
Institut für
Technische Informatik und
Kommunikationsnetze

Roman May

Advanced Testbed Resource Allocation

Semester Project
Januar to April 2016

Supervisor: Prof. Dr. Lothar Thiele
Supervisor: Roman Lim

Abstract

FlockLab [1] is a testbed for embedded wireless sensor network applications, built in
2012. It is publicly accessible via a web front-end. Over the past few years the number
of users accessing FlockLab and hence the utizilation has increased drastically [2]. Since
FlockLab is only capable of running one test at a time, this has led to increased waiting
times for all users.
To counter this problem, the goal of this project is to increase the test throughput

of FlockLab by modifying it to run tests concurrently. To achieve this goal we modify
FlockLab on a test system and provide a scheduling for parallel tests.
In the evaluation we compare di�erent variants of our scheduling algorithm and verify

the scheduling. Further, we execute tests with real observers of FlockLab to verify
that our setup works with real hardware. Finally, we compare sequential and parallel
scheduling. The results show that parallel scheduling signi�cantly increases the test
throughput compared to sequential scheduling.

II

Contents

Contents

1. Introduction 1
1.1. Motivation and Contributions . 1

2. Related Work 3

3. Background 4
3.1. Wireless Sensor Networks . 4

4. Design 5
4.1. FlockLab . 5

4.1.1. Overview . 5
4.1.2. Webserver . 5
4.1.3. Database . 6
4.1.4. Test Management Server . 7
4.1.5. Observers . 7
4.1.6. Test Cycle . 8

4.2. Test System Setup . 9
4.3. Concept . 10

4.3.1. Resource Constraints . 10
4.3.2. Performance Considerations . 12

4.4. Scheduling Algorithm . 13
4.4.1. Absolute Time Mode . 13
4.4.2. ASAP Mode . 13

5. Implementation 15
5.1. Database . 15
5.2. Test Management Server and Observers . 15
5.3. Webserver . 16
5.4. Scheduling Algorithm . 16

5.4.1. General . 16
5.4.2. Get Resource Usage . 17
5.4.3. Merge Resource Arrays . 18
5.4.4. Scheduling . 19
5.4.5. Add Test to Database . 21

6. Evaluation 23
6.1. Scheduling Algorithm . 23

6.1.1. Di�erent Observers . 23
6.1.2. Same Observers . 24

6.2. FlockLab . 27

III

Contents

6.3. Past Tests . 28

7. Outlook 30

8. Conclusion 31

A. Appendix 34
A.1. Result Rescheduling of Past Tests . 34
A.2. Declaration of Originality . 41

IV

List of Figures

List of Figures

1. FlockLab - Number of Tests . 1

2. Test Cycle . 9
3. Model of an Observer . 10
4. Scheduling Algorithm - Absolute Time . 14
5. Scheduling Algorithm - ASAP . 14

6. Resource Usage . 18
7. Example Merge Resource Array . 19

8. Scheduling Performance - Di�erent Observers 25
9. Scheduling Performance - Same Observer 27
10. Result Rescheduling of Past Tests. 29

V

List of Tables

List of Tables

1. Example of a Resource Usage Table. 12

2. Result Rescheduling of Past Tests. 28

VI

Listings

Listings

1. Scheduling version one . 20
2. Scheduling version two . 21

3. Test Con�guration - Di�erent Observers . 23
4. Test Con�guration - Same Observers Test 1 26
5. Test Con�guration - Same Observers Test 2 26

VII

1. Introduction

1. Introduction

1.1. Motivation and Contributions

In the development of wireless sensor network applications, testbeds are indispensible.
They provide great opportunites for application debugging and performance and power
measurements. FlockLab [1] is a publicly accessible wireless sensor network testbed lo-
cated at ETH Zürich, that supports multiple wireless sensor nodes and provides accurate
measurements and helpful functions for debugging. Since the start of operation in 2012,
the number of users, as well as the number of executed tests, have grown (see �gure
1). The increasing number of tests, and hence higher utilization of FlockLab, has led to
increased waiting times for the users.

Figure 1: Number of tests over the last years [2].

FlockLab is only capable of running one test after another even if only parts of the
testbed are used. In this project, we aim to modify FlockLab to run tests in parallel on
unused components, thus increasing the test throughput.
At the moment, FlockLab consists of 32 observers. Observers are platforms that host

up to four slots for sensor nodes and implement the necessary hard- and software for the
di�erent services of FlockLab. This gives us the opportunity to not only run tests in
parallel on di�erent observers, but also on di�erent target nodes on the same observer,
given that the tests don't interfere with each other.
First, we create a concept on how to allow concurrent tests, that includes a model of

the resource constraints. The resource constraints are modeled with hardware resources
and a mapping between the test con�gurations and these resources. Afterwards, we use
this model to develop an algorithm, which checks the schedulability of new tests and
schedules them if it's possible. On a test system, we use this concept to modify FlockLab
for running test in parallel.
In the evaluation, we verify the proper scheduling of the algorithm, measure it's perfor-

mance, execute parallel tests on real observers of FlockLab and �nally, compare sequential
and parallel test scheduling.

1

1. Introduction

This report is organized as follows. First, we cover related work in section 2, continue
with background information in section 3 and elaborate our concept in section 4. The
implementation is covered in section 5, followed by the evaluation in section 6. Finally,
we present an outlook and a conclusion in section 7 and 8, respectively.

2

2. Related Work

2. Related Work

As already mentioned in the previous section, our project is based on FlockLab. We
provide an extension to run parallel tests. On FlockLab, this is the �rst project towards
parallelization of tests.
There are several other testbeds for WSN, but there is often little information available

about parallel running tests. For example Kansei [3] and Twist [4] provide no clear infor-
mation about parallel tests. However, there are still some testbeds that either indicate
parallel tests like MoteLab [5], NetEye [6] and DSN [7] or clearly state it like SenseNeT [8]
and MoteMaster [9]. Indriya [10] doesen't provide information about parallel tests in the
paper, but since it's based on MoteLab, it's likely that it supports the same features.
MoteLab developed a feature that allows parallel tests in di�erent lab zones, while

DSN supports the use of multiple servers with di�erent DSN networks. The di�erence
to our solution is that they only allow parallel tests in di�erent zones or networks, while
we support parallelization on observer and even node level.
NetEye, SenseNet and MoteMaster let the user chose the target nodes separately and

therefore allow parallel tests on node level. However, our solution has the possibility of
using di�erent target nodes on the same observer in parallel.
Furthermore, it's often not clear from the descriptions of the di�erent testbeds if they

provide some kind of automatic scheduling like we do with the possibility to run tests as
soon as possible. Also, the scheduling is more involved on FlockLab due to its complex
hardware that supports more than just programming and logging of target nodes.

3

3. Background

3. Background

3.1. Wireless Sensor Networks

With the advance in technology, the need for accurate, real-time environment informa-
tion arose. Wireless Sensor Networks (WSN) [11] are networks of small, low-power sensor
nodes capable of wireless communication. These small embedded systems typically con-
sist of one or more sensors, a data processing unit and communication components. The
sensor nodes build a mobile ad-hoc network and send the processed sensor data to a sink.

Examples for WSN applications are:

� Permafrost data sensing [12]

� Structural monitoring [13]

Development of WSN applications is a non-trivial task. They usually have high re-
quirements in terms of low power consumption and resource usage. Furthermore, the
debugging possibilities of WSN are limited. While simulations are helpful for debugging,
they lack precise measurements. WSN testbeds are experimentation platforms that can
be used to evaluate WSNs on real hardware and often provide multiple measurement
possibilities along with useful services for debugging.

4

4. Design

4. Design

In this section, we �rst provide detailed information about the parts of FlockLab that
are a�ected by this project. Next, we describe the setup of our test system, followed by
a conecpt on how to alter FlockLab for parallel tests.

4.1. FlockLab

Before explaining the modi�cations of FlockLab, some components and their functioning
is outlined. In the following, we �rst provide a brief overview of FlockLab and then
explain all parts that are important for our project in detail.

4.1.1. Overview

FlockLab is a testbed for WSN applications. It supports various sensor node platforms
and provides multiple services to debug and evaluate WSN applications. These services
are GPIO tracing, GPIO actuation, power pro�ling, adjusting the supply voltage and
serial I/O.
FlockLab currently consists of more than 30 observers. They contain a Gumstix XL6P

COM, slots for up to four target nodes and additional components for measurements and
for controlling the sensor nodes.
The front-end is a publicly accessible web interface where users can submit tests, get

the results and, if necessary, abort them. Furthermore it provides information about the
observer deployment, link qualities between the di�erent observers, etc.
Several servers build the back-end infrastructure: The NTP server is used for time

synchronization. The Web server provides the user interfaces and to schedule tests. The
test management server is responsible to copy the target binaries to the right observers,
starting and stopping of tests and collecting the test results. The database server hosts
a MySQL database for data storage and the monitoring server is used to detect malfunc-
tions of FlockLab.

4.1.2. Webserver

The webserver provides the user interface to administer tests and supplies the user with
information about the state of FlockLab. To submit a new test, the user creates an
XML �le for the test con�guration and submits it via the web interface. The possible
con�guration blocks in the XML �le can be found below. Only the relevant parts of each
block are described.

General Con�guration Each test needs exactly one general con�guration block. It de-
�nes when the test should be started. The two options are as soon as possible

5

4. Design

(ASAP) or at a prede�ned, absolute time (absolute time). The test duration has
to be speci�ed for ASAP tests, while the end time is needed for absolute time tests.

Target Con�guration One or more target con�guration blocks de�ne which image for
the target architecture is used on each observer. The images can either be previ-
ously uploaded via the web interface or embedded in the con�guration �le1.

Embedded Image Con�guration For each in a target con�guration referenced embed-
ded image, there has to be an embedded image con�guration block, that holds an
image for the target architecture.

Serial Con�guration In serial con�guration blocks, the user can con�gure the use of the
serial I/O service for one ore more observers. Additionally, the port that is used
for the service can be con�gured. The two options are serial or usb.

GPIO Tracing Service Con�guration The GPIO tracing service block holds the con�g-
uration for the GPIO tracing service. It's possible to con�gure it once for multiple
observers if the use the same con�guration or to use multiple blocks.

GPIO Actuation Service Con�guration This con�guration part is similar to the GPIO
tracing con�guration, but for the GPIO actuation service.

Power Pro�ling Service Con�guration This con�guration part is similar to the GPIO
tracing con�guration, but for the power pro�ling service.

After the user uploads a new test con�guration �le the webserver �rst checks if the
con�guration �le is valid and schedules the test if possible. If the user con�gured the test
to run ASAP, the scheduling calculates the next possible time for the test and stores it
in the database. For absolute time, the webserver only submits the test to the database
if no other test is planned at the desired time, else it's declined.

4.1.3. Database

The database contains tables with information about FlockLab's status, components,
users and tests. In the following, all tables that are important for this project are
described.

tbl_serv_observer This table has entries for all observers in the Network. For each
observer there are �elds for networking information, observer status and the ids of
the target adapters connected to each of the four slots.

tbl_serv_tg_adapt_list Each target adapter used in FlockLab is listed in this table
and linked to the corresponding target adapter type.

tbl_serv_tg_adapt_types The di�erent target adapter types are listed in this table.
Each of this entries is linked to the corresponding target architecture in the next
table.

