
UnCovert: Evaluating thermal covert channels on

Android systems

Pascal Wild

August 5, 2016

Contents

Introduction v

1: Framework 1

1.1 Source . 1

1.2 Sink . 1

1.3 Launcher . 1

2: Android 3

2.1 Application Sandboxing . 3

2.2 Development . 3

2.2.1 Android Software Development Kit 3

2.2.2 Native Development Kit . 4

2.2.3 Java Native Interface . 4

2.2.4 Android Debug Bridge . 5

2.3 Power Manager . 5

2.3.1 Wake Lock . 5

2.4 Android Scheduler . 5

3: Implementation 7

3.1 SourceService . 8

3.2 SinkService . 9

3.3 Launcher . 9

4: Results 11

4.1 Experimental Setup . 11

4.2 Battery Charging . 11

4.3 Hardware Throttling . 12

4.4 Time-shift . 12

4.5 Time-shift corrected Signal . 13

5: Conclusions and Further Work 15

i

Contents

ii

Figures

0-1 Covert Channel Threat Model . v

3-1 Android Framework . 8

4-1 Battery Charging Effect . 11

4-2 Hardware Throttling . 12

4-3 Time-shifted signal . 12

4-4 Corrected time-shifted signal . 13

iii

Figures

iv

Introduction

Todays computing devices contain thousands of semiconductors which generate heat

during operation. Therefore temperature management is an important task for sys-

tem developers to prevent irreparable damage done to the hardware and to extend

the lifetime of computing devices. To measure device temperature, modern sys-

tems contain various sensors on components like battery, central processing unit

(CPU) and graphics processing unit (GPU). The linux kernel exposes sensor data to

userspace via the virtual file system, allowing applications to do power management

and control device temperature. Sensor information is resource, which poses a secu-

rity threat, e.g. for covert channels. Covert channels are a medium for a computer

security attack where two isolated applications which are not allowed to communi-

cate, set up a communication channel. Covert channels are hidden from the access

control of operating system and are therefore also hard to detect. In figure 0.1 the

threat model for such an attack is shown. On the left side is an application called

source, which is isolated on core 1 and has access to sensitive system data. The sink

application, isolated on core 2, has access to the Internet. If the two applications col-

lude, they can set up a covert channel in between. This can be achieved, if the source

application controls the core temperature in a way to encode data into temperature

trace. The sink application can log the temperature of core 1 and send data over

the Internet to an attacker, which then can do the data analysis off-line and read

data out of the temperature trace. Previous work of Bartolini et al. [1] has shown

that communication over this channel is possible, achieving a throughput of 70 bits

per second with a bit error rate (BER) of 20% on Ubuntu platforms. The goal of this

work is to port the existing framework to Android and explore the thermal covert

channel on a Samsung Galaxy S5 smartphone.

Figure 0-1
Covert Channel Threat Model

core 0
cover t

channel core 1

v

1
Framework

The existing framework provided by Bartolini et al. [1] can be divided into three

parts, the source application generating the load on the cores, the sink application

which is responsible for the temperature measurement and a coordinator applica-

tion that synchronizes. The source application is implemented in C++, sink in C and

the launcher is a BASH script.

1.1 Source

The source application is responsible to control the temperature of one or multiple

cores. It takes an input file where the bitstream is defined, that should be transmit-

ted over the covert channel. Depending on this schedule file, the application either

heats up the core if it wants to transmit a one or it is idle when transmitting a zero,

letting the core cool down. The heating of the core is achieved by running a loop with

expensive tasks.

1.2 Sink

The sink application logs the temperature on the cores with a timestamp to a file. It

achieves that by accessing the sensor information of the system through the virtual

file system. The timestamps are generated by the function gettimeofday().

1.3 Launcher

The launcher script initializes sink and source with the defined experiment argu-

ments. It coordinates sink and source to prevent de-synchronization of the covert

channel.

1

Chapter 1: Framework

2

2
Android

Previous work was done on Ubuntu platforms which differs a lot from the Android

Operating System. Android is intended for mobile devices which means that it en-

forces stricter rules for power management and is not intended for server-like, long-

running background operations like the Ubuntu Operating System. Additionally,

Android has security policies, which also impeded the porting process.

2.1 Application Sandboxing

Android enforces Application Sandboxing to isolate app data and code execution

from other applications[2]. Android assigns different User IDs for every application.

Communication across two different user IDs is not possible.

2.2 Development

To port the framework to Android, several components have been used which will

be explained more in detail in this chapter.

2.2.1 Android Software Development Kit

The foundation of every Android application can be built with the Android Software

Development Kit (SDK). In this work, the basis of the applications is therefore also

constructed with the SDK.

