPU can go back to sleep until the BLESS operation
completes.

6. The actual packet exchange consists of the following:

(a) The peripheral device listens for a packet sent by the central device.

(b) After receiving a packet, it waits for 150µs, the so called inter-frame
space.

(c) The peripheral device can then send its own response packet.

7. After the last transmission sequence the BLESS generates an end-of-event
interrupt to wake the CPU which can then process event-specific or app-
specific requests. After this processing period, the CPU changes the BLESS
clock source back to WCO and puts the BLESS back to deep sleep.

8. The last interrupt signalises that the BLESS is now in deep sleep and the
CPU can now also safely go to deep sleep.

The duration of this connection event was 4.301 ms and it used 18.41 mW of
power.

4. Experimental Evaluation 30

Time [ms]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [ms]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

BLE INT
Sleep
Deep Sleep

1 2 3 5 6.a 6.b 6.c 7 84

Figure 4.5: Power profile displaying one connection event.

4. Experimental Evaluation 31

4.1.5 Comparison of Power Consumption During Advertisement
and Connection

As shown in fig. 4.6, the average power during advertisement is higher than
the power during the connection event. This is because there are three packets
transmitted during an advertising event, whereas it is only one packet during
a connection event. This is compensated by the fact that the time between
two advertisement events is usually much longer that the time between two
connection events.

Tx Power [dBm]
-18 -6 -3 0 3

A
ve

ra
ge

 P
ow

er
 [m

W
]

0

5

10

15

20

25

30
Advertising

Tx Power [dBm]
-18 -6 -3 0 3

A
ve

ra
ge

 P
ow

er
 [m

W
]

0

5

10

15

20

25

30
Connected

Figure 4.6: Average power for one advertisement respectively one connection
event versus the set Tx Power.

4. Experimental Evaluation 32

4.1.6 Use Case 1 - IoT to Phone

Time [ms]
0 0.5 1 1.5 2 2.5 3 3.5 4

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [ms]
0 0.5 1 1.5 2 2.5 3 3.5 4

BOLT Active
BLE INT
MCU Active

1

2 3

Figure 4.7: Close up of a connection event depicting use case 1.

Figure 4.7 shows the power trace of a connection event where data is being
read from BOLT and then sent to the smartphone. When this trace is compared
to the trace depicted in fig. 4.5, the similarities are obvious, even though there
are a few small differences. In a little more detail:

1. After the first BLE interrupt, the MCU is not able to go to sleep for
∼1.5ms. This is because it has to read the data from BOLT.

2. This is also visible in the power trace.

3. The processing after the transmission is nearly identical.

The duration of this connection event was 4.301 ms and it used 18.767 mW
of power. Compared to the connection event without BOLT activity, this shows
no difference in time but a small difference in power: +0.357 mW.

4. Experimental Evaluation 33

4.1.7 Use Case 2 - Phone to IoT

Time [ms]
0 1 2 3 4 5

P
o

w
e

r
[m

W
]

-20

0

20

40

60

80

Time [ms]
0 1 2 3 4 5

BOLT Active
BLE INT
MCU Active

1

2

3

Figure 4.8: Close up of a connection event depicting use case 2.

Figure 4.8 shows the power trace of a connection event where data is being
sent by the smartphone and then written to BOLT. When this trace is compared
to the trace depicted in fig. 4.5, the similarities are obvious, even though there
are a few small differences.. In a little more detail:

1. The processing before the transmission is nearly identical

2. There is∼2.3ms of MCU activity after the reception of the packet compared
to ∼ 0.8ms for a normal a connection event without BOLT activity. This
is because the data received over BLE has to be written to BOLT.

3. This is also visible in the power trace.

The duration of this connection event was 5.366 ms and it used 18.536 mW
of power. Compared to the connection event without BOLT activity, this shows
a time difference of 1.065 ms and a small difference in power: +0.126 mW.

4. Experimental Evaluation 34

4.2 Bandwidth Estimation

This section shows how an upper bound for the bandwidth of a BLE connection
can be calculated. This is an important part of the evaluation, since it shows
whether or not this implementation of the protocol gateway is actually feasible.

The measurements were taken with a connection interval of 200ms but this
parameter is configurable from 7.5ms up to 4000ms. During each connection
event one or more packets can be sent. But they do not necessarily need to
contain data, they are also used to maintain the connection. For this application,
there are two relevant cases:

1. Empty packet - Consists of 10 bytes: preamble (1B), synchronisation
word (4B), link layer header (2B), and CRC (3B)

2. ATT data packet - Consists of at least 14 bytes: preamble (1B), syn-
chronisation word (4B), link layer header (2B), L2Cap length(2B), channel
Id (2B), and CRC (3B). May include up to 27 bytes of payload.