1 Mote Runner is another option, but it's not covered in our project and therefore left out.

6

4. Design

tbl_serv_architectures As mentioned before, each observer has four slots for target
adapters that can be connected to a target platform. All possible target architec-
tures are listed in this table.

tbl_serv_tests If the webserver schedules a new test, it is saved in this table. The title
and description, start and end time, the con�guration �le and status of each test
are stored along with other information.

tbl_serv_map_test_observer_targetimages An entry for each used observer in a test
is created in this table in additional to the entry in the previous table. It holds the
information about the target image id used in a test for each observer.

tbl_serv_targetimages The target images for the target platforms are stored in this
table. This can be done either manually via webinterface or the webserver will do
it automatically if a test is submitted with an embedded image in the con�guration
�le.

4.1.4. Test Management Server

The test management server is responsible for the test management. It periodically
fetches tests from the database, prepares all target images and con�gurations for the
observers, starts and stops the tests and fetches the results. Finally, it provides the
results for the user. For this task, the server uses multiple python scripts. The most
important ones for our project are the following:

�ocklab_scheduler.py The scheduler script runs periodically on the test management
server. It checks if tests have to be started, stopped or aborted. If so, it starts the
dispatcher for this tests accordingly.

�ocklab_dispatcher.py The dispatcher is called by the scheduler for a single test with
di�erent modes for starting, stopping and aborting a test. To start a test, it
fetches the test con�guration �les and target images, prepares them for all used
observers and copies them to the observers. Eventually, it calls the script �ock-
lab_starttest.py on the observers and invokes the fetcher. To stop or abort a test,
the script python_stoptest.py is invoked on all used observers and then the dis-
patcher waits for the fetcher to �nish.

�ocklab_fetcher.py The fetcher collects all test results from the di�erent observers and
copies them to the test management server. Additionally, it processes the fetched
test results.

4.1.5. Observers

Each observer is equipped with an embedded computer to control the observer, four slots
for the target nodes, an SD card to bu�er the test results and additional components
for control, measurement or communication. When the script python_starttest.py is
called, the observer prepares the target architecture, starts the test on it and controls
con�gured services like power pro�ling or GPIO tracing. To stop a test, the script �ock-
lab_stoptest.py is called.

7

4. Design

At the moment, FlockLab supports the following target platforms:

� TinyNode

� Tmote Sky

� Opal

� Iris

� Mica2

� Wismote

� CC430

� Asynchronous communication module (ACM2)

� OpenMote

� Dual Processor Platform (DPP)

4.1.6. Test Cycle

A single test is proceeded as follows:

1. The user submits a test con�guration �le.

2. The webserver schedules the test.

3. The test is then stored in the database.

4. The scheduler on the test management server fetches the test and calls the dis-
patcher.

5. The dispatcher prepares the test �les, copies them to the used observers and starts
the test. Additionally, it starts the fetcher.

6. The test runs on the observers and test data is generated.

7. The fetcher periodically collects test data from the observers.

8. The scheduler gets the stop time of the test from the database and calls the dis-
patcher to stop the test.

9. The dispatcher stops the test on the observers and tells the fetcher to clean up.

10. The fetcher collects the last test data and processes it.

11. The user gets the test results.

A schematic overview of this process is shown in �gure 2.

8

4. Design

Figure 2: Test Cycle: Proceeding of a single test.

4.2. Test System Setup

In this section, we describe the setup of our test system. We used a notebook with Ubuntu
14.04 LTE and installed each component needed on this system. All of the necessary �les
can be found in the FlockLab SVN repository2. In the following we describe the setup
of all components.

Database We installed a MySQL server on the system and created the database �ocklab.
To add all tables and insert the content we used the script �ocklab_server_db.sql,
which is a dump from database of FlockLab.

Webserver Apache2 was installed as webserver. We copied the data needed for the
website from the SVN repository and con�gured apache accordingly.

Test Management Server The test management server is basically a collection of scripts
and automated tasks. Therefore, we just copied the needed scripts to our system
and changed minor parts of them to suit our setup. These changes were for example
the paths to the di�erent scripts in the con�guration �les. Additionally, we set up
cronjobs to run scripts, like the scheduler, periodically.

Observer For our purpose, it was su�cient to create an additional user pro�le that was
accessible via ssh to simulate an observer. We used the home directory of this user
on the notebook to create folders for the test images and con�gurations as well as

2 https://svn.ee.ethz.ch/flocklab/

9

https://svn.ee.ethz.ch/flocklab/

4. Design

for the test results and the scripts. Furthermore, we modi�ed the con�guration
�les again to suit our simulated observer.

4.3. Concept

In order to modify FlockLab for running tests in parallel, we �rst introduce our concept:
We model the resource constraints and use this model for the test scheduling. To do so,
we de�ne a set of exclusive resources, as well as a mapping between these resources and
a test con�guration. Exclusive resources are resources which can only be used by one
test at a time. To �nd them, we �rst examine the di�erent components of FlockLab.
The next step is to �nd the relation between a test con�guration and the resources. For
example an architecture or service that uses a speci�c hardware component in a test.
When a new test is submitted, we calculate time intervals during which the same

exclusive resources are used. This resource usage time intervals are then compared to
previously scheduled tests in the database to �nd the next free time slot for ASAP tests
or to decide if the test can be accepted or has to be declined for absolute time tests.

4.3.1. Resource Constraints

To de�ne the exclusive resources in FlockLab we have to �nd all components of FlockLab
which can not be shared by di�erent tests. Each component has to be examined sepa-
rately to get all exclusive resources. First, we analyze the hardware of a single observer:
There is an embedded computer, four sensor node platforms, a multiplexer, an USB hub
and some test independent parts that are not a�ected by parallel running tests (see �gure
3).

Figure 3: Model of an observer [1].

We start with the target slots. They are exclusive resources because the target plat-
forms can only run one test image at a time. The multiplexer is used to send and receive

10

4. Design

information either directly from a sensor node or from one of the di�erent services like
power pro�ling. The multiplexer can only select one target slot at the same time, thus we
model it as an exclusive resource.In contrast to the multiplexer, the USB hub can access
all slots simultaneously. Hence, we neglect it in the model of the resource constraints.
The embedded computer is capable of multitasking and therefore not modeled as an ex-
clusive resource. However, whether the embedded computer can manage the additional
load or not, is a di�erent aspect and is covered in the section 4.3.2.
After the observer hardware is examined, there is still another factor which has to

be considered on a single observer: The frequency used by the targed node's wireless
communication system. As there are three di�erent frequencies used by the di�erent
target platforms, 2.4 GHz, 868 kHz and 433 kHz, we model each frequency as a single
exclusive resource. The other components, the webserver, the database and the test
management, are capable to run parallel tasks and are therefore not exclusive resources.
In conclusion, we de�ne the following exclusive resources for each observer of FlockLab:

� Platform slot 1

� Platform slot 2

� Platform slot 3

� Platform slot 4

� Frequency 2.4 GHz

� Frequency 868 kHz

� Frequency 433 kHz

� Multiplexer

After the above de�nition of the exclusive resources in FlockLab, the next step is to
�nd a method to map a test con�guration to this resources. Additionally, we can use
information from the database about the observers and the target architectures. In the
following, we examine all exclusive resources and specify the information needed for the
mapping.
First, we examine the platform slots of the observers. As mentioned before, we can

only run one test on a single target at the same time. We can combine the information
from the con�guration �le about the used observer and platforms with data from the
database to get the used slots. With the target architecture determined, the frequency
is given as well.
To get the multiplexer usage on each observer, we �rst have to �nd all services and

tasks that use the multiplexer. These services are: GPIO tracing, GPIO actuation,
power pro�ling, adjusting the supply voltage and serial I/O tracing over the serial in-
terface. Furthermore, the multiplexer is used for operating the Reset/Prog pin. The
observers start and stop a test on the target platform with this pin. During the setup
and the cleanup of a test, the multiplexer is used as well. The information if and when
these services are used and the time intervals for the start, stop, setup and cleanup phase,
are contained in the con�guration �le.

11

4. Design

Summarized, we need the following information for each test and observer:
� observer Id + architecture ⇒ slots numbers
� architecture ⇒ frequencies
� used services + start/stop + setup/cleanup ⇒ multiplexer

With this mapping between test con�gurations and the exclusive resources we �nished
the model the resource constraints. The next step is to �nd a representation of the
resource usage that can be used for the scheduling of new tests.
We chose to format the resource usage as a list of used resources in a time interval.

Since a test normally doesn't use all resources at all times of a test, we �rst calculate all
time intervals in which the resource usage is the same. Then, to store this information
in a table of the database, we generate arrays which have the start time of the interval
as the �rst and end time as the second element, followed by bits which represent the
resource usage. An example of a resource table3 is shown in table 1. In the following we
will reference to one line of this table as a resource array and to the table itself as the
resource table.

Table 1.: Example of a resource usage table.

Start End Res. 1 Res. 2 Res. 3 ... Res. n

12:00:00 12:03:00 1 0 0 ... 0

12:03:01 12:06:01 1 1 0 ... 1

12:06:02 12:09:02 1 0 0 ... 0

When a new test is submitted, we can now calculate the resource usage of the test and
compare it to the resource arrays from the database for the scheduling. The scheduling
algorithm is explained in detail in section 4.4.

4.3.2. Performance Considerations

In this section, we cover possible performance issues caused by parallel running tests.
Two components of FlockLab are handled: The embedded computer on an observer and
the bandwidth needed by the test management server for the test data collection. In
the following, we explain why we did not consider them in our model. However, if tests
prove our assumption as wrong, it would be necessary to extent our model to cover those
resources as well.
Both, the bandwidth used for the data collection and the load on the embedded com-

puter of an observer are proportional to the amount of produced data by a test. We
assume, that all components of FlockLab can handle any arbitrary, single test without
running on it's limits. A test that runs on all observers and uses all monitoring ser-
vices clearly produces the highest amount of data, but at the same time only allows
parallel tests that do not use the multiplexer on any of the observers. Therefore, an
additional test can only use the serial I/O service over USB which generates signi�cantly
less data. We assume, that this relatively small amount of additional data will neither

3 The start and stop times in the example are changed to a readable form. For all calculations seconds
from the epoch are used.

12

4. Design

push the embedded computer to it's limit, nor exceed the available bandwidth for the
data collection.

4.4. Scheduling Algorithm

In this section, we explain our scheduling algorithm which uses the previously built model
to schedule new tests. As mentioned before, the user can choose between two modes:
ASAP and absolute time. We �rst go through the absolute time mode and then extend
the algorithm to support ASAP mode.