2.2.1.1 App Components

Every Android application consists of one or multiple elements that are called App

Components[3]. These include:

• Activities that represents a single screen with a user interface

• Services that run in the background intended to perform long-running opera-

tions without providing a user interface

3

Chapter 2: Android

• Content Providers that manage a shared set of application data, intended for

database operations

• Broadcast Receivers that respond to to system-wide information e.g. low bat-

tery

It was important for the porting process to make a good decision between.

2.2.1.2 Intents

As UNIX signaling was not an option for inter-process communication on Android

because of Application Sandboxing, other options had to be explored. Android SDK

implements Intents as a choice for communication between applications. They are

mainly intended to launch applications or communicate with a background service.

In this work, they were used to start, pass arguments and to control the program

flow, allowing synchronization between.

2.2.1.3 Thread Listener

Android offers the Listener class to create an interface between a thread and a

forked thread. To avoid blocking of a main thread while waiting for a forked thread,

the implementation of a Listener is required. The main thread can then stay idle

while the forked thread is doing work and react on events that are sent through the

Listener, e.g. when the forked process has finished.

2.2.2 Native Development Kit

The Android NDK is a set of tools allowing the developer to embed C or C++ ("native

code") into Android apps. The ability to use native code in Android apps can be

particularly useful to developers who wish to do one or more of the following:

• Port their apps between platforms.

• Reuse existing libraries, or provide their own libraries for reuse.

• Increase performance in certain cases, particularly for computationally inten-

sive.

Because the existing framework provided by Bartolini et al. [1] is written in C and

C++, it made sense to use the NDK to speed up the porting process and to get sim-

ilar results to previous work. Additionally, problems that were encountered during

experiments were more likely caused by the Android OS then by the implementa-

tion, because the core of the apps is the same like on the Ubuntu platform. This fact

simplified the debugging process.

2.2.3 Java Native Interface

The Java Native Interface (JNI) enables programmers to write native methods to

handle situations when an application cannot be written entirely in the Java pro-

gramming language, e.g. when the standard Java class library does not support

4

2.3. Power Manager

the platform-specific features or program library. It is also used to modify an exist-

ing application—written in another programming language to be accessible to Java

applications. Many of the standard library classes depend on JNI to provide func-

tionality to the developer and the user, e.g. file I/O and sound capabilities. Includ-

ing performance- and platform-sensitive API implementations in the standard li-

brary allows all Java applications to access this functionality in a safe and platform-

independent manner. The JNI framework lets a native method use Java objects in

the same way that Java code uses these objects. A native method can create Java

objects and then inspect and use these objects to perform its tasks. A native method

can also inspect and use objects created by Java application code[4]. In this work

the JNI was used to pass arguments and call C/C++ code.

2.2.4 Android Debug Bridge

Android Debug Bridge (adb) is a versatile command line tool that lets you commu-

nicate with an emulator instance or connected Android-powered device [5]. In this

work, it was mainly used for debugging the applications, later for starting experi-

ments and transferring data form the Android device to the developer computer.

2.3 Power Manager

The Power Manager on Android tries to make efficient use of the energy saved in

the battery to ensure long lifetime of the device without power supply. This is very

different to the Ubuntu OS, which is intended for stationary devices plugged to a

power supply. To ensure good performance of the applications for the covert chan-

nel, it was important to deal with the power saving options, enforced by the Power

Manager.

2.3.1 Wake Lock

To avoid drainage of the battery, an Android device that is left idle, quickly falls

asleep and puts the CPU and the screen in a sleep state. However for the sink and

source applications, it is important to keep the CPU running. The PowerManager

application programming interface (API) offers a feature called Wake Lock to pre-

vent this.

2.4 Android Scheduler

The Android scheduler distinguishes between foreground and background pro-

cesses. Applications that are e.g. implemented as activities run as a foreground pro-

cess with high priority to ensure instant reaction of the device if the user interacts

with it. On the other side, for example services, that run in the background and do

not offer interaction with the user, are scheduled as background processes which

means lower priority in execution. Applications can be explicitly started in fore-

ground with the startForeground()API. In this work, elevating the processes to

foreground was important to increase lifetime and performance of the applications.

5

Chapter 2: Android

6

3
Implementation

In this chapter, the built Android framework is explained and differences to the

existing framework are stated. In particular the three components Launcher, which

coordinates and starts sink and source. SinkService that logs system temperature

trace and SourceService that deploys load on core(s). All applications acquire a Wake

Lock and are put into foreground using the startForegroundAPI. In figure 3 the

experiment flow is shown which is also explained in detail in the further sections.

