
Semester Project

Permasense GPS Postprocessing

ETH Zurich
Computer Engineering and Networks Laboratory

Samuel Zumtaugwald

supervised by
Dr. Jan Beutel
Matthias Meyer

Spring Term 2016

Abstract

In order to compute the position of a GPS receiver, several different data is
required. The data is put available for download by the IGS.
The aim of this project was to develop a software tool that computes the
solution for a GPS receiver within the Permasense Network. The resulting
program is a bash script called compute solution.sh taking a minimum of two
mandatory arguments. Firstly, a configuration file in which, amongst other
parameters, the user defines the receiver and a base station from within
the Permasense GPS network in the specific deployment �Dirruhorn�. The
second argument is the date for which the GPS position is desired.
The tool then automatically downloads and converts all required data and
finally returns the GPS position in ECEF coordinates.
For the tasks of converting and computing, an external open-source program
library, called rtklib, is used.

Keywords GPS Solution Calculation, Permasense, Rtklib

Contents

1 Introduction 1

2 Project Overview 1
2.1 Embedded in the Permasense Project 1
2.2 GPS Position Calculation Data 2

2.2.1 GPS Data . 2
2.2.2 IGS Data . 3

2.3 File Naming Convention . 4
2.4 RTKLIB . 5

3 Results 6
3.1 The Scripts . 6
3.2 The Parameter File . 12

4 Usage ot the Solution Calculation Tool 14
4.1 Pre Requirements . 14
4.2 Examples . 15
4.3 Plot the solution . 20

5 Outlook 21

6 Learning effects 22

Appendices 23

A Input and Output files of the Examples 23
A.1 Basic Example . 23

B Rtkplot screenshots 33

Permasense GPS Postprocessing 1

1 Introduction

GPS positioning is part of everyone’s daily life. Such position computation
however is not trivial. Scientific workers in the Permasense project (see 2.1)
analyze displacements of GPS receivers every day and therefore regularly
need to compute positions of the latter.
Consequently it is beneficial to use a simple and quick program that allows
to compute the position of a GPS receiver without having to manually col-
lect all required data and perform calculations on it.
The solution is to use an existing open-source collection of tools doing the
necessary calculations to obtain a GPS position. This tool collection is called
Rtklib and is shortly described in section 2.4.
Even tough the tools provided are easy to use, the solution computation
requires many data that must be supplied to the program by the user and
therefore has to be downloaded first. This is a task that could be automated,
which has been realized during this semester project: The development of
a software tool that automates download, conversion and processing of the
data needed in order to compute the position of a GPS receiver belonging
to the Permasense Network.
The target audience to use the implemented tool are scientific coworkers at
the TIK institute of ETH Zurich who quickly need to have a solution com-
puted for a specific day and a specific GPS node within the network.
Such a tool was created, its main entrance point is a bash script called com-
pute solution.sh that will be described later in section 3.1. This tool is the
first version and still leaves plenty of space for extension and improvement.

2 Project Overview

2.1 Embedded in the Permasense Project

The Permasense project is a scientific collaboration between several research
institutes in Switzerland. Its research areas cover measurements of clima re-
lated geological effects in alpine regions.
One of the focuses lies on the rock movements due to thawing permafrost
in the Matterhorn valley and other alpine regions in Switzerland. On each
research site, some dozens of GPS sensor nodes are installed and organized
in small wireless networks. Each network consists of about ten sensor nodes
of which one serves as so called base station, while the other ones are called
receivers or rover stations. All the raw GPS data collected by the rover sta-
tions and the base station itself are finally stored in a database on a remote
server.
In this semester project the main focus lies on the so called �Dirruhorn� de-
ployment in the Matterhorn valley. And more precisely on a subnetwork at

Permasense GPS Postprocessing 2

the �Grabengufer�, a rocky place above the village of Randa where rock
falls repeatedly occur due to climate changes.

Figure 1: The topology of the wireless network at the �Dirruhorn� de-
ployment. Not all nodes are GPS receivers (e.g. webcams). Po-
sition number 39 is the networks base station. [Screenshot from
http://data.permasense.ch/topology.html#topology]

This semester project is strongly related to the Permasense project. Its
aim is to develop a software tool that offers an easy way to calculate a
receiver’s position also called solution for a specific day.
As it will become clear, in order to calculate a solution for a GPS receiver
not only the receiver’s raw GPS data is required (see 2.2.2). The tool’s task
is to perform the final calculation but also to make sure that all required
data is collected, downloaded and converted before the actual calculation is
done.

2.2 GPS Position Calculation Data

The raw GPS data is stored in the database on the server data.permasense.ch.
It contains information such as the travel time of the signals between the
receiver and the satellites. Yet this is not enough to compute its position.
In order to achieve this, further information is needed. Mainly the positions
of the satellites but also additional clock information or atmospheric condi-
tions a the time of the signal exchange.
The solution calculation in this project only takes into account the very
essential data.

2.2.1 GPS Data

Raw GPS Data The above mentioned raw GPS data coming from the
rover stations is stored following the ubx-format. Ubx-files aren’t ASCII for-

Permasense GPS Postprocessing 3

mated and cannot be proceeded by the computation software in this project.
Therefore, data stored in this format must be converted before it can be used.

Observation Data The raw GPS data is converted into the so called
RINEX (receiver independent exchange) format using a software tool de-
scribed later (see section 2.4). Once transformed, this data is called obser-
vation data.

2.2.2 IGS Data

The information about GPS satellite orbits as well as satellite and station
clocks is collected by the International GNSS Service (IGS) and available
for download on various servers.

Satellite orbit data Information about the GPS satellites’ positions and
clock record are collected in satellite orbit files according to RINEX format
with the file extension .sp3 (Standard Product # 3).
This data is essential for position calculation since the satellites of whose
positions it consists are communicating with the rover stations. Of course
not all satellites listed in the file are actually needed since many of them
aren’t visible to the receivers. One of many download sources for these orbit
informations, a NASA managed website1 was used in this project. The clock
correction data (see below) can be downloaded from the same server.
For further information about this data format on can can consult the official
documentation 2.