Therefore, two devices could exchange nothing but empty packets, resulting
in a minimum bandwidth of 0 bits per second.

To calculate an upper limit, it is necessary to investigate further. It should
be pointed out that the calculation of the BLE bandwidth is a complex process,
especially when the data transfers in both directions should be considered. The
following calculation will assume transfer in only one direction. BLE uses a
1 Mbit/s radio, so the transmission of an ATT packet with the maximum payload
of 27 bytes requires:

(27 + 14) · 8 bits = 41 · 8 bits = 328 bits⇒ 328µs (4.1)

To configure the RF component from Tx to Rx and back takes 150 µs.

An empty packet, which is needed to continue the transfer between the de-
vices, is 10 bytes long, requires 80 µs.

All of this combined means that for sending 27 bytes of payload we need:

328µs + 150µs + 80µs + 150µs = 708µs (4.2)

Furthermore, the PRoC device is able to schedule data upon 1.25 ms before
the start of the next connection interval. Assuming there are devices that are
capable of receiving or transmitting almost continuously, we can use the longest
connection interval available, leading to a theoretical maximum bandwidth of:

Bmax =

4000ms−1.25ms
708µs · 27 · 8

4 s
≈ 316 kbps (4.3)

4. Experimental Evaluation 35

But due to the limitations of real life products the maximum bandwidth is
limited. There are several limitations:

• Most smartphones support only ∼4-6 packets per connection interval

• The fastest connection interval supported is often only around 30-40ms,
but there are some Android smartphones that support 7.5ms connection
intervals.

Typical values for an Android smartphone would be a connection interval
of 7.5 ms and 4 packets per connection event. This leads to a more realistic
estimation of the maximum bandwidth (please note that it is possible to get
more than double this throughput when not using a smartphone [8]):

Bmax =
4 · 27 · 8 bits

7.5 ms
= 115.2 kbps (4.4)

Figure 4.9 depicts a broad range of possible configurations.

Connection Interval [ms]
101 102

B
an

dw
id

th
 [k

bi
ts

/s
]

0

20

40

60

80

100

120

140

160

Bandwidth

1 packet/event
2 packets/event
3 packets/event
4 packets/event
5 packets/event
6 packets/event

Figure 4.9: Comparison between the connection interval in log scale (from 7.5ms
up to 500ms) and the achievable throughput.

Given the intended application of the protocol gateway, this bandwidth is
absolutely sufficient. The expected bandwidth the system should be able to
handle lies in the lower 10’s of kbps.

4. Experimental Evaluation 36

4.3 Power State Model

To estimate the power consumption of the device for a longer amount of time,
for example to be able to calculate how long a device would last given a battery
with a certain capacity, a model was required. This section explains how this
model was developed.

Due to the consistency of the data obtained during the evaluation it was
possible to derive a model. The states are defined by the activity over time
while the power over time defines the parameters of the model.

Advertising

Sending
ADV

Packet

Deep
Sleep

Connected

Sending
Data

Packet

Deep
Sleep

PADV,A

7.409 ms

4.29 µW
〜TADV,DS

PCXN,A

3.952 ms

4.29 µW
〜TCXN,DS

Connect

Disconnect

Figure 4.10: Graph describing the power state model.

Parameters

PADV,A Advertising Tx Power
PCXN,A Connection Tx Power
TADV Interval for advertising events
TCXN Interval for connection events

Here, P and T denote the power respectively the interval parameter. The
subscripts ADV and CXN explain whether the symbol corresponds to the Ad-
vertising (ADV) or Connected (CXN) state. Furthermore, the subscripts ,A and

,DS (not yet used) denote the substate, either Active (,A) or Deep Sleep (,DS).
The missing of both subscripts, ,A and ,DS , means that the symbol describes the
superstate.

Figure 4.10 shows the derived state chart. There are two superstates with
two substates each. The two superstates represent the overall state the device
is in, either Advertising, sending periodic advertisement packets, or Connected,

4. Experimental Evaluation 37

maintaining a connection to a central device, through a periodic exchange of
packets. The upper substate in both superstates represents the active state
of the system, where the BLE device sends and receives packets. The lower
substate represents the deep sleep state. The numbers besides the states describe
how much power is consumed for how long. The power during deep sleep is
constant at 4.29 µW for both superstates. The time the device stays in deep sleep
is dominated by the interval parameter for the respective superstate as shown
further down. For the active state, the interval is given by the measurements,
the power by the chosen Tx Power parameter.