4.4.1. Absolute Time Mode

A �ow chart of the scheduling algorithm for absolute time mode is depicted in �gure 4.
It gets a test con�guration �le as an input, has access to the data in the database and
outputs a boolean that indicates if it's possible to schedule the test at the desired time
or not.
First, the algorithm calculates the usage of each exclusive resources from the con�g-

uration �le. Then it calculates time intervals in which the resource usage of the test is
the same and generates resource arrays. Next, the algorithm fetches the resource arrays
which overlap in time from the resource table. Afterwards, the resource usage in the time
intervals is compared. The new test is accepted and added to the database if the resource
usage in overlapping time intervals is distinct, else it's declined.

4.4.2. ASAP Mode

We slightly change the previous algorithm to support ASAP Mode as well. Compared
to the absolute time mode, the algorithm doesn't have to accept or decline a test. It has
to return the next possible time slot to execute the submitted test. We extended the
previous algorithm to get a �rst time slot by using the actual time plus the setup time,
which is needed to prepare a test, as start time. The end time is simply the start time
plus the duration of the test. Then we use a slightly modi�ed algorithm for absolute time
tests and increase the starting time each time the algorithm returns decline test until we
get a time slot that is accepted. A schematic of the extended algorithm is provided in
�gure 5.

13

4. Design

Figure 4: Flow chart of the scheduling algorithm for absolute times.

Figure 5: Schematic of the extended scheduling algorithm that supports ASAP mode.

14

5. Implementation

5. Implementation

In this section, we �rst discuss the necessary modi�cations of the di�erent parts of Flock-
Lab to support parallel tests. Then we show the implementation of the scheduling algo-
rithm. The scripts are explained either directly or with the help of pseudo code.

5.1. Database

First, we have to store the information about which frequencies are used by the di�erent
target platforms. As there is already a table tbl_serv_architectures in the database that
contains information about the architectures, we simply add columns for all di�erent
frequencies, 2.4 GHz, 868 MHz and 433 Mhz. We �ll this colums with either True if
the architecture uses this frequency or False if it doesn't. Compared to just use one
column with the used frequency as integer, this solution supports architectures which
use multiple frequencies.
In FlockLab, each previously scheduled test is stored in the database in the table

tbl_serv_tests. This table contains the start and stop times, the con�guration �le it-
self and some other information. Additionally, there is the table tbl_serv_map_test_
observer_targetimages which contains a mapping between observers and tests. We keep
this two tables as they are, but we also need information about the resource usage of the
planned tests. Therefore, we create a new table tbl_serv_test_resource in the form of
the previously explained resource table to store the resource arrays.
We chose the name of the resources and therefore the table columns to be in the

form: obs_<observer id>_<resource> (e.g. obs_007_mux or obs_202_slot_2). The
reason for this is that we can easily generate this names from the con�guration and use
a mapping table between the resource names and their positions in the resource arrays.

5.2. Test Management Server and Observers

On the test management side, we have to modify some of the scripts to support parallel
tests. In the following, we explain the changes in the di�erent scripts described in section
4.1.4, including the �ocklab_starttest.py script on the observers from section 4.1.5.

�ocklab_scheduler.py Compared to the sequential test management, it's now possible
that multiple tests have to be started, stopped or aborted at the same time. We
modify the script that it �rst fetches all tests which have to be started from the
database. Then it starts separate threads for each of those tests. Afterwards, it
does the same for the tests that have to be stopped or aborted. Additionally, we
change the start thread to �rst alter the status of the test in the database to planned
to prevent another scheduler from trying to start the same test again. Previously,
this was done by the dispatcher. Finally, we add a delay to the start thread to

15

5. Implementation

prevent a test to be started before the planned time. This was no problem before,
but with parallel tests, an early started test would falsify the resource table.

�ocklab_dispatcher.py We change two parts in the dispatcher script. First, the dis-
patcher now saves the test con�gurations and images on the observer in a sub
folder for this test and submits the test id as an argument when calling �ock-
lab_starttest.py. Second, when scheduling a scheduler to stop the test, the dis-
patcher �rst checks if there is already a scheduler scheduled at that time. If there
is already one it's not necessary to schedule another.

�ocklab_starttest.py We change this script to use the image and con�gurations form
the test id subfolder mentioned before. Furthermore, the observer now stores the
test results in a subfolder for the test.

�ocklab_fetcher.py The fetcher gets the test results from the corresponding test data
folder on the observers. There is no other modi�cation necessary as it already
stores the test results in separate folders on the test management server.

With this modi�cations we make sure that neither the test con�gurations and images
nor the test results of di�erent tests are mixed up.

5.3. Webserver

On the webserver, PHP scripts used to schedule new tests when they are submitted. We
changed this part to call a python script instead. This script schedules tests by using the
concept explained in section 4.3.

5.4. Scheduling Algorithm

In this section, we show the new scheduling algorithm for parallel tests in detail. As
already mentioned, the algorithm gets a new test con�guration �le as input and outputs
if the test is schedulable. If so, the test is scheduled and stored in the database. The
algorithm can be split in �ve parts: A general part, getting the resource usage from the
con�guration, merge the resource arrays, the actual scheduling of the test and �nally
adding the test to the database.

5.4.1. General

In the general section we execute tasks that are used by the other parts of the script. Be-
sides standard tasks, like connecting to the database and creating a logger, the following
is done:

Create Resource Name to Position Mapping The order of the di�erent exclusive
resources from the resource table in the database and in the resource array has to be the
same, therefore, we �rst build a mapping between those. The algorithm fetches the titles
of the columns and stores them in a python dictionary with the name of the resource as
key and position as value to keep this mapping dynamic for name changes or additional
resources. The dictionary is called resourcePosition.

16

5. Implementation

Parse XML File The test con�guration XML �le is the main source to get the resource
usage of a test. We parse it right at the beginning to make the di�erent con�guration
parts easy accessible for the following tasks.

Get Observer Ids and Architectures All of our exclusive resources are dependent on
the used observers. Hence, it is appropriate to get a list of them right at the beginning.
Further, we store the information about which architecture is used on each observer. We
need the architecture later to get the slot and frequency resources.

Get Test Times We need to fetch the start and end time of the test to get the time
intervals in which the resources are used. This information can be found in the con�g-
uration for absolute time tests. For ASAP test on the other hand, we use the current
time plus setup time as start time and use the test duration from the con�guration to
calculate the end time.
In the evaluation of our system we noticed that in some cases it's bene�cial to round

up the start time to the next full minute. The advantages and disadvantages of the
rounding are explained in section 6.

5.4.2. Get Resource Usage

We use separate functions to get the usage of each of the di�erent resource types fre-
quency, slot and multiplexer. Each of this functions returns resource arrays with the
usage of this resources. The reason for this is to make it as simple as possible to adapt
this script for additional resources. To extend our algorithm for further resources, it is
su�cient to add columns for the new resources in the resource table and write a function
that generates resource arrays for them.
The functions have in common that they �rst generate a list with the names of the used

resources together with the time intervals in which these resources are used. If the usage of
the resources change throughout the test, multiple time intervals with the corresponding
resource lists are calculated. To generate resource arrays out of the resource usage lists
the functions utilize a helper function getResourceArray. GetResourceArray gets time
intervals and a list of the used resources as input. It uses the resourcePosition dictionary
to translate this list of resources to an ordered array with the start time as �rst and
end time as second element, with the following elements indicating if the resource at this
position is used.
An overview of the resource usage throughout a test is depicted in �gure 6. In the

�gure, the multiplexer resource is split, since the time intervals can di�er for varying
service con�gurations. Multiplexer with and without service means with and without
the use of services that use the multiplexer.

Resource: Slot We already stored the observer ids and the used architectures in the
general section. Therefore, we can use this information together with data from the
database to get the slot number of the used architecture on each observer and generate
the resource usage list.
To get the time interval, we need to consider the setup und cleanup times of a test.

The setup time is used to prepare the test on an observer, while the cleanup time is used

17

5. Implementation

Figure 6: Overview of the resource usage throughout a test.

to fetch the last results and clean up on the observer. In both of this phases, the target
architecture is already used. In conclusion, this resource generates a single time interval
between start time - setup time and end time + cleanup time.

Resource: Frequency We can fetch the used frequencies from the database with the
previously stored information about the used architectures.
Compared to the slot resource, the frequency is only used during the test, but not

during setup and cleanup. Therefore, we get a single time interval from the start time
to the end time of the test.

Resource: Multiplexer This functions scans through the XML �les and fetches all
service con�gurations. As mentioned in section 4, the multiplexer is used for the following
services: GPIO tracing, GPIO actuation, power pro�ling and serial I/O service over the
serial interface.
Apart from those services, the multiplexer is used to setup and cleanup a test, as well

as to start and stop a test. Thus, each observer which uses one or more of the above
services is used from start time - setup time until end time + cleanup time. If an observer
is not con�gured to use those services, it is still needed for the setup and start phase as
well as for the stop and cleanup phase of the test.
In conclusion, this function can produce up to three time intervals with di�erent re-

source usage.

5.4.3. Merge Resource Arrays

Now we have multiple, overlapping resource arrays with distinct resources. The next
step is to merge them in non-overlapping, timely ordered resource arrays before we can
schedule the test. We do this by inserting them one by one to the right position of a
new list and combining them if necessary. This process is best shown with the example
depicted in �gure 7.
The table on the left side shows four example resource arrays we want to merge. On

the right side, we see the resulting table after adding each of the resource arrays. We
search entries which overlap in time and merge the resource usage with an OR operation
to add a new array. For the remaining time we insert new time intervals at the right
position to keep the timely ordering. After this step, the resource arrays are ready for
the scheduling algorithm.

18

5. Implementation

Figure 7: Example of the merging of multiple, overlapping resource arrays.

5.4.4. Scheduling

In the course of this project, we developed two slightly di�erent scheduling algorithms.
They generate the same output, but access the database in di�erent ways. In the fol-
lowing, we show the di�erent variants of the scheduling and discuss the advantages and
disadvantages of them.
The basic principle of both algorithms is same: They both consult the resource table

in the database and check if the used resources are available in the given time intervals.
If they are, the test can be scheduled. If not, for ASAP tests, the start and stop times
of all resource arrays are increased and for absolute times, the test is declined. The time
increment for the resource arrays is calculated as follows: We �rst locate the two resource
arrays that overlap in time and use partly the same resources. This is always one from
the new test and one from the database. Then we choose the time increment to be the
minimum that still ensures this two resource arrays to not overlap in time in the next
iteration. This method ensures that the start time of the test is minimally increased and
does not lead to unnecessary long waiting times.
The procedure of the two algorithms can be found in pseudo code in listing 1 and 2.

The di�erence between the two algorithms is, that the scheduling version one fetches
only resource arrays from the database that overlap in time with the new test, while
the scheduling version two fetches the whole database at the beginning. The advantage
of scheduling version one is that it doesn't fetch more data from the database than
necessary for one iteration, the disadvantage that it has to fetch data in each iteration.
The scheduling version two once loads the whole resource table, but doesn't have to
repeat it each iteration, which results in much faster iterations. Therefore, scheduling
version one is better to minimize the memory usage, while version two is signi�cantly

19

5. Implementation

faster if there are a lot of previously scheduled tests. The evaluation of the di�erent
versions can be found in section 6.