Navigation Data Another source of satellite orbits (ephemerides) is used
in this work. This so called navigation data is available the day it is mea-
sured, unlike the sp3 data which is more precise but is provided with a delay
from approximately two weeks.
In this project, the data is downloaded from the Crustal Dynamics Data
Information System (CDDIS) website3.

Clock Correction Due to clock synchronism errors referring to GNSS
time scale and relativistic effects due to the high velocity of the satellites
the clocks running on satellite and receivers have to be synchronized. The
required synchronization information is provided in clock correction files
with file extension .clk. Again, more information about the data format is
written in the official documentation4.

1ftp://cddis.gsfc.nasa.gov/gnss/products
2https://igscb.jpl.nasa.gov/igscb/data/format/sp3 docu.txt
3ftp://cddis.gsfc.nasa.gov/gnss/data/daily
4https://igscb.jpl.nasa.gov/igscb/data/format/rinex clock302.txt

Permasense GPS Postprocessing 4

Differential Code Bias In order to correctly use the clock correction
data provided by the IGS, some more informmation is necessary. Since GPS
sensor nodes are able receive signals on different frequencies. These signals
can have different delays. In order to take into account this difference in
delays, so called Differential Code Bias (.DCB) data is required. DCB files
are published monthly and as source in this work a server5 managed by the
University of Berne was used.

Antenna Correction Absolute IGS phase center correction for receiver
as well as satellite antenna is stored in an antenna correction file (.atx ex-
tension). In this project the file igs08.atx is used.

2.3 File Naming Convention

File Naming As one can see, for a solution calculation, many data has
to be collected for that specific date. To assure that the correct data is
downloaded, a strict naming convention is necessary. Else, the software
would be looking for non existing files as well on the download servers as
on the local machine. In the following table (1)the file names for the above
mentioned data are explained.

Type of Data Name of File Explanation

Raw GPS labelddd0.ubx
label : name of receiver
ddd : day of year

Observation labelddd0.yyO
label : name of receiver
ddd : day of year
yy : the year

Orbit igswwwwd.sp3
wwww : GPS week
d : day of week (0-6)

Navigation brdcddd0.yyn
ddd : day of year
yy : the year

Clock Correction igswwwwd.clk
wwww : GPS week
d : day of week (0-6)

Differntial Code Bias P1P2yymm.DCB
yy : year
mm : month

Solution label00CHEyyyymmdd.pos

label : name of the receiver
yyyy : year
mm : month
dd : day

Table 1: The naming convention used in this project.

5ftp://ftp.unibe.ch/aiub/CODE

Permasense GPS Postprocessing 5

2.4 RTKLIB

Rtklib is an open source library containing several CUI and GUI applications
for various operations on different GNSS data types. In this project, the
following two command line tools were used 6:

Convbin This is a tool converting raw GPS data from a receiver into rinex
conform observation data.

Rnx2rtkp This tool is used in the last part of the compute solution.sh
script. Namely in the actual solution computation for the required position.
Many additional parameters can be given in order to have more accurate
output.

6For more information: www.rtklib.com

Permasense GPS Postprocessing 6

3 Results

3.1 The Scripts

compute solution.sh The main script to call in order to have a a solu-
tion computed is the so called compute solution.sh. As arguments it takes
a �-p� followed the path to a required parameter file (see section 3.2) and
a the date for which the solution shall be calculated. All further informa-
tion, such as the receiver for which the solution is desired, the base station
against which the receiver’s position is computed, the servers from which
the necessary data has to be downloaded and several directories indicating
where to store the created data and output must be given in the parameter
file.

Once the script is called, it first creates a temporary folder at location
../ relative to the directory in which it is launched. The GPS and IGS files
are downloaded into this temporary folder and and also the logfile for the
entire script execution is written here. Next, the existence of the given di-
rectories is verified. If all indicated directories are found, the script proceeds
to download the required data.
If still no errors have occurred, the conversion of the GPS raw data is done,
using the convbin tool mentioned above. If the conversion worked well, the
script finally executes the actual solution computation calling the rnx2rtkp
tool to which the downloaded IGS data are passed as command line argu-
ments. The resulting solution as well as the observation and IGS data are
then stored in their respective directories (indicated in the parameter file)
and the temporary directory is deleted.
Besides the mandatory two, the user can set the following options:

-b: This option set, the script will omit all download and conversion
concerning the base station. This means that the observation data for the
base station must be stored in the directory
gps data dir/basestation deployment/basestation label

-r: This option set, the script will omit all download and conversion con-
cerning the rover station.This means that the observation data for the rover
station must be stored in the directory
gps data dir/roverstation deployment/roverstation label

-d : This means that the required IGS data is already stored locally
and its download is therefore omitted. In case the needed data is not found
where it should be stored (igs data dir in the parameter file) the script stops
running.

Permasense GPS Postprocessing 7

-c: If this option is set, the conversion of the raw GPS data is skipped.
Obviously this presumes that the observation data for the rover station as
well as for the base station must already be stored in the correct directory
(gps data dir) in the parameter file. Like for the �-d� option, if the data is
not found, the script stops its execution.
A flowchart of the script is shown in figure 3.

Permasense GPS Postprocessing 8

Figure 2: The execution flow of the main script compute solution.sh 1/2

Permasense GPS Postprocessing 9

Figure 3: The execution flow of the main script compute solution.sh 2/2

Permasense GPS Postprocessing 10

convert.sh This script is called from inside the compute solution.sh and
is not designed to be executed alone. It merely checks if the tool convbin is
where it should be (in the rtklib dir) and then executes it. This tool takes
only one argument, namely the raw GPS data file to be converted. The call
of the convbin tool in the compute solution.sh is as follows:

$rtklib_dir’/convbin’ -d $temp_dir -o $rover_station_obs_file
$temp_dir’/’$rover_station_gps_file

This command calls the convbin tool (stored in rtklib dir) and stores the
observation file in the temporary folder (temp dir) under tha name assigned
to the variable rover station obs file.
The raw data as well as the converted observation file are stored in the
temporary folder (from where they will be removed at the end of the com-
pute solution.sh execution). It also accepts options �-b� and �-r� omitting
the conversion of gps raw data for the base or the rover station respectively.

calculate.sh Another bash script to be only called from within the com-
pute solution.sh script, since it also needs the paths to several directories
defined in it. Very much like the convert.sh script, this one mainly checks if
the required tool rnx2rtkp is found and then executes it. In contrast to the
convbin tool, rnx2rtkp needs to be passed several arguments:

$rtklib_dir’/rnx2rtkp -x 0 -k ’$rtklib_options_dir’/’
$rnx2rtkp_config_file’ -o ’$out_dir’/’$solution_file’ -p 3 -c
-e -r ’$ref_pos_x’ ’$ref_pos_y’ ’$ref_pos_z’ ’$temp_dir’/’
$rover_station_obs_file’ ’$temp_dir’/’$base_station_obs_file’
’$temp_dir’/’$nav_file’ ’$temp_dir’/’$sp3_file’ ’$temp_dir’/’
$clk_file’ ’

This command as it appears in the calculate.sh script takes several argu-
ments. The most important ones are quite obvious though and the reader
assumingly can easily guess whats assigned to a variable called ref pos x
for example. It can be seen that for the solution computation the obser-
vation data of the rover station (rover station obs file) as well as of the
base station(base station obs file) the navigation (rover station obs file) or-
bit (sp3 file) and clock correction data (clk file) are required. Furthermore
the position of the reference (base) station is passed to the tool (ref pos x ,
ref pos y ,ref pos z).
Another very important argument is the rnx2rtkp’s own configuration file
(rnx2rtkp config file). Herein many optional files (e.g. atmospheric data)
can be inserted into the calculation, leading to more accurate solutions.
The -k option indicates that input option from the configuation file are
taken into account.

Furthermore, some small python scripts are called from inside those three
bash scripts. They have to be stored in the same folder as them. Namely
the required python scripts are:

Permasense GPS Postprocessing 11

ConfigReader.py This script is called at the beginning of compute solution.sh.
And as the name indicates, it is responsible to read a configuration file, i.e.
the parameter file given as argument to compute solution.sh.

DateConverter.py Since GPS time and the Gregorian calendar time are
not quite the same dates have to be converted from the classic year/mon-
th/day format to GPS time. Moreover, to name the different files according
to the given convetion (see section 1) it is required to know what day of
the year or what day of the week this is. The DateConverter.py script is a
collection of such functions calculating the GPS Week, day of week or day
of year for classic format dates.

download gps data.py and download igs data.py The name actu-
ally says everything for those two scripts. The former downloads raw GPS
data for a certain receiver from the Permasense database (data.permasense.ch)
and the latter downloads the required IGS data for a given date from the
servers indicated in the parameter file.

get file name.py This is a collection of function returning the date-depending
file paths or file names.

GetUbxFileName.py A script returning the correct name for a file con-
taining the raw GPS data for a certain position (label, not number) and a
certain date.

GetObsFileName.py A script returning the correct name for a file con-
taining observation data for a certain position (label, not number) and a
certain date.

LogFileWriter.py A function called many times in any of the three bash
scripts. It takes two arguments. The first one is the path to the logfile in
which it has to write the log entry that is passed as string in the second
argument.

update file.py The rnx2rtkp tool requires its own configuration file (given
in the parameter file). Some of the files assigned to variables in this file how-
ever are date-depending. In the most basic case treated in this project, only
one file name has to be updated. Namely the file-dcbfile. So if one desires
to call the compute solution.sh several times with the same parameter file
without manually changing this entry every time, this function is responsi-
ble to update the path to the date-depending file-dcbfile. The file itself is
downloaded together with the other IGS data.

Permasense GPS Postprocessing 12

3.2 The Parameter File

As mentioned in section 3.1 the main entrance script compute solution.sh
takes two mandatory arguments. One is the date for which the solution is
desired and the other one is the path to a parameter file. It is very important
that this parameter file is completed correctly.
The file itself is divided into several sections that are all mandatory and
shortly described in the following paragraphs:

Positions The section [positions] lets the user decide for which rover sta-
tion and with respect to which base station he/she wants to have a solution.
The following table (2) shows the key-value pairs to be filled in in the
Positions section.

Key Description

roverstation deployment The Name of the deployment where the roverstation is

rover station nr The number assigned to this rover station

rover station label The name assigned to this rover station

basestation deployment The Name of the deployment where the basestation is

base station nr The number assigned to this base station

base station label The name assigned to this base station

ref pos x
ref pos x
ref pos x

The position of the basestation. In ECEF coordinates
relative to the reference position

Table 2: The keys in the [positions] section of the parameter file.

Servers In this section the user can define from where the required IGS
data will be downloaded.
Very important to note is that not all servers use the same directory struc-
ture and this tool is designed in order to work well with the servers in
the sample parameter file (see appendix B). It is not guaranteed that the
tool downloads correctly from other servers, since it automatically navigates
through the subdirectories that might be date-depending.
For example, if the given server to download the clock correction data file
is ftp://cddis.gsfc.nasa.gov/gnss/products and the date for which the data
is needed is 26th of January 2015, the actual location of the required file
is ftp://cddis.gsfc.nasa.gov/gnss/products/1829/igs18291.clk.Z where the
subdirectory 1829 is due to the fact that this date is in the GPS week
1829.
Overall three servers have to be indicated by the user as shows table 3

Permasense GPS Postprocessing 13

Key Description

dataserver 1 The server from which sp3 and clk files are downloaded

dataserver 2 The server from which navigation file is downloaded

dataserver 3 The server from which DCB file is downloaded

Table 3: The keys in the [servers] section of the parameter file.

Directories In this section the directories in which the downloaded data
as well as the results are stored after the solution calculation.
It is crucial for the correct execution of the script, that all of the given
directories really exist.
This section’s keys are descibed in table 4

Key Description

gps data dir The directory in which the observation data is stored

igs data dir The directory in which the IGS provided data is stored

output dir
The directory into which the resulting solution and the
logfile are stored at the end of the scripts execution

rtklib dir The directoy in which the convbin and the rnx2rtkp tools must be

rtklib options dir
The directory in which the configuration file for
the rnx2rtkp tool must be stored

Table 4: The keys in the [directories] section of the parameter file.

Another thing that must be kept in mind and verified before launching
the script is that the GPS data directory must have the following subdirec-
tory structure:

gps data dir
/roverstation deployment

/rover station label
/basestation deployment

/base station label

This is necessary because in case the program is called with options set,
then some data download is omitted. In that case, the program will look for
the data in the directories given in this section. The reason for this directory
substructure is that the program is adapted to a database on a server at the
TIK institute that uses this structure.