The cost for the state transitions from Advertising to Connected and back
are assumed to be zero, since those events should only appear sporadically and
should not notably change the outcome of the model.

Tx Power PADV,A PCXN,A PDS
3 dBm 25.873 ± 0.103 mW 16.499 ± 0.299 mW 4.29 µW

0 dBm 25.196 ± 2.173 mW 16.181 ± 0.464 mW 4.29 µW

-3 dBm 23.936 ± 1.566 mW 15.962 ± 0.304 mW 4.29 µW

-6 dBm 23.647 ± 1.421 mW 15.911 ± 0.268 mW 4.29 µW

-18 dBm 22.661 ± 1.469 mW 15.733 ± 0.282 mW 4.29 µW

Figure 4.11: Average power for active substates and the deep sleep substate in
different configurations.

Advertising 7.409 ± 0.144 ms

Connected 3.952 ± 0.071 ms

Figure 4.12: Average duration of advertising and connection events.

Advertising Connected

Active-substate TADV,A = 7.409 ms TCXN,A = 3.952 ms

Deep Sleep-substate TADV,DS TCXN,DS
Superstate TADV = TADV,A + TADV,DS TCXN = TCXN,A + TCXN,DS

Figure 4.13: Interval parameters.

4. Experimental Evaluation 38

4.3.1 Derivation of the Model

We will first derive the formula for the advertisement state. As a first step we
use the data from fig. 4.13 to calculate how long the device stays in the deep
sleep state.

TADV,DS = TADV − TADV,A (4.5)

Now we can calculate the average power of the super state with this simple
formula:

PADV =
PADV,A · TADV,A + PDS · TADV,DS

TADV
(4.6)

Using eq. (4.5) in eq. (4.6) we can get rid of TADV,DS , resulting in the final
formula:

PADV =
TADV,A(PADV,A − PDS) + TADV · PDS

TADV
(4.7)

In the same manner we can derive

PCXN =
TCXN,A(PCXN,A − PDS) + TCXN · PDS

TCXN
(4.8)

The plotted values are shown in fig. 4.14 and fig. 4.15. One can clearly see
that both plots are heavily dominated by the the interval parameters TADV and
TCXN .

4.3.2 Trade-offs

Considering the almost neglectable impact of the Tx Power parameter, we can
safely assume that the additional range and reliability gained through the use of
a higher Tx Power parameter like 0 dBm or even +3 dBm would always outweigh
the additional power used.

The advertisement interval parameter TADV mainly defines how convenient
it is to discover and connect to a peripheral device. Experiments conducted dur-
ing the development of the protocol gateway showed that while longer intervals
reduced power, they also made discovery and connection establishment inconve-
nient and unreliable. It was found that a value of 3 s for TADV is a good trade-off
between power consumption and user experience.

The connection interval parameter TCXN on the other hand is one of the
limiting factors of the maximum bandwidth as shown in section 4.2 and especially
in fig. 4.9. To find an optimal value for this parameter the designer of the
system has to evaluate the expected bandwidth and then choose the parameter
accordingly.

4. Experimental Evaluation 39

Advertisement Interval [s]
1 2 3 4 5 6 7 8 9 10

P
o

w
e

r
[m

W
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Advertising

Tx Power: +3 dBm
Tx Power: 0 dBm
Tx Power: -3 dBm
Tx Power: -6 dBm
Tx Power: -18 dBm

Figure 4.14: A plot of the power state model for the Advertising state, displaying
the result of the different parameters. Please note that while the advertisement
interval is only plotted from 1 s to 10 s, it could go as low as 20ms.

4. Experimental Evaluation 40

Connection Interval [s]
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
o

w
e

r
[m

W
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Connected

Tx Power: +3 dBm
Tx Power: 0 dBm
Tx Power: -3 dBm
Tx Power: -6 dBm
Tx Power: -18 dBm

Figure 4.15: A plot of the power state model for the Connected state, displaying
the result of the different parameters. Please note that while the connection
interval is only plotted from 7.5 ms to 200 ms, it could go up to 4000ms.