7

Chapter 3: Implementation

Figure 3-1
Android Framework

Launcher.java

SourceService.java

Java Native Interface

source.cc

SinkService.java

Java Native Interface

sink.c

Android Debugging Bridge

INIT, RDY, START, NEXT INIT, RDY, START, STOP

Covert Channel

3.1 SourceService

The source is implemented as a service that can be started and controlled via In-

tents. Native code in C++ form the previous work on Ubuntu is underlying the ser-

vice and can be called through the JNI. To start this service, an intent has to be

sent with the experiment arguments. In particular it needs following information

contained in the Intent:

• Location of the schedule file in the file system

• Location of the logging file

• Core(s), where the load should be deployed

It then calls the native code in a forked thread and adds a Listener to the thread,

which is able to call back, when the native thread has finished execution. Therefore

the main thread is not blocked and the app does not get killed because of an app not

8

3.2. SinkService

responsive (ANR) dialog. When initialization of the native thread has finished, the

Service sends an Intent back to the Launcher application, that it is ready to start

the load. The service stays idle until it gets another Intent, which tells it to start the

load. After the load in the native code has finished, the service sends an Intent back

to the Launcher application, that the schedule file has been done, kills the service

and clears the cache to restore the default state.

3.2 SinkService

The sink is also implemented as a service and has a similar flow to the SourceSer-

vice. The core temperature measurement takes place in native C code underlying

the service. It is also started through an Intent, providing following parameters:

• Location of the logging file

• Core, where the native thread should be pinned on

• Sampling period for the logging

Again, after the native thread has initialized, it sends an Intent back to the

Launcher application to inform it that it is ready for measurement. It stays idle

until it gets another Intent with the information to start measurement. The native

thread keeps logging until the service gets an Intent, informing it that it should

stop the measurement. After the log has been dumped to a file, the service sends an

Intent back to the Launcher app, that measurement has finished, clears its cache

and kills itself. Again to restore the default state of the application.

3.3 Launcher

The Launcher application starts experiments and synchronizes sink and source. It

can be started with an Intent that is sent through the ADB from a developer com-

puter to the Android device. It does not need any data from the Intent. The appli-

cation pre processes every experiment that is contained in the /sdcard/uncovert

folder. It extracts every schedule file that is found and saves the paths in a list of

strings. In addition, it reads the setting file in /sdcard/uncovert that is pushed

through adb from the developer computer to the device, to set the parameters for

SinkService and SourceService. It prepares the Intents for the sink and the source

with the information that is needed and sends those Intents, to initialize sink and

source. It then waits at a barrier until the Intents from the services arrive with the

information that they are initialized. After surpassing the barrier, the application

sends Intents to Sink and SourceService to start the covert channel. It stays idle un-

til it receives an Intent from the SinkService, that measurement has finished. Then

it continues with the next schedule file until the list of schedules is done. After that

it clears its cache and kills itself to restore default state.

9

Chapter 3: Implementation

10

4
Results

During experiment runs, several problems were encountered which are shown in

this chapter. Most results are negative but still show the dynamics of the covert

channel on Android and differences to results on previous Ubuntu platforms.

4.1 Experimental Setup

The experiments were conducted on a Samsung Galaxy S5 with a Exynos 5422 Octa

chipset, mostly in a controlled, air-conditioned environment.

4.2 Battery Charging

Figure 4-1
Battery Charging Effect

0 50 100 150 200 250 300
Time[seconds]

40

45

50

55

60

65

70

75

T
em

pe
ra

tu
re

 [
°
C

]

core0 without charging
core1 without charging
core2 without charging
core3 without charging
core0 with charging
core1 with charging
core2 with charging
core3 with charging

Some experiment runs showed weird interferences with the data signal. To find

out where those interferences came from, experiments without load were conducted

on the device. Figure 4.2 shows two separate runs, the upper four traces show the

temperature trace of the four big cores from a run where the battery of device was

charged and still connected to the power supply. The lower four traces show the

traces of the cores but without. While the temperature stays constant for the lower

11

Chapter 4: Results

curves without connection to power supply, the upper traces with power supply show

a cyclic rise and fall in temperature. This result can be interpreted as cyclic charging

that is done by the battery chip to prevent battery damage. In this work, the symbol

rate is very low, therefore the period of the charging cycle and the symbol duration

are in a similar order of magnitude. This means that interferences can impair data

transmission.