Files In this section only one parameter must be assigned. This is the
name of the configuration file the rnx2rtkp has to use.

Permasense GPS Postprocessing 14

If one of the keys is not found or has no value assigned to it, the com-
pute solution.sh stops its execution. A sample parameter-file is included is
the appendix B.

The Logfile During the execution of the program, a logfile is written in
the temporary folder created at the beginning. It is named the following
way: log yyyymmdd.txt where yyyymmdd indicates the year, the month and
the day for which the solution is calculated.
Furthermore, the output created by convbin and rnx2rtkp during their re-
spective execution is written into their own logfiles. These are called
log convbin bs.txt, log convbin rs.txt and log rnx2rtkp.txt respectively. The
rs and the bs in the convbin-logfile names stand for rover- and base station.
Once the script terminates, the logfile is stored together with the solu-
tion in the output directory. The log convbin rs.txt, log convbin bs.txt and
log rnx2rtkp.txt are deleted in case of successful solution calculation, since
their main purpose is that in case an error occurs while executing one of
those tools the user can read what happened.

4 Usage ot the Solution Calculation Tool

4.1 Pre Requirements

Before one can run the program (i.e. call the compute solution.sh script)
to compute a GPS solution for a specific receiver within the Permasense
Network several prerequisites have to be met.

The parameter file (see 3.2) has to be completed. All given directories
in it must exist before the launch of the script. The servers from which the
IGS data shall be downloaded must be specified (for example the ones in the
sample file in appendix B. As mentioned in section 3.2 it must be taken care
of the fact that the subdirectories in which the data lies on the server might
be date-depending and therefore the path completion performed by this pro-
gram might not be suitable for the specific servers. In this case, one would
have to adjust the functions get clk folderName and get sp3 folderName in
the get file name.py script so they would complete the paths correctly.
The Rtklib tools convbin rnx2rtkp tools must be stored in the given di-
rectory and the configuration file used by the latter must be supplied the
necessary filepath to the antenna correction file igs08.atx.
For more information about the possible options to be specified in that file,
the reader might consult the official manual at http://www.rtklib.com/prog/
manual 2.4.2.pdf .
Once these requirements are fullfilled the rest is not very complicated. The
possible command line options are explained in section 3.1 and the rest is
presented in the following sections with the aid of examples.

Permasense GPS Postprocessing 15

4.2 Examples

Basic In case the user doesn’t yet have any data but wants to compute
a solution for the sample day yyyy mm dd he/she has to do the following
prompt:

$ bash compute_solution.sh -p [path-to-parameter-file] yyyy mm dd

This is done in the following listing for February 13th 2014:

Listing 1: Output of basic usage of the program

1 $ bash compute_solution.sh -p /home/samuel/semester_project/tool/
config/parameter_file.txt 2014 2 13

2 opt_bs: false
3 opt_rs: false
4 opt_dl: false
5 opt_cv: false
6 Year Month Day: 2014 02 13
7 Created temporary folder /home/samuel/semester_project/tool/

scripts/../temp_20140213
8 Load configuration ...
9 Retrieving the file paths from the [directories] section within

the configuration file
10 Retrieving the positioning data from the [positions] section

within the configuration file
11 Retrieving the file adresses from the [servers] section within the

configuration file
12 End of configuration reading.
13
14 Gps raw data download...
15 Igs data download...
16 Call convert script
17 Close convert script
18 Call calculate script
19 The calculate script was called for rover GG01 (position 43) and

base station RG01 (position 39) for day 2014 02 13
20 /home/samuel/rtklib_2.4.2/cuis/rnx2rtkp -x 0 -k /home/samuel/

rtklib_2.4.2/conf/rtkpost_dirruhorn_static_v21.conf -o /home/
samuel/semester_project/results/GG0100CHE_20140213.pos -p 3 -c
-e -r 4392040.8940 602680.4440 4574388.7730 /home/samuel/

semester_project/tool/scripts/../temp_20140213/GG010440.14O /
home/samuel/semester_project/tool/scripts/../temp_20140213/
RG010440.14O /home/samuel/semester_project/tool/scripts/../
temp_20140213/brdc0440.14n /home/samuel/semester_project/tool/
scripts/../temp_20140213/igs17794.sp3 /home/samuel/
semester_project/tool/scripts/../temp_20140213/igs17794.clk

21 Solution calculation was successful.

Permasense GPS Postprocessing 16

22 The solution for rover GG01 (position 43) as well as the logfile (
log_20140213.txt) are now located at /home/samuel/
semester_project/results

In line 1 the program is called. In lines 2 until 12 the parameter file (at
/home/samuel/semester project/tool/config/parameter file.txt
) is read. While in line 7 the ourput informs the user where to find the tem-
porary directory. This is of importance in case any error leading to execution
abortion occurs. All data that was downloaded and created until then are
stored in that directory. However, here no errors occured.
Lines 14 and 15 indicate that the scripts responsible for the data download
are executed. Once the required data is downloaded, the raw GPS data is
converted into observation data (line 16-17) before the most important part
is done when computing the solution by the command written in line 20. A
long command, since it contains all files used with their absolute path.
In the end (line 22), the solution (GG0100CHE 20140213.pos) and the log-
file (log 20140213.txt) are moved into the output directory that was defined
in the parameter file.
Both, the GG0100CHE 20140213.pos and the log 20140213.txt as well as
the used parameter file.txt are completely shown in appendix A.1.
Nevertheless, the solution file shall be presented shortly in here.

Figure 4: The solution file created in this example

The meaning of the header lines (beginning with �%�) are explained in
the following table 5.