4. Experimental Evaluation 41

4.3.3 Example

In order to establish whether or not this implementation of the protocol gateway
suffices in terms of its low power requirements, we have to use the developed
model to estimate the power consumption and compare the result to the capacity
of a common power source.

For this example lets assume that we have a BOLT device which is connected
to a Low-power Wireless Bus, sending one packet of 24 bytes every 500ms. The
available power source is a common coin cell battery.

As we saw in section 4.2 we could therefore choose TCXN = 0.5s and let be
TADV = 4s for this purpose. This would mean that during one connection event
the PRoC BLE would send one packet with 27 bytes of payload which should be
feasible for all smartphones.

Furthermore we would assume a Tx power setting of 0 dBm for both the
advertising as well as the connection phase. As a power supply we use a common
coin cell, the CR2032. Those have a typical capacity of around 225 mAh.

Those are the parameters required to feed the model:

TADV = 4000 ms

TCXN = 500 ms

TADV,A = 7.409 ms

TCXN,A = 3.952 ms

PADV,A = 25.196 mW

PCXN,A = 16.181 mW

PDS = 4.29µW

Using eq. (4.7) and eq. (4.8) we can then calculate:

PADV =
TADV,A(PADV,A − PDS) + TADV · PDS

TADV

=
7.409 ms(25.196 mW − 4.29µW) + 4000 ms · 4.29µW

4000 ms
= 0.051 mW

PCXN =
TCXN,A(PCXN,A − PDS) + TCXN · PDS

TCXN

=
3.952 ms(16.181 mW − 4.29µW) + 500 ms · 4.29µW

500 ms
= 0.132 mW

Using the capacity of the coin cell we can calculate the energy stored:

E = 225 mAh · 3.3 V = 742.5 mWh (4.9)

4. Experimental Evaluation 42

Only advertising, the device would last

742.5 mWh

0.051 mW
= 14 559 h = 607 d (4.10)

and could stay connected for

742.5 mWh

0.132 mW
= 5625 h = 234 d (4.11)

For the given application, both of those values absolutely fulfil the require-
ments of the protocol gateway.

Chapter 5

Conclusions and Future Work

In this semester thesis the feasibility of the proposed protocol gateway has been
successfully demonstrated. It involved the selection of suitable hardware com-
ponents such as the Cypress Semiconductor PRoC BLE platform, selected from
multiple commercially available BLE development platforms after a thorough
investigation as well as the existing BOLT platform, serving as an asynchronous
processor interconnect. Furthermore, software was developed and tested on two
platforms, the PRoC BLE and an Android smartphone. The implemented pro-
tocol gateway was then subject to an evaluation, including the exact analysis
of power traces as well as the derivation of a power state model based on the
measurements taken. This power state model was then used to successfully show
that the protocol gateway would indeed last for a sufficient amount of time while
providing appropriate bandwidth.

This thesis sets the foundation for future work based on the developed pro-
tocol gateway, such as

• Implementation of a Low-power Wireless Bus sniffer. This would require
the development of the LWB node sending data to BOLT as well as an
extension of the Android app to display the data in an user-friendly way.

• Further improvement of the developed power state model. Even though the
current model is sufficiently exact for the purpose, it could be improved,
for example by considering the number of advertisement packets sent per
advertisement event (currently fixed to 3) or the number of packets per
connection event (currently fixed to 1)

43

Bibliography

[1] SIG Bluetooth. Specification of the Bluetooth system version 4.0. Bluetooth
SIG, 2010.

[2] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-
power wireless bus. In Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems, pages 1–14. ACM, 2012.

[3] Cypress Semiconductor. AN86233 - PSoC R© 4 Low-Power Modes and Power
Reduction Techniques, 2016. [Online; accessed 8-June-2016].

[4] Cypress Semiconductor. AN91162 - Creating a BLE Custom Profile, 2016.
[Online; accessed 8-June-2016].

[5] Cypress Semiconductor. AN92584 - Designing for Low Power and Estimating
Battery Life for BLE Applications, 2016. [Online; accessed 8-June-2016].

[6] Cypress Semiconductor. AN94020 - Getting Started with PRoC BLE, 2016.
[Online; accessed 8-June-2016].

[7] Cypress Semiconductor. CYBL10X6X Family Datasheet: Programmable
Radio-on-Chip With Bluetooth Low Energy (PRoC BLE) , 2016. [Online;
accessed 8-June-2016].