Listing 1: Scheduling version one

1 de f schedu le ([L i s t] re sArrays) :
2 # repeat un t i l the t e s t i s scheduled and manually ex i t ed
3 whi le not scheduled :
4 i s S chedu l ab l e = True
5 # Fetch r e sou r c e ar rays from db which over lap in time
6 dbResArray = fetch_overlapping_resArrays_from_db ()
7 f o r new in resArrays :
8 f o r o ld in dbResArray :
9 i f t ime Inte rva l sOver l ap (new , o ld) :

10 # check i f they use d i f f e r e n t r e s ou r c e s (b i tw i s e or)
11 i f any ([x&y f o r (x , y) in z ip (new [2 :] , o ld [2 :])]) :
12 i s S chedu l ab l e = Fal se
13 t imeSh i f t = old [1] + 1 − new [0]
14 break
15

16 i f not i s S chedu l ab l e :
17 break
18

19 i f not i s S chedu l ab l e :
20 i f ASAP:
21 resArrays = increaseTimes (resArray , t imeSh i f t)
22 cont inue
23 e l s e :
24 re turn Fal se
25 e l s e :
26 re turn True

20

5. Implementation

Listing 2: Scheduling version two

1 de f schedu le ([L i s t] re sArrays) :
2 # f i r s t get ALL re sou r c e ar rays from the db
3 dbResArray = fetch_resArrays_from_db ()
4 whi le not scheduled :
5 t imeSh i f t = 0
6 i s S chedu l ab l e = True
7 # loop through a l l o ld r e s ou r c e ar rays
8 f o r o ld in dbResArray :
9 # compare them with the f i r s t one from the new t e s t (+ t imeSh i f t

)
10 i f t ime Inte rva l sOver l ap (resArrays [0] + t imeSh i f t , o ld) :
11 i f any ([x&y f o r (x , y) in z ip (new [2 :] , o ld [2 :])]) :
12 # i f the c o l l i d e and mode i s not ASAP −> return
13 i f not ASAP:
14 re turn Fal se
15

16 # Else , add the nece s sa ry t ime s h i f t and cont inue
17 e l s e :
18 t imeSh i f t += old [1] + 1 − new [0]
19 cont inue
20

21 # i f the f i r s t r e s ou r c e array didn ' t c o l l i d e apply t imeSh i f t to
a l l i n t e r v a l s and check the o the r s

22 resArrays = increaseTimes (resArray , t imeSh i f t)
23

24 i sSchedu lab l e , t imeSh i f t = checkOtherArrays (resArrays , o ld)
25 i f not i s S chedu l ab l e :
26 # cont inue with the new t ime s h i f t i f the other did c o l l i d e
27 cont inue
28 e l s e :
29 re turn True

5.4.5. Add Test to Database

Finally, if the scheduling returned a valid time slot, the only task left is adding the
test to the database. While the entries in the tables tbl_serv_tests and tbl_serv_map_
test_observer_targetimages are done exactly the same as in the original FlockLab, the
resource table entries are a bit trickier. The reason for this is that we have to merge the
entries with existing ones if they overlap in time. We do this by fetching all resource
arrays from the resource table which overlap with the new ones and delete them in the
database. Then we feed all resource arrays, the ones we fetched from the database and
the ones from the new test, to the merging algorithm we used before. Finally, we can
add the now non-overlapping arrays to the resource table.
This is exactly the point where the rounding of the start time to the next full minute

can make a di�erence. While the whole algorithm works in exactly the same manner for
both cases, the resulting resource table can be bigger if we don't round the start time.
Assume two tests with the same con�guration, but with di�erent observers. We submit
them in the same minute, but a few seconds apart. When we don't round the start time
of the two tests, all time intervals will be shifted a few second. Thus, when we add the
second test to the database, we have to split all of them. This results in the doubled

21

5. Implementation

number of resource arrays in the database. On the other hand, if we round the start time
to the next full minute, the intervals are exactly the same and we only have to update
the existing ones when adding the second test. The impact of this behavior on the time
needed to schedule a new test is discussed in section 6.

22

6. Evaluation

6. Evaluation

To test our modi�cations we executed multiple experiments. We �rst veri�ed the correct
scheduling of our algorithm and measured it's performance on the test system with
arti�cially generated tests. Then we tested our modi�cations with the real observers of
FlockLab. Finally, we fetched all past tests from the FlockLab database and rescheduled
them on our test system. The exact setup of our tests and their results are shown below.

6.1. Scheduling Algorithm

The �rst task of our evaluation was the veri�cation and performance measurement of our
algorithm. We used scripts to generate arti�cial test con�guration �les in a certain way
and scheduled them. Afterwards, we fetched the scheduled test from the database and
used di�erent checks to test if the scheduling was correct. We tested two speci�c cases:
Parallel test on di�erent observers and parallel test on the same observer.

6.1.1. Di�erent Observers

To verify the scheduling for tests on di�erent observers, we used the XML in listing 3 as
a base. The dbImageId points to an existing target image in the database with Tmote
architecture and the obsIds are added later.

Listing 3: Test Con�guration - Di�erent Observers

1 <genera lConf>
2 <name>FlockLab Test Schedul ing</name>
3 <de s c r i p t i o n>Generated xml to t e s t s chedu l ing .</ d e s c r i p t i o n>
4 <scheduleAsap>
5 <durat ionSecs>600</ durat ionSecs>
6 </scheduleAsap>
7 <emai lResu l t s>yes</ ema i lResu l t s>
8 </genera lConf>
9

10 <targetConf>
11 <obsIds></ obsIds>
12 <vo l tage>3 .3</ vo l tage>
13 <dbImageId>41</dbImageId>
14 </ targetConf>
15

16 <se r i a lCon f>
17 <obsIds></ obsIds>
18 <port>s e r i a l</ port>
19 </ s e r i a lCon f>

We randomly separated all observers in three equally sized groups. For the �rst and
second of these groups we modi�ed the base con�guration to use observer from the
respective groups. We submitted each of these two test con�guration �les n-times in

23

6. Evaluation

random order to our scheduler. Each time we measured the time needed by the scheduling
algorithm to schedule a new test.
After all tests are scheduled, we executed the following automatic checks to verify the

scheduling:

Observer Mapping Each of the observers in the �rst two groups are used in exactly n
tests. None of the ones in the last group is used in any of the tests.

Resource Arrays Time Interval None of the resource arrays in the resource table overlap
in time.

Parallel Tests The test are scheduled in parallel, if it's possible, not sequential.

To compare the two di�erent scheduling algorithms and the results with and without
rounding of the start time, we repeated this procedure for each combination of them.
All of this combinations successfully passed all tests without any errors. We repeated
this whole process multiple times to get more reliable results. The performance of the
di�erent scheduling algorithms is depicted in �gure 8. We ran the test 50 times with a
total of 200 scheduled tests per run (100 tests per observer group). The top four graphs
show the time needed (y-axis) to schedule the n-th test (x-axis). The blue lines show the
performance for each individual run whereas the red line represents the mean of all runs.
As expected, the scheduling algorithm version two is clearly faster and the time increase
to schedule an additional test is signi�cantly smaller than in the version one.
The di�erence between rounded and not rounded start times can be seen in the top

right graph. The blue lines can clearly be separated into two groups. The bottom group
shows the same result as for the rounded start times while the top one is signi�cantly
slower. This happens when the �rst of the test on one of the observers groups is scheduled
not at exactly at the same time as the �rst test of the other group. The reason for this
is that the �rst test of the second group is scheduled a minimum of one second later
than the �rst one of the �rst group. This causes all tests of the di�erent groups to be
shiftet one or more seconds and therefore the number of resource arrays in the resource
table to double. Since the scheduling algorithms does an iteration for each resource array
in the resource table that collides with the test, the number of iterations doubles as
well. The same explanation holds for the graph for the scheduling algorithm version two
without rounding, but without the noticeable split, because the gradient of the curve of
the scheduling algorithm version two is much smaller.
The graphs at the bottom of the �gure show the comparison of the di�erent variants.

The combination with the best performance is the scheduling algorithm version two with
rounding. However, since the rounding can cause a user to wait up to a minute more
for his test to start and the performance without rounding is only a�ected if multiple
tests are submitted in the same minute on di�erent observers, we recommend to using it
without rounding. The use of version one is recommended if memory usage is an issue.

6.1.2. Same Observers

We used a similar approach to verify the scheduling algorithm for parallel tests on the
same observer. The two di�erent test con�gurations in listing 4 and 5 forced the schedul-
ing algorithm to schedule the test in parallel on the same observer. Note the di�erent

24

6. Evaluation

0 50 100 150 200
Test Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]

Scheduling v1 Rounded

Mean

0 50 100 150 200
Test Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]

Scheduling v1 not rounded

Mean

0 50 100 150 200
Test Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]

Scheduling v2 Rounded

Mean

0 50 100 150 200
Test Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]
Scheduling v2 not rounded

Mean

0 50 100 150 200
Test Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]

Comparision

Mean v1 rounded
Mean v1 not rounded
Mean v2 rounded
Mean v2 not rounded

V1 Rounded

V1 not Rounded

V2 Rounded

V2 not Rounded
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
[s

]

Rounded vs. not rounded

Figure 8: Performance of the scheduling algorithm for parallel test on di�erent observers.

25

6. Evaluation

observer images in the test con�guration. The �rst one is for Tmote and the second one
for TinyNode targets, which use di�erent communication frequencies. The obsIds are
added later.

Listing 4: Test Con�guration - Same Observers Test 1

1 <genera lConf>
2 <name>FlockLab Test Schedul ing</name>
3 <de s c r i p t i o n>Generated xml to t e s t s chedu l ing .</ d e s c r i p t i o n>
4 <scheduleAsap>
5 <durat ionSecs>600</ durat ionSecs>
6 </scheduleAsap>
7 <emai lResu l t s>yes</ ema i lResu l t s>
8 </genera lConf>
9

10 <targetConf>
11 <obsIds></ obsIds>
12 <vo l tage>3 .3</ vo l tage>
13 <dbImageId>41</dbImageId>
14 </ targetConf>
15

16 <se r i a lCon f>
17 <obsIds></ obsIds>
18 <port>usb</port>
19 </ s e r i a lCon f>

Listing 5: Test Con�guration - Same Observers Test 2

1 <genera lConf>
2 <name>FlockLab Test Schedul ing</name>
3 <de s c r i p t i o n>Generated xml to t e s t s chedu l ing .</ d e s c r i p t i o n>
4 <scheduleAsap>
5 <durat ionSecs>600</ durat ionSecs>
6 </scheduleAsap>
7 <emai lResu l t s>yes</ ema i lResu l t s>
8 </genera lConf>
9

10 <targetConf>
11 <obsIds></ obsIds>
12 <vo l tage>3 .3</ vo l tage>
13 <dbImageId>42</dbImageId>
14 </ targetConf>
15

16 <se r i a lCon f>
17 <obsIds></ obsIds>
18 <port>usb</port>
19 </ s e r i a lCon f>

For this test we fetched all observers that have both, a Tmote and a TinyNode, con-
nected to one of their slots and added them in the con�guration. Then we alternately
submitted the two con�gurations n-times each. This results in a scheduling that starts
the �rst test on the observer and then, while the �rst test still runs, the second one. The
third one can only be started after the second test �nishes because of the multiplexer
resource, which is needed for the setup, start, cleanup and stop phase and because of the
frequency resources. So basically, the algorithm always scheduled the tests in packets of

26

6. Evaluation

two, shifted by the setup plus start time.
The checks we executed afterwards were the same as in the last section, but with

modi�ed parameters for the calculations. The same holds for the performance di�erences
for the di�erent algorithm variants. Therefore, we only show the results of the algorithm
version one with rounding in �gure 9. The zig-zag-pattern in the graph draws attention.
The reason for this is because for every other test, the algorithm has to update the
resource arrays from the previous test, which takes more time than simply add new
resource arrays at the end of the table.