Permasense GPS Postprocessing 17

Key Description

program The program used to compute the solution

inp file The additional igs data used for the calculation

obs start Beginning of the measurements in this solution

obs end End of the measurements in this solution

pos mode The position mode used. Static promises the most accurate position

freqs
The frequency bands used for signal transmission between satellite
and receiver

solution The Solution type option. Combined for higher numerical stability

elev mask Satellites below this angle are neglected for the data collection

dynamics
Computes the position taking into accout velocity and acceleration
Not possible for static mode

tidecorr Earth tidal displacementt taken into account

ionos opt
Indicates how the ionospherical condition parameters
(e.g. total electron content) is obtained

tropo opt
The ZTD (Zenith Tropospheric Delay) i.e. the influence of the
troposphere’s composition on the signal travel time is estimated
from the GPS data

ephemeris Indicates what kind of ephemeris data is used (.sp3)

amb res Integer ambiguity resolution option

val thres Integer ambiguity validation option

ref pos Position of the antenna of the base station

Table 5: Description of the solution file header

These first header lines in table 5 are relevant for the precision of the
computed position written in the last line and described in table 6.

Key Description

GPST The calendar timefor which this position is calculated

x-ecef(m)
y-ecef(m)
z-ecef(m)

The x, y and z components (in meters) of the rover station’s position
Computed according to the positioning options

Q Flag indicating the solution’s quality

ns The number of valid (visible) satellites used for this solution estimation

sdx(m)
sdy(m)
sdz(m)
-sdx(m)
-sdy(m)
-sdz(m)

Standard deviation (in meters) of the different position’s components

ratio The ratio factor for the integer ambiguity validation

Table 6: Description of the solution file body

Permasense GPS Postprocessing 18

For more precise information about this output format, the reader is
invited to consult official documentation or the rtklib manual7.

Comparing the first and last line of the logfile, one can see that this so-
lution calculation took three minutes. This is of course too long if several
dates shall be computed together (as in the next example). For this purpose,
the user wight want to distribute the computation over multiple cores.

Several days If one is interested in seeing how a single receiver moves
from day to day, he/she simply has to call the main script in a loop con-
taining the dates in question.
The following call, for example, computes a solution for every day in Febru-
ary 2014:

1 for d in {1..28} ; do bash compute_solution.sh -p /home/samuel/
semester_project/tool/config/parameter_file.txt 2014 2 $d ;
done

After this is executed, the output directory (e.g. results) looks as
follows:

Listing 2: Content of the output directory after the script was executed for
the whole February 2014

˜/semester_project/results$ ls -l
insgesamt 336
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:21 GG0100CHE_20140201.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:25 GG0100CHE_20140202.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:28 GG0100CHE_20140203.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:32 GG0100CHE_20140204.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:36 GG0100CHE_20140205.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:39 GG0100CHE_20140206.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:43 GG0100CHE_20140207.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:47 GG0100CHE_20140208.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:51 GG0100CHE_20140209.

pos
-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:54 GG0100CHE_20140210.

pos

7http://www.rtklib.com/prog/manual 2.4.2.pdf

Permasense GPS Postprocessing 19

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 20:58 GG0100CHE_20140211.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:02 GG0100CHE_20140212.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:06 GG0100CHE_20140213.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:10 GG0100CHE_20140214.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:14 GG0100CHE_20140215.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:18 GG0100CHE_20140216.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:22 GG0100CHE_20140217.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:26 GG0100CHE_20140218.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:30 GG0100CHE_20140219.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:33 GG0100CHE_20140220.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:37 GG0100CHE_20140221.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:41 GG0100CHE_20140222.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:45 GG0100CHE_20140223.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:49 GG0100CHE_20140224.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:53 GG0100CHE_20140225.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 21:57 GG0100CHE_20140226.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 22:01 GG0100CHE_20140227.
pos

-rw-rw-r-- 1 samuel samuel 1384 Jun 30 22:05 GG0100CHE_20140228.
pos

-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:21 log_20140201.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:25 log_20140202.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:28 log_20140203.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:32 log_20140204.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:36 log_20140205.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:39 log_20140206.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:43 log_20140207.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:47 log_20140208.txt
-rw-rw-r-- 1 samuel samuel 5914 Jun 30 20:51 log_20140209.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 20:54 log_20140210.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 20:58 log_20140211.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:02 log_20140212.txt
-rw-rw-r-- 1 samuel samuel 6252 Jun 30 21:06 log_20140213.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:10 log_20140214.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:14 log_20140215.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:18 log_20140216.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:22 log_20140217.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:26 log_20140218.txt

Permasense GPS Postprocessing 20

-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:30 log_20140219.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:33 log_20140220.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:37 log_20140221.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:41 log_20140222.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:45 log_20140223.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:49 log_20140224.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:53 log_20140225.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 21:57 log_20140226.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 22:01 log_20140227.txt
-rw-rw-r-- 1 samuel samuel 5919 Jun 30 22:05 log_20140228.txt

Now it would be interesting to visualize these positions somehow. A short
instruction guide for this purpose is given in section 4.3 and the correspond-
ing images can be found in appendix B.

4.3 Plot the solution

Once the solution for a day or several days are obtained one might want to
have a quick look at the positions. For this purpose Rtklib also offers a tool
called rtkplot.

Rtklplot This is a very intuitive GUI and is used to plot solutions. In
this paragraph only the most important aspects of its usage are described,
for more detailed information, one should consult the official manual 8.
For a rudimentar use, one only needs to follow these steps:
1. Open the rtkplot GUI application.
2. In the menu �File�-�Open Solution� choose the solutions to be plotted.
Figure 7 shows the rtkplot GUI home screen and in appendix B some more
screenshots showing plots of the position of receiver number 43 with label
GG01 are pictured.

8http://www.rtklib.com/prog/manual 2.4.2.pdf

Permasense GPS Postprocessing 21

Figure 5: The rtkplot GUI

5 Outlook

More IGS Data In order to obtain a more accurate final solution, more
additional data provided by the IGS could be taken into account. Such as
for example earth rotation parameters or troposheric and ionospheric com-
position. An overview of the different products offered by the IGS can be
found online9.
In order to include these additional information in the solution computa-
tion the IGS data download part of the tool must be expanded and the
downloaded data must be passed to the rnx2rtkp tool in the calculate.sh
script.

Multiple Cores The execution of the program takes between two and
three minutes. In order to obtain the final solution faster, the step to take
could be that the program is launched using several cores instead of one.

Default temporary directory The program creates a new temporary
directory while running. All IGS and GPS data are downloaded into it and

9https://igscb.jpl.nasa.gov/components/prods.html

Permasense GPS Postprocessing 22

removed before the end, because the directory is eventually deleted. The in-
dividual files vary in size from a few hundreds of bytes up to some Megabytes
(e.g. the clock correction data). The data transport and therefore the whole
executin of the program could be accelerated if the tool would use the /tmp
directory exixsing on every computer running a Unix system.