[8] Cypress Semiconductor. Project #024: BLE Throughput - Pushing the Lim-
its, 2016. [Online; accessed 9-June-2016].

[9] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell,
Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele. Bolt:
A stateful processor interconnect. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, pages 267–280. ACM, 2015.

44

Appendix A

Appendix A

A.1 Hardware Wiring

The pin header P5 on the BOLT breakout board provides the following connec-
tions, starting with pin 1:

• BOLT SPI SIMO

• BOLT IND

• BOLT SPI SOMI

• BOLT MODE

• BOLT SPI CLK

• BOLT REQ

• BOLT TIME REQ (not used)

• BOLT ACK

• BOLT C IND (not used)

• BOLT FUTURE USE (not used)

• GND

On the Cypress BLE Pioneer base board the following pins were used:

• P1.0 for BOLT ACK

• P1.1 for BOLT IND

• P1.2 for BOLT REQ

1

A. Appendix A 2

• P1.3 for BOLT MODE

• P0.0 for BOLT SPI MOSI / BOLT SPI SIMO

• P0.1 for BOLT SPI MISO / BOLT SPI MISO

• P0.3 for BOLT SPI CLK

Furthermore the BOLT platform was connected to the 3.3V rail provided by
the Cypress BLE Pioneer base board.

Appendix B

Appendix B

B.1 Embedded Source Code Organisation

The embedded source code is written in C and managed with the PSoC Creator
IDE. The main directory is ’PSoCProject/ST1’. The ST1.cywrk is the project
file, referring to source code files stored in ’PSoCProject/ST1/ST1.cydsn’.

• bolt ble app.c/.h contain the BLE component

• bolt if.c/.h contain the BOLT component

• Debug.c/.h contain helper functions to control GPIO pins which were used
during the evaluation

• HandleLowPower.c/.h contain the low power component.

• main.c contains the main function

B.2 Android Source Code Organisation

The main directory for the Android app is ’AndroidBluetoothLeGatt’. This is a
project generated and managed with the IDE Android Studio. The source code
for the Android app is in the subdirectory
’Application/src/main/java/com/example/android/bluetoothlegatt’.

3

Appendix C

Appendix C

C.1 Abbreviations

BLE Bluetooth Low Energy
ECO External Crystal Oscillator
HCI Host Control Interface
IDE Integrated Development Environment
IFS Bluetooth Inter Frame Space, an interval of 150µs
IO Input /Output, referring to pins of CPUs
IoT Internet of Things
LWB Low-power Wireless Bus
MTU Maximum Transmission Unit
PRoC Programmable Radio on Chip, a SoC by Cypress Semiconductor
PSoC Programmable System on Chip, a SoC series by Cypress Semiconductor
QoS Quality of Service
SoC System on Chip
SPI Serial Peripheral Bus
SRAM Static Random-Access Memory,
UUID Universally Unique Identifier
WCO Watch Crystal Oscillator

4

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Selection of Hardware Components
	2.1 System on Chip
	2.2 Processor Interconnect
	2.3 System Architecture

	3 Design and Implementation
	3.1 Bluetooth Low Energy
	3.1.1 Overview
	3.1.2 Generic Access Profile Layer
	3.1.3 GAP Configuration of the Protocol Gateway
	3.1.4 Attribute Protocol Layer
	3.1.5 Generic Attribute Profile
	3.1.6 Recap and Actual Configuration

	3.2 Embedded Software Design
	3.2.1 Low Power Management
	3.2.2 Message Handling

	3.3 Android Software Architecture
	3.4 Functional Behaviour
	3.4.1 Use Case 1 - IoT To Phone
	3.4.2 Use Case 2 - Phone To IoT

	4 Experimental Evaluation
	4.1 Power Analysis
	4.1.1 Experimental Setup
	4.1.2 BLE Advertising
	4.1.3 BLE Connecting
	4.1.4 BLE Connected
	4.1.5 Comparison of Power Consumption During Advertisement and Connection
	4.1.6 Use Case 1 - IoT to Phone
	4.1.7 Use Case 2 - Phone to IoT

	4.2 Bandwidth Estimation
	4.3 Power State Model
	4.3.1 Derivation of the Model
	4.3.2 Trade-offs
	4.3.3 Example

	5 Conclusions and Future Work
	Bibliography
	A Appendix A
	A.1 Hardware Wiring

	B Appendix B
	B.1 Embedded Source Code Organisation
	B.2 Android Source Code Organisation

	C Appendix C
	C.1 Abbreviations