4.3 Hardware Throttling

Figure 4-2
Hardware Throttling

0 5 10 15
Time[seconds]

60

65

70

75

80

85

T
em

pe
ra

tu
re

 [
°
C

]

core0
core1
core2
core3

While doing experiments outside of the controlled environment, another problem

was encountered. Figure 4.3 shows an experiment run where the source was sup-

posed to run and generate heat for fifteen seconds. The result does not show a con-

stant raise in temperature but a throttling behaviour at 80 ◦ C until the cores cool

down to about 70 ◦ C. In this state of development, the SourceService was not pinned

on a specific core and core migration between core2 and core1 is also visible.

4.4 Time-shift

Figure 4-3
Time-shifted signal

0 10 20 30 40 50 60 70 80 90
Time[seconds]

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

0.1 bits per second with time-shift

Input Trace of Source
Temperature Measurement

All experiments showed a time-shift in the data signal. In figure 4.4 the results of

a run on 0.1 bits per second is shown. The blue trace shows the bitstream that the

12

4.5. Time-shift corrected Signal

SourceService should transmit. The red trace shows the measured trace on the same

core where the source is running. The offset varied between different experiments

but it stayed constant for a particular schedule file. This was probably caused by a

design flaw of the native code. While in the framework on Ubuntu platforms, syn-

chronization of sink and source was done via UNIX signaling, it was changed to In-

tents for the Android device. In the Android implementation the variable of the loop

is changed with Intent through the JNI, which means that the sleep(10) function

finishes and in the worst case, causes a time difference of 10 seconds between sink

and source.

4.5 Time-shift corrected Signal

Figure 4-4
Corrected time-shifted signal

0 10 20 30 40 50 60 70 80 90
Time[seconds]

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

0.1 bits per second

Input Trace of Source
Temperature Measurement

As the time-shift was constant for a particular schedule file, it was possible to man-

ually correct the time-shift. In figure 4.5 the same run like in figure 4.4 with the

eliminated time-shift is shown. Whenever the utilization trace is high, temperature

is rising and if the utilization trace is low, the temperature is falling.

13

Chapter 4: Results

14

5
Conclusions and Further Work

Like shown in figure 4.5 the covert channel is definitely exploitable on Android de-

vices. In this work much lower bit rates were achieved then in previous work of

Bartolini et al. [1] on Ubuntu platforms. The hardware configuration of the Sam-

sung Galaxy S5 differs a lot from the Odroid, it has a battery, a case and no fan.

This changes the dynamics of the thermal covert channel. A case study should be

designed to find out about the real capabilities of the channel on Android devices to

confirm the security threat. For further experiments, the synchronization between

source and sink should be improved. Either by modifying the existing data pro-

cessing framework so that it can deal with a time shift. One option would be to

implement UNIX signaling as process synchronization, which requires root privi-

leges because of the Android Application Sandboxing. Another solution would be to

use Android Binders as inter-process communication, where one has to design a di-

rect interface between the Sink and SourceService to allow synchronization. Both

solutions would imply direct communication between sink and source which does

not make it interesting for a real attack, but to explore the channel on Android. It

would be even more interesting, to find a synchronization scheme directly done on

the covert channel between sink and source to remove the necessity of the Launcher

application.For further work, the SourceService and the SinkService could be em-

bedded into real applications. The source could be embedded into an application

with file system access where it has access to sensitive data, for example a file ex-

plorer app. The sink into an app with Internet access to allow transmission over the

web to an attacker, for example a browser application. This would make the frame-

work even nearer to a real attack and would definitely confirm the security threat

of such a covert channel, if data transmission is still possible.

15

Chapter 5: Conclusions and Further Work

16

Bibliography

[1] Davide B. Bartolini, Philipp Miedl, and Lothar Thiele. On the Capacity of Ther-

mal Covert Channels in Multicores. In [Proceedings of the Eleventh European

Conference on Computer Systems.

[2] Android security tips. URL https://developer.android.com/training/articles/securi

[3] Android application fundamentals. URL https://developer.android.com/guide/componen

[4] Java native interface. URL https://en.wikipedia.org/wiki/Java_Native_Interface.

[5] Android debug bridge. URL https://developer.android.com/studio/command-line/adb

17

https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/guide/components/fundamentals.html
https://en.wikipedia.org/wiki/Java_Native_Interface
https://developer.android.com/studio/command-line/adb.html

	Introduction
	Framework
	Source
	Sink
	Launcher

	Android
	Application Sandboxing
	Development
	Android Software Development Kit
	Native Development Kit
	Java Native Interface
	Android Debug Bridge

	Power Manager
	Wake Lock

	Android Scheduler

	Implementation
	SourceService
	SinkService
	Launcher

	Results
	Experimental Setup
	Battery Charging
	Hardware Throttling
	Time-shift
	Time-shift corrected Signal

	Conclusions and Further Work