6 Learning effects

When starting this semester project I had not programmed in Python before,
neither have I ever written any bash script. So I had at first to get a bit
familiar with these two languages. And finally I handled both more or less
well. So I can say that from a programming point of view I have learned
enough.

Second thing I had never used before was the svn Subversion control
tool and the connection to remote servers via ssh. Even though this wasn‘t
that hard a piece of work I am glad to have used it since I am expecting to
use it again.

Furthermore it was not too easy to start working with the Rtklib tools,
since there I wasn’t able to find good documentation on them and some er-
ror messages even only appeared in Japanese. Moreover I had no idea about
GPS computation relative to the reference station as RTK does. Neverthe-
less in the end and thanks to much help from my supervisor I was able to
use them correctly.

A part that posed more problems was the GPS measurement per se. Here
I had no idea before starting the project. Although I fortunately hadn‘t to
go too deep into this matter I learned some basics in this area too. As for
example the ECEF positioning format in which the final solution is given as
well as the fact that for precise positioning it is not enough for a receiver to
communicate with less than four satellites.
And finally what I encountered to be another hard piece of work was to get
familiar with the many different GNSS-related data formats. Some of them
weren‘t ASCII based so I had no idea about its real content. And those in
ASCII weren‘t really understandable either. Also I couldn’t imagine why
one needs several different files in order to compute a solution for only one
position. That is now very clear and actually quiet plausible. Another
question that bothered me quite a long time was that I always had the
feeling to need too many information or even to use some information twice.
As for example I couldn‘t see what the difference between the required sp3
and the navigation file was. Again I profited from my supervisor who has
a much brighter background in this field and helped me wherever he could.
Even though I am far from considering me an expert now, I learned some
interesting facts.

Permasense GPS Postprocessing 23

Appendices

A Input and Output files of the Examples

A.1 Basic Example

Listing 3: The parameter file parameter file.txt used in the basic example

sample parameter file for the compute_solution.sh script

IMPORTANT: the gps data directory (gps_data_dir) must have
the following subdirectory structure:

#
gps_data_dir
/roverstation_deployment
/rover_station_label
/basestation_deploymentelative to the reference

station as RTK does.
/base_station_label
#
Because the downloaded data will be stored in

those subdirectories.

[positions]

roverstation_deployment: dirruhorn
rover_station_nr: 43
rover_station_label: GG01

basestation_deployment: dirruhorn
base_station_nr: 39
base_station_label: RG01

ref_pos_x: 4392040.8940
ref_pos_y: 602680.4440
ref_pos_z: 4574388.7730

[servers]

#dataserver_1: clk and sp3 files
#dataserver_2: nav (.%yn)
#dataserver_3: DCB

dataserver_1=ftp://cddis.gsfc.nasa.gov/gnss/products
dataserver_2=ftp://cddis.gsfc.nasa.gov/gnss/data/daily
dataserver_3=ftp://ftp.unibe.ch/aiub/CODE

Permasense GPS Postprocessing 24

[directories]

gps_data_dir: /home/samuel/semester_project/gps_data
igs_data_dir: /home/samuel/semester_project/igs_data
output_dir: /home/samuel/semester_project/results
rtklib_dir: /home/samuel/rtklib_2.4.2/cuis
rtklib_options_dir: /home/samuel/rtklib_2.4.2/conf

[files]

rtklib_conf_file: rtkpost_dirruhorn_static_v21.conf

Permasense GPS Postprocessing 25

Listing 4: The configuration file for the rnx2rtkp tool (rtk-
post dirruhorn static v21.conf) used in the basic example

rtkpost options (2016/04/11 12:09:16, v.2.4.2)

pos1-posmode =static # (0:single,1:dgps,2:kinematic,3:
static,4:movingbase,5:fixed,6:ppp-kine,7:ppp-static)

pos1-frequency =l1+l2+l5 # (1:l1,2:l1+l2,3:l1+l2+l5,4:l1+
l2+l5+l6,5:l1+l2+l5+l6+l7)

pos1-soltype =combined # (0:forward,1:backward,2:combined)
pos1-elmask =10 # (deg)
pos1-snrmask_r =off # (0:off,1:on)
pos1-snrmask_b =off # (0:off,1:on)
pos1-snrmask_L1 =0,0,0,0,0,0,0,0,0
pos1-snrmask_L2 =0,0,0,0,0,0,0,0,0
pos1-snrmask_L5 =0,0,0,0,0,0,0,0,0
pos1-dynamics =off # (0:off,1:on)
pos1-tidecorr =on # (0:off,1:on)
pos1-ionoopt =est-stec # (0:off,1:brdc,2:sbas,3:dual-

freq,4:est-stec,5:ionex-tec,6:qzs-brdc,7:qzs-lex,8:vtec_sf,9:
vtec_ef,10:gtec)

pos1-tropopt =est-ztd # (0:off,1:saas,2:sbas,3:est-ztd,4:
est-ztdgrad)

pos1-sateph =precise # (0:brdc,1:precise,2:brdc+sbas,3:
brdc+ssrapc,4:brdc+ssrcom)

pos1-posopt1 =off # (0:off,1:on)
pos1-posopt2 =off # (0:off,1:on)
pos1-posopt3 =off # (0:off,1:on)
pos1-posopt4 =off # (0:off,1:on)
pos1-posopt5 =off # (0:off,1:on)
pos1-exclsats = # (prn ...)
pos1-navsys =1 # (1:gps+2:sbas+4:glo+8:gal+16:qzs

+32:comp)
pos2-armode =continuous # (0:off,1:continuous,2:

instantaneous,3:fix-and-hold)
pos2-gloarmode =on # (0:off,1:on,2:autocal)
pos2-arthres =3
pos2-arlockcnt =0
pos2-arelmask =0 # (deg)
pos2-arminfix =10
pos2-elmaskhold =0 # (deg)
pos2-aroutcnt =5
pos2-maxage =30 # (s)
pos2-syncsol =off # (0:off,1:on)
pos2-slipthres =0.05 # (m)
pos2-rejionno =30 # (m)
pos2-rejgdop =30
pos2-niter =1
pos2-baselen =0 # (m)