0 20 40 60 80 100
Test Number

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
[s

]

Scheduling

Mean

Figure 9: Performance of the scheduling algorithm for parallel test on the same observer.

6.2. FlockLab

After the veri�cation of our scheduling algorithm, the next step was to execute parallel
tests on real observers. We tested this by connecting our test system to the FlockLab
network and scheduled tests, that were then executed on the real observers. Again, we
tested two di�erent cases: Parallel tests on di�erent observers and parallel test on the
same observer.
For the parallel tests on di�erent observers, we used the FlockLab Tutorial 4: GPIO

Actuation test con�guration from the FlockLab website [2] and changed them to use
di�erent observer. We ran up to �ve test on di�erent observers at the same time without
errors and receiving the expected test results.
To test parallel tests on the same observer, we used the Hello World test con�guration

from the FlockLab Tutorial 2: Getting Started and Serial Service as the test which only
uses the serial I/O service over USB. We extended the test duration in the con�guration
to be ten minutes so that we could schedule another test between the starting and the
stopping of this test. For the test we ran in between, we used the CC430 architecture with
an image that lets the LEDs on the observer blink. Both test were scheduled correctly
and ran in parallel without errors and generating the expected test results.

27

6. Evaluation

6.3. Past Tests

We performed another experiment to examine the advantages of parallel test scheduling
on FlockLab compared to sequential scheduling: We rescheduled the tests from the
previous years and compared the total duration needed to run all tests for the di�erent
scheduling methods.
First, we fetched all past tests1 from the FlockLab database, including the test con�g-

urations. Additionally, we made a dump of the tbl_serv_targetimages table and loaded
it into our test system's database. This was necessary because it's the only way to get
the target architectures used in a test. Then we changed the con�gurations from absolute
time to ASAP, with the duration calculated form the start and end time of the test and
sorted out the test whose target images were no longer available in the database. After
this preparation, we submitted all tests of each year and scheduled them2. For many of
the tests, the scheduling was not successfull. This was because on most of the observers,
the target architectures on the di�erent slots changed and were no longer available on
the observers. After all tests were scheduled, we calculated the time di�erence between
the start of the �rst to the end of the last test in the database and added the setup time
for the �rst test and cleanup time of the last test to get the total time used to run all
tests. To get the total time for sequential scheduling, we simply added the duration of
each successfully scheduled test including the setup and cleanup time. The comparison
of the total times for sequential and parallel scheduling are shown in table 2 and depicted
in �gure 10. The whole statistics for each year can be found in the appendix.

Table 2.: Result Rescheduling of Past Tests.

Year Scheduled Tests Time Sequential Time Parallel Reduction

2012 134 241140 s 231691 s 3.918 %

2013 2539 4621449 s 4442505 s 3.872 %

2014 5332 11896608 s 10185745 s 14.381 %

2015 7223 13585914 s 10977309 s 19.201 %

2016 1183 2424814 s 2173069 s 10.382 %

The tiny improvement in the years 2012 and 2013 is, because for this years only
tests that use Tmote Sky targets were schedulable. That, and the fact that most of the
observers where used in more than 90 % of the total duration made a better improvement
impossible. In the years 2014 to 2016, the results were considerably better. For those
years, the variety of the target architectures made it possible to schedule more tests in
parallel. But still, about 80 % of all tests used Tmotes and many observers, which are
limiting factors for the improvement.
Event though the time reduction is not outstanding, the users can still highly pro�t

from the parallelization. For example when a test does not use all observers, it's possible
to run an arbitrary test on other observers. Or when a long test that only uses the serial
I/O service over USB runs on all observers, another user can still run his own test if he

1 From 2012 up to the 15. March 2016.
2 The XML con�guration syntax has changed in March 2013. This causes our scheduling algorithm

to not detect the multiplexer usage prior to the change. But since only Tmote architectures were
schedulable in the years 2012 and 2013 this did not a�ect the results.

28

6. Evaluation

2012 2013 2014 2015 2016
Year

0

20

40

60

80

100

120

140

160

To
ta

l T
im

e
[d

]

Parallel vs. sequential scheduling

Parallel
Sequential
Time reduced

0

5

10

15

20

25

30

Ti
m

e
re

du
ce

d
[%

]

Figure 10: Total time reduction by parallel scheduling compared to sequential scheduling.

uses other target nodes. Therefore, we still expect the possibility to run tests in parallel
to be highly bene�cial.

29

7. Outlook

7. Outlook

This project lays the foundation to modify FlockLab for running tests in parallel. How-
ever, there is still work to do before our solution can be implemented on FlockLab. In
this section, we propose some tasks that should be accomplished before bringing parallel
tests to the live system.

Missing Functions All changes and algorithms necessary for scheduling and running
parallel tests on FlockLab are implemented and explained in this report, yet some
important functions are missing. Probably the most important one is the option to
remove a scheduled test or abort it. It is still possible to use the original function
to delete a scheduled test, but it will only remove it from the tables tbl_serv_tests
and tbl_serv_map_test_observer_targetimages. This will cause the test to not
start. But as the resource usage in the tbl_serv_test_resource are not modi�ed,
the resources will still be blocked. Therefore, the function to remove tests has to
be extended to clean up the resource table as well.

Extended Testing Although, we implemented scripts to automatically check our schedul-
ing, we had only time to test a limited amount of di�erent cases. We recommend
further testing with a higher variety of di�erent test con�gurations, before using
our modi�cations on the live system.

Additional Con�guration Options For some users it may falsify the results of their tests
if other tests are running in parallel (e.g. a running test on neighboring observers
with the same frequency). Therefore, we suggest adding con�guration options in
the test con�guration XML to prevent parallel tests.

Modify Webinterface Without modifying the web interface as well, a user can not see
which resources will be used in planned tests. Therefore, the user will assume that
the whole testbed will be blocked during all planned test. For the user to take
advantage of the parallelization of the testbed, it's necessary to modify the web
interface as well.

30

8. Conclusion

8. Conclusion

The goal of our project was to modify FlockLab for running tests in parallel. To ac-
complish this, we �rst setup FlockLab in a test environment and then modify it to run
parallel tests. We model the resource constraints by de�ning a set of exclusive resources
and a mapping between test con�gurations and this resources. The scheduling algorithm
provided is based on this model to correctly schedule new tests. We outline the modi�ca-
tions for FlockLab necessary to use the new scheduling algorithms and support parallel
tests.
The evaluation includes performance measurements of the di�erent scheduling algo-

rithm variants and their veri�cation. On the basis of this results, we show the advantages
and disadvantages of the di�erent variants. Furthermore, we show that our solution works
by scheduling and executing tests on real observers of FlockLab. To compare parallel and
sequential test scheduling, we rescheduled past tests from previous years and compared
the time needed to run all tests for parallel and sequential scheduling. The evaluation
shows, that the test throughput of FlockLab can be signi�cantly higher with parallel
running tests.
In conclusion, we provide a working extension for FlockLab to run tests in parallel.

Yet, there is still room for improvement in terms of functionality.

31

Bibliography

Bibliography

[1] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel. Flocklab:
A testbed for distributed, synchronized tracing and pro�ling of wireless embedded
systems. In Information Processing in Sensor Networks (IPSN), 2013 ACM/IEEE
International Conference on, pages 153�165, April 2013.

[2] ETHZ. https://www.flocklab.ethz.ch, 2016. [Online; accessed 22-March-2016].

[3] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat, V. Kulathumani,
M. Sridharan, H. Zhang, and H. Cao. Kansei: a testbed for sensing at scale. In In-
formation Processing in Sensor Networks, 2006. IPSN 2006. The Fifth International
Conference on, pages 399�406, 2006.

[4] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. Twist: A scalable and recon�g-
urable testbed for wireless indoor experiments with sensor networks. In Proceedings
of the 2Nd International Workshop on Multi-hop Ad Hoc Networks: From Theory to
Reality, REALMAN '06, pages 63�70, New York, NY, USA, 2006. ACM.

[5] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless sensor network
testbed. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on, pages 483�488, April 2005.

[6] X. Ju, H. Zhang, and D. Sakamuri. Neteye: a user-centered wireless sensor network
testbed for high-�delity, robust experimentation. International Journal of Commu-
nication Systems, 25(9):1213�1229, 2012.

[7] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, and P. Blum. Wire-
less Sensor Networks: 4th European Conference, EWSN 2007, Delft, The Nether-
lands, January 29-31, 2007. Proceedings, chapter Deployment Support Network,
pages 195�211. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[8] T. Dimitriou, J. Kolokouris, and N. Zarokostas. Sensenet: A wireless sensor network
testbed. In Proceedings of the 10th ACM Symposium on Modeling, Analysis, and
Simulation of Wireless and Mobile Systems, MSWiM '07, pages 143�150, New York,
NY, USA, 2007. ACM.

[9] A. Achtzehn, E. Meshkova, J. Ansari, and P. Mahonen. Motemaster: A scalable
sensor network testbed for rapid protocol performance evaluation. In Sensor, Mesh
and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops
'09. 6th Annual IEEE Communications Society Conference on, pages 1�3, June 2009.

[10] M. Doddavenkatappa, M. Chan Choon, and A. L. Ananda. Testbeds and Research
Infrastructure. Development of Networks and Communities: 7th International ICST
Conference,TridentCom 2011, Shanghai, China, April 17-19, 2011, Revised Selected

32

https://www.flocklab.ethz.ch

Bibliography

Papers, chapter Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed, pages
302�316. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[11] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393 � 422, 2002.

[12] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele,
C. Tschudin, M. Woehrle, and M. Yuecel. Permadaq: A scienti�c instrument for
precision sensing and data recovery in environmental extremes. In Proceedings of
the 2009 International Conference on Information Processing in Sensor Networks,
IPSN '09, pages 265�276, Washington, DC, USA, 2009. IEEE Computer Society.

[13] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin. A wireless sensor network for structural monitoring. In Proceedings of
the 2Nd International Conference on Embedded Networked Sensor Systems, SenSys
'04, pages 13�24, New York, NY, USA, 2004. ACM.

33

A. Appendix

A. Appendix

A.1. Result Rescheduling of Past Tests

start

##

#

2012

#

##

GENERAL:

| # Tests | scheduled | scheduled [%] |

|-------------------------------------|

| 157 | 134 | 85.350 |

--

| Architecture | Total | scheduled | scheduled [%] |

|--|

| Tmote | 134 | 134 | 100.000 |

| Mica2 | 1 | 0 | 0.000 |

| Opal | 1 | 0 | 0.000 |

| TinyNode | 21 | 0 | 0.000 |

|--|

| Time Sequential [s]| Time Parallel [s]| Time Reduced [s]| Time Reduced [%]|

|---|

| 241140| 231691| 9449| 3.918|

ARCHITECTURE STATISTICS:

| Architecture| # Tests| # Tests [%]| Duration Tests| # no Mux| # no Mux [%]| Duration no Mux| Duration no Mux [%]|

|---|

| Tmote| 134| 100.000| 241140| 134| 100.000| 241140| 100.000|

|---|

| TOTAL| 134| 100.000| 241140| 134| 100.000| 241140| 100.000|

OBSERVER/ARCHITECTURE USAGE (TIME):

| Obs | Tmote || TOTAL |

|--------------------------------|

| 001 | 99.054 || 99.054 |

| 002 | 98.588 || 98.588 |

| 004 | 98.588 || 98.588 |

| 006 | 96.413 || 96.413 |

| 007 | 96.836 || 96.836 |

| 008 | 98.873 || 98.873 |

| 010 | 99.158 || 99.158 |

| 011 | 99.339 || 99.339 |

| 013 | 97.924 || 97.924 |

| 014 | 97.924 || 97.924 |

| 015 | 97.138 || 97.138 |

| 016 | 97.785 || 97.785 |

| 017 | 96.836 || 96.836 |

| 018 | 95.515 || 95.515 |

| 019 | 96.836 || 96.836 |

| 020 | 96.836 || 96.836 |

| 022 | 97.552 || 97.552 |

| 023 | 96.836 || 96.836 |

| 024 | 96.836 || 96.836 |

| 025 | 99.158 || 99.158 |

| 026 | 96.836 || 96.836 |

| 027 | 95.515 || 95.515 |

| 028 | 97.552 || 97.552 |

| 031 | 96.335 || 96.335 |

| 032 | 96.050 || 96.050 |

| 033 | 96.335 || 96.335 |

| 200 | 95.144 || 95.144 |

| 201 | 95.144 || 95.144 |

| 202 | 95.144 || 95.144 |

| 204 | 95.144 || 95.144 |

|--------------------------------|

34

A. Appendix

| TOTAL | 104.078 || |

OBSERVER/ARCHITECTURE USAGE (# TESTS):

| Obs | Tmote || TOTAL |

|--------------------------------|

| 001 | 85.075 || 85.075 |

| 002 | 84.328 || 84.328 |

| 004 | 84.328 || 84.328 |

| 006 | 75.373 || 75.373 |

| 007 | 73.134 || 73.134 |

| 008 | 84.328 || 84.328 |

| 010 | 85.075 || 85.075 |

| 011 | 82.090 || 82.090 |

| 013 | 76.119 || 76.119 |

| 014 | 76.119 || 76.119 |

| 015 | 78.358 || 78.358 |

| 016 | 79.851 || 79.851 |

| 017 | 73.134 || 73.134 |

| 018 | 70.896 || 70.896 |

| 019 | 73.134 || 73.134 |

| 020 | 73.134 || 73.134 |

| 022 | 76.866 || 76.866 |

| 023 | 73.134 || 73.134 |

| 024 | 73.134 || 73.134 |

| 025 | 81.343 || 81.343 |

| 026 | 73.134 || 73.134 |

| 027 | 70.896 || 70.896 |

| 028 | 76.866 || 76.866 |

| 031 | 74.627 || 74.627 |

| 032 | 73.881 || 73.881 |

| 033 | 74.627 || 74.627 |

| 200 | 70.149 || 70.149 |

| 201 | 70.149 || 70.149 |

| 202 | 70.149 || 70.149 |

| 204 | 70.149 || 70.149 |

|--------------------------------|

| TOTAL | 100.000 || |

Maximal Number of Parallel tests: 3

##

#

2013

#

##

GENERAL:

| # Tests | scheduled | scheduled [%] |

|-------------------------------------|

| 4095 | 2539 | 62.002 |

--

| Architecture | Total | scheduled | scheduled [%] |

|--|

| Tmote | 2568 | 2539 | 98.871 |

| Iris | 158 | 0 | 0.000 |

| TinyNode | 520 | 0 | 0.000 |

| Opal | 379 | 0 | 0.000 |

| Wismote | 291 | 0 | 0.000 |

| Mica2 | 150 | 0 | 0.000 |

|--|

| Time Sequential [s]| Time Parallel [s]| Time Reduced [s]| Time Reduced [%]|

|---|

| 4621449| 4442505| 178944| 3.872|

ARCHITECTURE STATISTICS:

| Architecture| # Tests| # Tests [%]| Duration Tests| # no Mux| # no Mux [%]| Duration no Mux| Duration no Mux [%]|

|---|

| Tmote| 2539| 100.000| 4621449| 1501| 59.118| 3095172| 66.974|

|---|

| TOTAL| 2539| 100.000| 4621449| 1501| 59.118| 3095172| 66.974|

OBSERVER/ARCHITECTURE USAGE (TIME):

| Obs | Tmote || TOTAL |

|--------------------------------|

| 001 | 93.886 || 93.886 |

| 002 | 95.353 || 95.353 |

| 004 | 95.268 || 95.268 |

| 006 | 93.334 || 93.334 |

35

A. Appendix

| 007 | 94.178 || 94.178 |

| 008 | 93.715 || 93.715 |

| 010 | 92.396 || 92.396 |

| 011 | 93.639 || 93.639 |

| 013 | 97.974 || 97.974 |

| 014 | 95.725 || 95.725 |

| 015 | 93.297 || 93.297 |

| 016 | 93.792 || 93.792 |

| 017 | 90.347 || 90.347 |

| 018 | 94.053 || 94.053 |

| 019 | 92.374 || 92.374 |

| 020 | 96.138 || 96.138 |

| 022 | 94.847 || 94.847 |

| 023 | 93.707 || 93.707 |

| 024 | 92.380 || 92.380 |

| 025 | 99.245 || 99.245 |

| 026 | 97.866 || 97.866 |

| 027 | 92.766 || 92.766 |

| 028 | 99.624 || 99.624 |

| 031 | 96.821 || 96.821 |

| 032 | 92.811 || 92.811 |

| 033 | 95.855 || 95.855 |

| 200 | 89.010 || 89.010 |

| 201 | 43.735 || 43.735 |

| 202 | 89.019 || 89.019 |

| 204 | 89.093 || 89.093 |

|--------------------------------|

| TOTAL | 104.028 || |

OBSERVER/ARCHITECTURE USAGE (# TESTS):

| Obs | Tmote || TOTAL |

|--------------------------------|

| 001 | 87.554 || 87.554 |

| 002 | 88.066 || 88.066 |

| 004 | 87.475 || 87.475 |

| 006 | 84.049 || 84.049 |

| 007 | 84.128 || 84.128 |

| 008 | 86.885 || 86.885 |

| 010 | 84.876 || 84.876 |

| 011 | 86.530 || 86.530 |

| 013 | 87.121 || 87.121 |

| 014 | 85.979 || 85.979 |

| 015 | 85.979 || 85.979 |

| 016 | 86.373 || 86.373 |

| 017 | 83.064 || 83.064 |

| 018 | 85.900 || 85.900 |

| 019 | 84.049 || 84.049 |

| 020 | 86.294 || 86.294 |

| 022 | 86.058 || 86.058 |

| 023 | 83.931 || 83.931 |

| 024 | 83.537 || 83.537 |

| 025 | 90.941 || 90.941 |

| 026 | 87.003 || 87.003 |

| 027 | 84.167 || 84.167 |

| 028 | 90.547 || 90.547 |

| 031 | 87.554 || 87.554 |

| 032 | 84.403 || 84.403 |

| 033 | 86.530 || 86.530 |

| 200 | 81.843 || 81.843 |

| 201 | 43.876 || 43.876 |

| 202 | 81.883 || 81.883 |

| 204 | 82.198 || 82.198 |

|--------------------------------|

| TOTAL | 100.000 || |

Maximal Number of Parallel tests: 7

##

#

2014

#

##

GENERAL:

| # Tests | scheduled | scheduled [%] |

|-------------------------------------|

| 7107 | 5332 | 75.025 |

--

| Architecture | Total | scheduled | scheduled [%] |

|--|

| Tmote | 4383 | 4376 | 99.840 |

| Iris | 24 | 0 | 0.000 |

| TinyNode | 199 | 0 | 0.000 |

| Opal | 389 | 0 | 0.000 |

36

A. Appendix

| ACM2 | 825 | 823 | 99.758 |

| CC430 | 1149 | 133 | 11.575 |

| Mica2 | 42 | 0 | 0.000 |

|--|

| Time Sequential [s]| Time Parallel [s]| Time Reduced [s]| Time Reduced [%]|

|---|

| 11896608| 10185745| 1710863| 14.381|

ARCHITECTURE STATISTICS:

| Architecture| # Tests| # Tests [%]| Duration Tests| # no Mux| # no Mux [%]| Duration no Mux| Duration no Mux [%]|

|---|

| Tmote| 4376| 82.071| 10775028| 2031| 46.412| 3867085| 35.889|

| ACM2| 823| 15.435| 1018800| 0| 0.000| 0| 0.000|

| CC430| 133| 2.494| 102780| 0| 0.000| 0| 0.000|

|---|

| TOTAL| 5332| 100.000| 11896608| 2031| 38.091| 3867085| 32.506|

OBSERVER/ARCHITECTURE USAGE (TIME):

--

| Obs | Tmote | ACM2 | CC430 || TOTAL |

|--|

| 001 | 91.190 | 0.740 | 0.256 || 92.185 |

| 002 | 89.422 | 8.127 | 0.594 || 98.144 |

| 003 | 29.178 | 1.789 | 0.000 || 30.966 |

| 004 | 90.330 | 8.064 | 0.529 || 98.922 |

| 006 | 98.489 | 1.433 | 0.620 || 100.543 |

| 007 | 93.647 | 0.000 | 0.022 || 93.670 |

| 008 | 89.808 | 7.832 | 0.279 || 97.918 |

| 010 | 94.269 | 0.000 | 0.014 || 94.283 |

| 011 | 93.292 | 0.000 | 0.000 || 93.292 |

| 013 | 91.719 | 0.000 | 0.012 || 91.731 |

| 014 | 94.954 | 0.000 | 0.008 || 94.962 |

| 015 | 89.528 | 1.147 | 0.194 || 90.869 |

| 016 | 96.870 | 0.000 | 0.485 || 97.356 |

| 017 | 83.803 | 0.000 | 0.008 || 83.811 |

| 018 | 93.575 | 0.000 | 0.091 || 93.666 |

| 019 | 94.230 | 0.000 | 0.008 || 94.238 |

| 020 | 97.000 | 0.000 | 0.000 || 97.000 |

| 022 | 96.997 | 0.000 | 0.012 || 97.010 |

| 023 | 94.429 | 0.000 | 0.008 || 94.437 |

| 024 | 94.536 | 0.000 | 0.183 || 94.720 |

| 025 | 96.861 | 0.000 | 0.000 || 96.861 |

| 026 | 97.182 | 0.000 | 0.000 || 97.182 |

| 027 | 93.599 | 0.000 | 0.058 || 93.658 |

| 028 | 98.819 | 0.363 | 0.000 || 99.181 |

| 029 | 0.435 | 0.000 | 0.000 || 0.435 |

| 031 | 94.868 | 0.014 | 0.000 || 94.882 |

| 032 | 97.247 | 0.410 | 0.000 || 97.657 |

| 033 | 75.439 | 2.869 | 0.169 || 78.477 |

| 200 | 90.424 | 0.000 | 0.104 || 90.528 |

| 201 | 85.529 | 0.000 | 0.019 || 85.548 |

| 202 | 59.917 | 0.000 | 0.058 || 59.975 |

| 204 | 89.296 | 0.000 | 0.234 || 89.531 |

|--|

| TOTAL | 105.785 | 10.002 | 1.009 || |

--

OBSERVER/ARCHITECTURE USAGE (# TESTS):

--

| Obs | Tmote | ACM2 | CC430 || TOTAL |

|--|

| 001 | 62.228 | 2.926 | 0.638 || 65.791 |

| 002 | 59.677 | 9.565 | 1.369 || 70.611 |

| 003 | 25.525 | 5.814 | 0.000 || 31.339 |

| 004 | 60.709 | 9.377 | 1.238 || 71.324 |

| 006 | 65.548 | 4.670 | 1.519 || 71.737 |

| 007 | 53.957 | 0.000 | 0.094 || 54.051 |

| 008 | 60.296 | 9.696 | 0.788 || 70.780 |

| 010 | 55.608 | 0.000 | 0.056 || 55.664 |

| 011 | 53.788 | 0.000 | 0.000 || 53.788 |

| 013 | 56.077 | 0.000 | 0.056 || 56.133 |

| 014 | 55.833 | 0.000 | 0.038 || 55.870 |

| 015 | 62.697 | 3.507 | 0.431 || 66.635 |

| 016 | 64.141 | 0.000 | 1.088 || 65.229 |

| 017 | 55.701 | 0.000 | 0.038 || 55.739 |

| 018 | 54.201 | 0.000 | 0.188 || 54.389 |

| 019 | 56.133 | 0.000 | 0.038 || 56.170 |

| 020 | 60.578 | 0.000 | 0.000 || 60.578 |

| 022 | 64.291 | 0.000 | 0.019 || 64.310 |

| 023 | 57.052 | 0.000 | 0.038 || 57.089 |

| 024 | 56.377 | 0.000 | 0.338 || 56.714 |

| 025 | 59.771 | 0.000 | 0.000 || 59.771 |

| 026 | 59.959 | 0.000 | 0.000 || 59.959 |

| 027 | 54.295 | 0.000 | 0.131 || 54.426 |

37

A. Appendix

| 028 | 65.585 | 1.069 | 0.000 || 66.654 |

| 029 | 1.725 | 0.000 | 0.000 || 1.725 |

| 031 | 64.010 | 0.056 | 0.000 || 64.066 |

| 032 | 66.279 | 1.257 | 0.000 || 67.536 |

| 033 | 57.314 | 9.265 | 0.319 || 66.898 |

| 200 | 50.581 | 0.000 | 0.244 || 50.825 |

| 201 | 44.805 | 0.000 | 0.075 || 44.880 |

| 202 | 41.335 | 0.000 | 0.188 || 41.523 |

| 204 | 50.825 | 0.000 | 0.431 || 51.257 |

|--|

| TOTAL | 82.071 | 15.435 | 2.494 || |

--

Maximal Number of Parallel tests: 10

##

#

2015

#

##

GENERAL:

| # Tests | scheduled | scheduled [%] |

|-------------------------------------|

| 9006 | 7223 | 80.202 |

--

| Architecture | Total | scheduled | scheduled [%] |

|--|

| Tmote | 5500 | 5500 | 100.000 |

| None | 4 | 0 | 0.000 |

| TinyNode | 182 | 150 | 82.418 |

| OpenMote | 335 | 331 | 98.806 |

| Opal | 366 | 0 | 0.000 |

| ACM2 | 1651 | 1286 | 77.892 |

| CC430 | 1023 | 26 | 2.542 |

| Wismote | 8 | 8 | 100.000 |

|--|

| Time Sequential [s]| Time Parallel [s]| Time Reduced [s]| Time Reduced [%]|

|---|

| 13585914| 10977309| 2608605| 19.201|

ARCHITECTURE STATISTICS:

| Architecture| # Tests| # Tests [%]| Duration Tests| # no Mux| # no Mux [%]| Duration no Mux| Duration no Mux [%]|

|---|

| Tmote| 5500| 76.146| 11460394| 3071| 55.836| 9091419| 79.329|

| TinyNode| 150| 2.077| 129000| 0| 0.000| 0| 0.000|

| Wismote| 8| 0.111| 10080| 8| 100.000| 10080| 100.000|

| OpenMote| 331| 4.583| 389060| 7| 2.115| 3660| 0.941|

| ACM2| 1286| 17.804| 1633620| 0| 0.000| 0| 0.000|

| CC430| 26| 0.360| 17640| 0| 0.000| 0| 0.000|

|---|

| TOTAL| 7223| 100.000| 13639794| 3086| 42.725| 9105159| 66.754|

OBSERVER/ARCHITECTURE USAGE (TIME):

--

| Obs | Tmote | TinyNode | Wismote | OpenMote | ACM2 | CC430 || TOTAL |

|--|

| 001 | 91.082 | 0.000 | 0.000 | 0.000 | 11.159 | 0.130 || 102.371 |

| 002 | 90.117 | 0.000 | 0.000 | 0.000 | 11.220 | 0.152 || 101.490 |

| 003 | 92.278 | 0.000 | 0.000 | 0.885 | 12.598 | 0.000 || 105.760 |

| 004 | 93.072 | 0.000 | 0.000 | 0.000 | 11.238 | 0.146 || 104.456 |

| 006 | 80.936 | 0.000 | 0.000 | 0.759 | 12.147 | 0.000 || 93.842 |

| 007 | 83.648 | 1.175 | 0.000 | 0.000 | 0.000 | 0.009 || 84.832 |

| 008 | 95.563 | 0.000 | 0.000 | 0.911 | 11.725 | 0.146 || 108.346 |

| 010 | 93.673 | 1.175 | 0.000 | 0.000 | 0.000 | 0.000 || 94.848 |

| 011 | 83.041 | 1.167 | 0.000 | 0.000 | 0.000 | 0.000 || 84.208 |

| 013 | 89.627 | 1.175 | 0.000 | 0.000 | 0.000 | 0.000 || 90.802 |

| 014 | 87.723 | 1.175 | 0.000 | 0.000 | 0.000 | 0.009 || 88.907 |

| 015 | 94.791 | 0.000 | 0.000 | 0.713 | 11.024 | 0.048 || 106.577 |

| 016 | 94.962 | 0.000 | 0.000 | 2.573 | 11.319 | 0.000 || 108.854 |

| 017 | 87.110 | 1.112 | 0.000 | 0.000 | 0.000 | 0.009 || 88.231 |

| 018 | 91.177 | 0.000 | 0.000 | 2.974 | 10.773 | 0.000 || 104.925 |

| 019 | 88.777 | 1.167 | 0.000 | 0.000 | 0.000 | 0.000 || 89.945 |

| 020 | 91.957 | 0.000 | 0.092 | 0.000 | 0.000 | 0.000 || 92.049 |

| 022 | 96.126 | 0.000 | 0.000 | 2.821 | 0.000 | 0.000 || 98.947 |

| 023 | 89.872 | 0.000 | 0.000 | 3.341 | 0.000 | 0.000 || 93.214 |

| 024 | 86.611 | 0.000 | 0.000 | 3.229 | 0.000 | 0.000 || 89.841 |

| 025 | 87.452 | 1.175 | 0.000 | 0.000 | 0.000 | 0.009 || 88.636 |

| 026 | 90.450 | 1.175 | 0.000 | 0.000 | 0.000 | 0.000 || 91.626 |

| 027 | 90.415 | 0.000 | 0.057 | 0.000 | 10.743 | 0.000 || 101.215 |

| 028 | 96.834 | 0.000 | 0.000 | 0.000 | 11.076 | 0.000 || 107.910 |

| 029 | 0.361 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.361 |

38

A. Appendix

| 031 | 95.080 | 0.000 | 0.000 | 0.739 | 1.213 | 0.000 || 97.032 |

| 032 | 95.885 | 0.000 | 0.092 | 0.000 | 11.072 | 0.000 || 107.049 |

| 033 | 96.013 | 0.000 | 0.092 | 0.000 | 12.674 | 0.048 || 108.826 |

| 200 | 18.801 | 1.159 | 0.000 | 0.000 | 0.000 | 0.000 || 19.961 |

| 201 | 20.352 | 1.152 | 0.000 | 0.000 | 0.000 | 0.000 || 21.504 |

| 202 | 19.891 | 1.136 | 0.000 | 0.000 | 0.000 | 0.000 || 21.027 |

| 204 | 20.592 | 1.159 | 0.000 | 0.000 | 0.000 | 0.000 || 21.752 |

|--|

| TOTAL | 104.401 | 1.175 | 0.092 | 3.544 | 14.882 | 0.161 || |

--

OBSERVER/ARCHITECTURE USAGE (# TESTS):

--

| Obs | Tmote | TinyNode | Wismote | OpenMote | ACM2 | CC430 || TOTAL |

|--|

| 001 | 64.239 | 0.000 | 0.000 | 0.000 | 9.248 | 0.291 || 73.778 |

| 002 | 64.018 | 0.000 | 0.000 | 0.000 | 9.442 | 0.346 || 73.806 |

| 003 | 62.966 | 0.000 | 0.000 | 0.914 | 12.723 | 0.000 || 76.603 |

| 004 | 66.247 | 0.000 | 0.000 | 0.000 | 9.511 | 0.332 || 76.090 |

| 006 | 65.042 | 0.000 | 0.000 | 0.858 | 11.283 | 0.000 || 77.184 |

| 007 | 53.067 | 2.077 | 0.000 | 0.000 | 0.000 | 0.014 || 55.157 |

| 008 | 68.808 | 0.000 | 0.000 | 0.955 | 11.117 | 0.332 || 81.213 |

| 010 | 62.301 | 2.077 | 0.000 | 0.000 | 0.000 | 0.000 || 64.378 |

| 011 | 52.070 | 2.063 | 0.000 | 0.000 | 0.000 | 0.000 || 54.133 |

| 013 | 58.604 | 2.077 | 0.000 | 0.000 | 0.000 | 0.000 || 60.681 |

| 014 | 57.095 | 2.077 | 0.000 | 0.000 | 0.000 | 0.014 || 59.186 |

| 015 | 67.368 | 0.000 | 0.000 | 0.858 | 8.902 | 0.111 || 77.239 |

| 016 | 66.496 | 0.000 | 0.000 | 3.503 | 8.888 | 0.000 || 78.887 |

| 017 | 57.954 | 1.966 | 0.000 | 0.000 | 0.000 | 0.014 || 59.934 |

| 018 | 58.964 | 0.000 | 0.000 | 3.890 | 7.407 | 0.000 || 70.262 |

| 019 | 56.818 | 2.063 | 0.000 | 0.000 | 0.000 | 0.000 || 58.881 |

| 020 | 60.363 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 || 60.473 |

| 022 | 68.213 | 0.000 | 0.000 | 3.544 | 0.000 | 0.000 || 71.757 |

| 023 | 57.303 | 0.000 | 0.000 | 4.140 | 0.000 | 0.000 || 61.443 |

| 024 | 55.697 | 0.000 | 0.000 | 4.043 | 0.000 | 0.000 || 59.740 |

| 025 | 57.566 | 2.077 | 0.000 | 0.000 | 0.000 | 0.014 || 59.657 |

| 026 | 60.280 | 2.077 | 0.000 | 0.000 | 0.000 | 0.000 || 62.356 |

| 027 | 59.241 | 0.000 | 0.069 | 0.000 | 7.296 | 0.000 || 66.607 |

| 028 | 69.708 | 0.000 | 0.000 | 0.000 | 8.127 | 0.000 || 77.835 |

| 029 | 0.761 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.761 |

| 031 | 67.894 | 0.000 | 0.000 | 0.789 | 2.810 | 0.000 || 71.494 |

| 032 | 69.016 | 0.000 | 0.111 | 0.000 | 8.168 | 0.000 || 77.295 |

| 033 | 69.320 | 0.000 | 0.111 | 0.000 | 12.959 | 0.111 || 82.500 |

| 200 | 21.612 | 2.049 | 0.000 | 0.000 | 0.000 | 0.000 || 23.661 |

| 201 | 23.619 | 2.035 | 0.000 | 0.000 | 0.000 | 0.000 || 25.654 |

| 202 | 23.425 | 2.007 | 0.000 | 0.000 | 0.000 | 0.000 || 25.433 |

| 204 | 24.284 | 2.049 | 0.000 | 0.000 | 0.000 | 0.000 || 26.333 |

|--|

| TOTAL | 76.146 | 2.077 | 0.111 | 4.583 | 17.804 | 0.360 || |

--

Maximal Number of Parallel tests: 8

##

#

2016

#

##

GENERAL:

| # Tests | scheduled | scheduled [%] |

|-------------------------------------|

| 1333 | 1183 | 88.747 |

--

| Architecture | Total | scheduled | scheduled [%] |

|--|

| Tmote | 946 | 946 | 100.000 |

| CC430 | 185 | 120 | 64.865 |

| Opal | 74 | 70 | 94.595 |

| TinyNode | 49 | 47 | 95.918 |

| dpp | 79 | 0 | 0.000 |

|--|

| Time Sequential [s]| Time Parallel [s]| Time Reduced [s]| Time Reduced [%]|

|---|

| 2424814| 2173069| 251745| 10.382|

ARCHITECTURE STATISTICS:

| Architecture| # Tests| # Tests [%]| Duration Tests| # no Mux| # no Mux [%]| Duration no Mux| Duration no Mux [%]|

|---|

| Tmote| 946| 79.966| 2187300| 372| 39.323| 1465510| 67.001|

| CC430| 120| 10.144| 136494| 0| 0.000| 0| 0.000|

| Opal| 70| 5.917| 60200| 0| 0.000| 0| 0.000|

| TinyNode| 47| 3.973| 40820| 8| 17.021| 7080| 17.344|

39

A. Appendix

|---|

| TOTAL| 1183| 100.000| 2424814| 380| 32.122| 1472590| 60.730|

OBSERVER/ARCHITECTURE USAGE (TIME):

--

| Obs | Tmote | CC430 | Opal | TinyNode || TOTAL |

|--|

| 001 | 95.275 | 0.584 | 0.000 | 0.000 || 95.859 |

| 002 | 95.409 | 0.563 | 2.770 | 0.000 || 98.743 |

| 003 | 93.784 | 0.000 | 0.000 | 0.000 || 93.784 |

| 004 | 93.727 | 0.584 | 2.770 | 0.000 || 97.082 |

| 006 | 70.961 | 1.327 | 0.000 | 0.000 || 72.287 |

| 007 | 90.533 | 0.456 | 2.770 | 1.878 || 95.638 |

| 008 | 96.041 | 0.563 | 0.000 | 0.000 || 96.604 |

| 010 | 94.664 | 0.456 | 0.000 | 1.878 || 96.998 |

| 011 | 94.650 | 0.456 | 2.770 | 1.878 || 99.755 |

| 013 | 94.637 | 0.456 | 2.770 | 1.878 || 99.741 |

| 014 | 94.379 | 0.456 | 2.770 | 1.878 || 99.483 |

| 015 | 95.833 | 0.563 | 0.000 | 0.000 || 96.396 |

| 016 | 96.840 | 3.037 | 0.000 | 0.000 || 99.877 |

| 017 | 89.778 | 0.425 | 2.691 | 1.839 || 94.733 |

| 018 | 95.284 | 5.489 | 0.000 | 0.000 || 100.773 |

| 019 | 93.503 | 0.456 | 2.770 | 1.878 || 98.608 |

| 020 | 94.169 | 0.456 | 2.770 | 0.000 || 97.395 |

| 022 | 94.815 | 3.661 | 0.000 | 0.000 || 98.475 |

| 023 | 94.920 | 1.963 | 2.770 | 0.000 || 99.653 |

| 024 | 94.787 | 0.584 | 2.770 | 0.000 || 98.142 |

| 025 | 92.067 | 0.456 | 2.770 | 1.878 || 97.172 |

| 026 | 94.428 | 0.456 | 0.000 | 1.878 || 96.762 |

| 027 | 95.284 | 4.134 | 0.000 | 0.000 || 99.418 |

| 028 | 96.085 | 0.000 | 2.770 | 0.000 || 98.855 |

| 029 | 1.281 | 0.000 | 0.000 | 0.000 || 1.281 |

| 031 | 92.093 | 0.563 | 0.000 | 0.000 || 92.657 |

| 032 | 94.780 | 0.563 | 0.000 | 0.000 || 95.343 |

| 033 | 97.010 | 0.563 | 0.000 | 0.000 || 97.573 |

| 200 | 18.168 | 4.655 | 2.691 | 1.839 || 27.354 |

| 201 | 18.296 | 0.563 | 2.770 | 1.878 || 23.508 |

| 202 | 15.992 | 2.347 | 2.137 | 1.562 || 22.037 |

| 204 | 17.969 | 2.714 | 2.770 | 1.878 || 25.332 |

|--|

| TOTAL | 100.655 | 6.281 | 2.770 | 1.878 || |

--

OBSERVER/ARCHITECTURE USAGE (# TESTS):

--

| Obs | Tmote | CC430 | Opal | TinyNode || TOTAL |

|--|

| 001 | 70.752 | 1.606 | 0.000 | 0.000 || 72.358 |

| 002 | 71.260 | 1.522 | 5.917 | 0.000 || 78.698 |

| 003 | 65.004 | 0.000 | 0.000 | 0.000 || 65.004 |

| 004 | 65.173 | 1.606 | 5.917 | 0.000 || 72.697 |

| 006 | 56.551 | 2.959 | 0.000 | 0.000 || 59.510 |

| 007 | 60.101 | 1.268 | 5.917 | 3.973 || 71.260 |

| 008 | 72.189 | 1.522 | 0.000 | 0.000 || 73.711 |

| 010 | 70.161 | 1.268 | 0.000 | 3.973 || 75.402 |

| 011 | 70.161 | 1.268 | 5.917 | 3.973 || 81.319 |

| 013 | 70.161 | 1.268 | 5.917 | 3.973 || 81.319 |

| 014 | 69.484 | 1.268 | 5.917 | 3.973 || 80.642 |

| 015 | 72.020 | 1.522 | 0.000 | 0.000 || 73.542 |

| 016 | 71.344 | 4.818 | 0.000 | 0.000 || 76.162 |

| 017 | 58.242 | 1.183 | 5.748 | 3.888 || 69.062 |

| 018 | 70.414 | 8.369 | 0.000 | 0.000 || 78.783 |

| 019 | 67.456 | 1.268 | 5.917 | 3.973 || 78.614 |

| 020 | 68.808 | 1.268 | 5.917 | 0.000 || 75.993 |

| 022 | 69.992 | 5.917 | 0.000 | 0.000 || 75.909 |

| 023 | 70.245 | 3.635 | 5.917 | 0.000 || 79.797 |

| 024 | 70.076 | 1.606 | 5.917 | 0.000 || 77.599 |

| 025 | 68.132 | 1.268 | 5.917 | 3.973 || 79.290 |

| 026 | 69.231 | 1.268 | 0.000 | 3.973 || 74.472 |

| 027 | 70.414 | 7.270 | 0.000 | 0.000 || 77.684 |

| 028 | 70.837 | 0.000 | 5.917 | 0.000 || 76.754 |

| 029 | 4.142 | 0.000 | 0.000 | 0.000 || 4.142 |

| 031 | 61.200 | 1.522 | 0.000 | 0.000 || 62.722 |

| 032 | 69.484 | 1.522 | 0.000 | 0.000 || 71.006 |

| 033 | 72.105 | 1.522 | 0.000 | 0.000 || 73.626 |

| 200 | 20.626 | 8.030 | 5.748 | 3.888 || 38.292 |

| 201 | 20.879 | 1.522 | 5.917 | 3.973 || 32.291 |

| 202 | 18.090 | 3.973 | 4.565 | 3.297 || 29.924 |

| 204 | 21.640 | 4.903 | 5.917 | 3.973 || 36.433 |

|--|

| TOTAL | 79.966 | 10.144 | 5.917 | 3.973 || |

--

Maximal Number of Parallel tests: 5

End

40

	1 Introduction
	1.1 Motivation and Contributions

	2 Related Work
	3 Background
	3.1 Wireless Sensor Networks

	4 Design
	4.1 FlockLab
	4.1.1 Overview
	4.1.2 Webserver
	4.1.3 Database
	4.1.4 Test Management Server
	4.1.5 Observers
	4.1.6 Test Cycle

	4.2 Test System Setup
	4.3 Concept
	4.3.1 Resource Constraints
	4.3.2 Performance Considerations

	4.4 Scheduling Algorithm
	4.4.1 Absolute Time Mode
	4.4.2 ASAP Mode

	5 Implementation
	5.1 Database
	5.2 Test Management Server and Observers
	5.3 Webserver
	5.4 Scheduling Algorithm
	5.4.1 General
	5.4.2 Get Resource Usage
	5.4.3 Merge Resource Arrays
	5.4.4 Scheduling
	5.4.5 Add Test to Database

	6 Evaluation
	6.1 Scheduling Algorithm
	6.1.1 Different Observers
	6.1.2 Same Observers

	6.2 FlockLab
	6.3 Past Tests

	7 Outlook
	8 Conclusion
	A Appendix
	A.1 Result Rescheduling of Past Tests
	A.2 Declaration of Originality