Permasense GPS Postprocessing 26

pos2-basesig =0 # (m)
out-solformat =xyz # (0:llh,1:xyz,2:enu,3:nmea)
out-outhead =on # (0:off,1:on)
out-outopt =on # (0:off,1:on)
out-timesys =gpst # (0:gpst,1:utc,2:jst)
out-timeform =hms # (0:tow,1:hms)
out-timendec =3
out-degform =deg # (0:deg,1:dms)
out-fieldsep =
out-height =ellipsoidal # (0:ellipsoidal,1:geodetic)
out-geoid =internal # (0:internal,1:egm96,2:egm08_2

.5,3:egm08_1,4:gsi2000)
out-solstatic =single # (0:all,1:single)
out-nmeaintv1 =0 # (s)
out-nmeaintv2 =0 # (s)
out-outstat =off # (0:off,1:state,2:residual)
stats-eratio1 =100
stats-eratio2 =100
stats-errphase =0.003 # (m)
stats-errphaseel =0.003 # (m)
stats-errphasebl =0 # (m/10km)
stats-errdoppler =10 # (Hz)
stats-stdbias =30 # (m)
stats-stdiono =0.03 # (m)
stats-stdtrop =0.3 # (m)
stats-prnaccelh =10 # (m/sˆ2)
stats-prnaccelv =10 # (m/sˆ2)
stats-prnbias =0.0001 # (m)
stats-prniono =0.001 # (m)
stats-prntrop =0.0001 # (m)
stats-clkstab =5e-12 # (s/s)
ant1-postype =llh # (0:llh,1:xyz,2:single,3:posfile

,4:rinexhead,5:rtcm)
ant1-pos1 =0 # (deg|m)
ant1-pos2 =0 # (deg|m)
ant1-pos3 =0 # (m|m)
ant1-anttype =
ant1-antdele =0 # (m)
ant1-antdeln =0 # (m)
ant1-antdelu =0 # (m)
ant2-postype =llh # (0:llh,1:xyz,2:single,3:posfile

,4:rinexhead,5:rtcm)
ant2-pos1 =46.0902331253624 # (deg|m)
ant2-pos2 =7.81338958264756 # (deg|m)
ant2-pos3 =3025.62992172179 # (m|m)
ant2-anttype =
ant2-antdele =0 # (m)
ant2-antdeln =0 # (m)
ant2-antdelu =0 # (m)
misc-timeinterp =off # (0:off,1:on)
misc-sbasatsel =0 # (0:all)
misc-rnxopt1 =
misc-rnxopt2 =
file-satantfile =/home/samuel/Semesterarbeit/testumgebung/igs/

Permasense GPS Postprocessing 27

igs08.atx
file-rcvantfile =/home/samuel/Semesterarbeit/testumgebung/igs/

igs08.atx
file-staposfile =
file-geoidfile =
file-ionofile =/usr/whymper/data-05/permasense_vault/gps/

external_dataproducts/igs_data/igsg%n0.%yi
file-dcbfile =/home/samuel/semester_project/igs_data/

P1P21402.DCB
file-eopfile =/usr/whymper/data-05/permasense_vault/gps/

external_dataproducts/igs_data/igs%W7.erp
file-blqfile =
file-tempdir =
file-geexefile =
file-solstatfile =
file-tracefile =

Permasense GPS Postprocessing 28

Listing 5: The logfile log 20140213.txt created in the basic example

Logfile started at: 30/06/2016 18:08

Called the compute_solution.sh script for the date: 2014 2 13

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Read the [directories] section of configuration file

All required keys in the [directories] section were found.

Check the existence of the given directories:

All directories have been found.

Read the [files] section of configuration file
All required keys in the [files] section were found.

Read the [positions] section of configuration file

All required keys in the [positions] section were found.

Read the [servers] section of configuration file
All required keys in the [servers] section were found.

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Download the gps data from the permasense public server:

Download the raw gps data for the roverstation GG01 for 2014 2 13
Downloading GPS data for Position 43
From 13/02/2014 01:00:00 to 14/02/2014 00:59:59 CET
Download gps data for station with label GG01 and position

number43
Download from: http://data.permasense.ch/multidata?vs[1]=

dirruhorn_gps_raw__binary__mapped&field[1]=gps_raw_data&
download_format=binary&order=asc&c_join[1]=and&c_vs[1]=
dirruhorn_gps_raw__binary__mapped&c_field[1]=position&c_min
[1]=42&c_max[1]=43&c_vs[2]=dirruhorn_gps_raw__binary__mapped&
c_join[2]=and&c_field[2]=gps_missing_sv&c_min[2]=-inf&c_max
[2]=0&c_vs[3]=dirruhorn_gps_raw__binary__mapped&c_join[3]=and&

Permasense GPS Postprocessing 29

c_field[3]=gps_unixtime&c_min[3]=1392249600000&c_max
[3]=1392335999000&timeline=gps_unixtime&time_format=unix HTTP
/1.1

The downloaded data are written into file named: GG010440.ubx
Downloaded the ubx file to /home/samuel/semester_project/tool/

scripts/../temp_20140213/GG010440.ubx
Download into the temporary folder successful
Download the raw gps data for the basestation RG01 for 2014 2 13
Downloading GPS data for Position 39
From 13/02/2014 01:00:00 to 14/02/2014 00:59:59 CET
Download gps data for station with label RG01 and position

number39
Download from: http://data.permasense.ch/multidata?vs[1]=

dirruhorn_gps_raw__binary__mapped&field[1]=gps_raw_data&
download_format=binary&order=asc&c_join[1]=and&c_vs[1]=
dirruhorn_gps_raw__binary__mapped&c_field[1]=position&c_min
[1]=38&c_max[1]=39&c_vs[2]=dirruhorn_gps_raw__binary__mapped&
c_join[2]=and&c_field[2]=gps_missing_sv&c_min[2]=-inf&c_max
[2]=0&c_vs[3]=dirruhorn_gps_raw__binary__mapped&c_join[3]=and&
c_field[3]=gps_unixtime&c_min[3]=1392249600000&c_max
[3]=1392335999000&timeline=gps_unixtime&time_format=unix HTTP
/1.1

The downloaded data are written into file named: RG010440.ubx
Downloaded the ubx file to /home/samuel/semester_project/tool/

scripts/../temp_20140213/RG010440.ubx
Download into the temporary folder successful

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Download the igs data from servers:
elative to the reference station as RTK does.
Download data from: ftp://cddis.gsfc.nasa.gov/gnss/products/1779/

igs17794.clk.Z
Write the data into igs17794.clk.Z
The file igs17794.clk.Z was successfully downloaded!
Download data from: ftp://cddis.gsfc.nasa.gov/gnss/products/1779/

igs17794.sp3.Z
Write the data into igs17794.sp3.Z
The file igs17794.sp3.Z was successfully downloaded!
Download data from: ftp://cddis.gsfc.nasa.gov/gnss/data/daily

/2014/044/14n/brdc0440.14n.Z
Write the data into brdc0440.14n.Z
The file brdc0440.14n.Z was successfully downloaded!
Download data from: ftp://ftp.unibe.ch/aiub/CODE/2014/P1P21402.DCB

.Z
Write the data into P1P21402.DCB.Z
The file P1P21402.DCB.Z was successfully downloaded!

The downloaded files are temporarily stored at /home/samuel/
semester_project/tool/scripts/../temp_20140213

Permasense GPS Postprocessing 30

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Update the rnx2rtkp configuration file
found the key file-dcbfile

Update config-file : the key file-dcbfile gets the new value /home
/samuel/semester_project/igs_data/P1P21402.DCB assigned.

The update was successful.

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Conversion of gps raw data into rinex format of observation data:

Conversion of the rover station gps raw data: GG010440.ubx:
Converted the rover station’s gps file.

Conversion of the base station gps raw data: RG010440.ubx:
Converted the base station’s gps file.

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Calculation of the solution for the date 2014 2 13:

Solution calculation for rover GG01 (position 43) and base station
RG01 (position 39) for day 2014 2 13

rnx2rtkp call: /home/samuel/rtklib_2.4.2/cuis/rnx2rtkp -x 0 -k /
home/samuel/rtklib_2.4.2/conf/rtkpost_dirruhorn_static_v21.
conf -o /home/samuel/semester_project/results/
GG0100CHE_20140213.pos -p 3 -c -e -r 4392040.8940 602680.4440
4574388.7730 /home/samuel/semester_project/tool/scripts/../
temp_20140213/GG010440.14O /home/samuel/semester_project/tool/
scripts/../temp_20140213/RG010440.14O /home/samuel/
semester_project/tool/scripts/../temp_20140213/brdc0440.14n /
home/samuel/semester_project/tool/scripts/../temp_20140213/
igs17794.sp3 /home/samuel/semester_project/tool/scripts/../
temp_20140213/igs17794.clk

The calculation of the rover GG01 (position 43) was successful.

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::
::: ::: :::

Permasense GPS Postprocessing 31

Store the downloaded igs data.

A File named igs17794.clk is already stored at /home/samuel/
semester_project/igs_data. The freshly downloaded one is
discarded.

A File named igs17794.sp3 is already stored at /home/samuel/
semester_project/igs_data. The freshly downloaded one is
discarded.

A File named brdc0440.14n is already stored at /home/samuel/
semester_project/igs_data. The freshly downloaded one is
discarded.

A File named P1P21402.DCB is already stored at /home/samuel/
semester_project/igs_data. The freshly downloaded one is
discarded.

A File named RG010440.14O is already stored at /home/samuel/
semester_project/gps_data/dirruhorn/RG01. The freshly
converted one is discarded.

A File named GG010440.14O is already stored at /home/samuel/
semester_project/gps_data/dirruhorn/GG01. The freshly
converted one is discarded.

Delete the temporary folder /home/samuel/semester_project/tool/
scripts/../temp_20140213.

Logfile closed at: 30/06/2016 18:11

Permasense GPS Postprocessing 32

Listing 6: The solution file lGG0100CHE 20140213.pos created in the basic
example

% program : RTKLIB ver.2.4.2
% inp file : /home/samuel/semester_project/tool/scripts/../

temp_20140213/GG010440.14O
% inp file : /home/samuel/semester_project/tool/scripts/../

temp_20140213/RG010440.14O
% inp file : /home/samuel/semester_project/tool/scripts/../

temp_20140213/brdc0440.14n
% inp file : /home/samuel/semester_project/tool/scripts/../

temp_20140213/igs17794.sp3
% inp file : /home/samuel/semester_project/tool/scripts/../

temp_20140213/igs17794.clk
% obs start : 2014/02/13 00:01:00.0 GPST (week1779 345660.0s)
% obs end : 2014/02/14 00:00:00.0 GPST (week1779 432000.0s)
% pos mode : static
% freqs : L1+L2+L5
% solution : combined
% elev mask : 10.0 deg
% dynamics : off
% tidecorr : on
% ionos opt : estimation
% tropo opt : est ztd
% ephemeris : precise
% amb res : continuous
% val thres : 3.0
% antenna1 : (0.0000 0.0000 0.0000)
% antenna2 : (0.0000 0.0000 0.0000)
% ref pos : 4392040.8940 602680.4440 4574388.7730
%
% (x/y/z-ecef=WGS84,Q=1:fix,2:float,3:sbas,4:dgps,5:single,6:ppp,

ns=# of satellites)
% GPST x-ecef(m) y-ecef(m) z-ecef(

m) Q ns sdx(m) sdy(m) sdz(m) sdxy(m) sdyz(m) sdzx(
m) age(s) ratio

2014/02/13 00:10:30.000 4391926.3790 602616.3559
4574411.9242 1 4 0.0011 0.0009 0.0010 -0.0002
0.0001 0.0010 0.00 82.3

Permasense GPS Postprocessing 33

B Rtkplot screenshots

Figure 6: Plot of the ground tracking for position GG01 relative to the ref-
erence position during February 2014. The plotted solutions were calculated
in section 4.2 under the paragraph �Several Days�

Permasense GPS Postprocessing 34

Figure 7: Plot of the east-west, north-south and up-down movement of
position GG01 relative to the reference position during February 2014. The
plotted solutions were calculated in section 4.2 under the paragraph �Several
Days�

