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Abstract

In this project, we improved an existing method that creates an interactive map
of Switzerland. This map allows users to easily view aerial pictures from different
years. This provides a chronological display of the changes that happened over
the years and how both urban and rural areas developed. The map gets created
automatically, using historical aerial pictures as inputs.

We improved the existing method in various aspects, such as runtime and
used storage space. Computer vision approaches, like guided matching, were
applied, for a more exact positioning of the picture.
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Chapter 1

Introduction

Open Government Data Zurich [1] and the Federal Office of Topography, Swis-
stopo [2], released a large amount of aerial pictures dated from 1926 to 2007.
The pictures are accessible on a website, but the user has to select each one by
one. If one wants to see a larger area, this approach is rather time consuming
and cumbersome.

The idea is to provide a better tool for users to observe larger areas, similar
to Google Maps. Since we have a lot of data from different years, we also want
to provide a journey through time, allowing users to see how a place has changed
over time.

1.1 Goals

This project follows a semester thesis written by Florian Zinggeler [3]. He already
developed a tool and method for what is described above. In his solution, however
the matching process is not very accurate and fails completely on older image
data. On the basis of the existing method, the objective is to improve the
processes in different ways. Since his front-end application works well, our focus
is on the back-end implementation. The main goal is to improve the automatic
georeferencing of the aerial pictures by using a guided feature matching approach.
That way we are able to provide more data to the front-end application and
therefore enhance the user experience. We also try to optimize the method
in terms of speed and storage space since large amounts of data have to be
processed.

1.2 Related Work

As already mentioned above, our goal is to improve an existing method that was
developed by Florian Zinggeler [3]. His approach is explained in Chapter 2.1.

Feature matching is a common technique in computer vision. Barbara Zitova
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1. Introduction 2

et al. [4] present in their paper a good survey over all different image registration
methods and all necessarily steps needed for the matching process.

Jae Sung Kim et al. [5] used the Harris corner detector for feature matching.
But their solution did not work well on images with a wide range in the flying
height and is therefore not suitable for our method. Cléry et al. [6] proposed a
solution that extracts line segments from raster images and matches them with
vector data. As their solution sounds promising, it needs vector data, what we
did not have.

There also exists work about guided feature matching by Ting Feng et al. [7]
who use this approach to reduce the amount of wrong matchings. This approach
sounds promising, but has not been tested on aerial pictures.



Chapter 2

Optimizing Existing Method

In this chapter we explain our optimizations of the existing method by Florian
Zinggeler [3]. We were given his code and are developing our version on top of
his.

2.1 Overview of Existing Method

In the existing method, a script downloads all existing aerial pictures within
specified area using a web crawler. The aerial images get downloaded in many
small tiles which have the size of 256 x 256 pixels. In the following step, they
get composed to the original image as it is stored on the Swisstopo server. After
that, additional metadata like the flying height of the airplane and the center
coordinates of the image are downloaded and stored along with the image. This
data is not exact, as we are going to explain further in Chapter 2.5, but it
helps to compute a good estimate of the image’s coordinates. At the same
stage, an already georeferenced base image, covering about the same area as the
historical image, gets downloaded. This images’s metadata contains its exact
geographical location. The base image was shot in the year 2016 which means
that big differences between it and the historical images may exist, as one can
see in Figure 5.1.

After this step, the historical image gets automatically georeferenced using
a feature matcher. This involves detecting features on both images, the base
image and the historical one. Then, the features from both images are compared
and get matched. This result is nicely visualized in Figure 4.1. The found
matches can be used to assign coordinates to pixels of the historical image, as
the coordinates of the corresponding features in the base image are known. Then,
the coordinates and the corresponding pixels are used to warp historical image
so, that it fit nicely together with all other georeferenced images. All images
shot on the same date get rendered into one image. In the last step, tiles get
generated to provide smaller data parts for the front-end application. A nice
overview of the whole process is given in Figure 2.1.
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2. Optimizing Existing Method 4

Figure 2.1: Diagram of the existing process (By Florian Zinggeler [3])

2.2 Optimizing Storage Space

In Florian Zinggeler’s method [3], the GeoTiff format [8] is used to store all
georeferenced images. Along with the raster image, the GeoTiff format can store
large amounts of useful metadata like coordinate system, georeferenced points
and map projection. This increases the compatibility with other GIS software,
such as QGIS, which could be used for manual georeferencing. The drawback
of this format is the large file size, as all the pictures are commonly stored
uncompressed.

We get the image tiles as JPEGs from our our crawler, thus using lossy
data from the beginning. Therefore, converting them later to a much larger
GeoTiff file needs a lot of unnecessary space without improving the image quality.
However, the loss of all the metadata would involve a lot of code refactoring and
implementation of a system which stores metadata. GDAL [9], the geospatial
library that is used to handle GeoTiffs, allows storing the images in JPEG and
the geographical metadata in an auxiliary XML file.

The images in Figure 2.2 were cropped and enlarged so that it is easier for the
reader to compare the quality. As one can see above, the quality of the pictures
looks the same for the human eye, and a factor of approximately 20 in terms of
used storage space is gained. Using this approach also helps with debugging, as
we can access the meta data in an XML file via a simple text editor and without
relying on other software.
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(a) The 677 Megabyte GeoTiff version (b) The 33 Megabyte JPEG version

Figure 2.2: Comparison of image quality between GeoTiff and JPEG (Images
from [2])

2.3 Optimizing Computation Time

As most aerial images are rather big (up to 16,000 x 16,000 pixels), processing
them may be time consuming. Composing the downloaded tiles takes more
time than the more important georeferencing. Florian Zinggeler’s method [3]
uses imagemagick [10], an open-source software for converting and composing
images. This approach seems to work very slow with big inputs, as up to 4,500
tiles have to be joined for a single aerial picture.

To improve this step we decided to implement the join procedure by ourselves.
This was done using the computer vision library OpenCV [11] and Numpy [12].
Our solution is about five times faster and is possibly even faster with more
parallelization, since the current implementation only uses a single core.

2.4 Optimizing Feature Detectors and Descriptors

In the previous project [3], several image feature detectors and descriptors have
been evaluated. Florian Zinggeler chose to use ORB [13], as it has a fast runtime
and returns more matches than most other detectors. The SIFT [14] detector
and descriptor provided even better results, however, had a much longer running
time. Compared to SIFT, ORB is not patented and available in the standard
OpenCV library. As our main goal is to improve the number of matchings, we
decided to use SIFT.
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2.5 Georeferencing Using Guided Matching

2.5.1 Overview

The low amount of correct matches was a big problem in the Florian Zinggeler’s
approach [3]). It can bes assumed that one reason for this, is that big aerial
pictures have a lot of similar looking features such as crossroads, trees and corners
of buildings as shown in Figure 2.3.

Figure 2.3: Visualization of the ORB feature descriptors (Image from [2])

In cities like Zurich, similar features can be distributed over the whole area
of the image. Florian Zinggeler used a brute-force matcher provided by the
OpenCV library. This matcher compares one feature with all features in the
set of the other image and returns the closest match [15]. As the base and
the historical image always contain variation, having a lot of similar features
increases the probability of wrong matches.
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Figure 2.4: Unfiltered matches of ORB features using a brute-force matcher,
using fewer features than in the final implemented method for better visibility
(Images from [2])

Our objective is to fix this by using a guided matching approach that allows
matching features only in a smaller neighborhood. With this approach, we are
able to reduce the number of wrong matchings. To be able to calculate a good
correct and neighborhood, both pictures need to cover about the same area.

We tested if the rough georeferences from Swisstopo were good enough. The
problem was, that the bounding box, downloaded from the Swisstopo REST
API [16], does not provide accurate data, as shown in Figure 2.8. The upper
right corner shows a much larger area compared to the bounding box.

[!tbp]
(a) The bounding box according to the API
data

(b) The aerial picture

Figure 2.5: Comparison between bounding box of an aerial picture and the actual
image (Images from [2])
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Other images provided more accurate data, but it was impossible to decide
at the download time which data was exact and which data was not.

For calculating more exact neighborhoods we decided to split the matching
process into multiple stages:

1. Feature matching on a low image resolution is performed. This way the
number of wrong matches can be reduced as there are not many similar
looking features left. The found georeferences are used to calculate precise
bounding box coordinates of the historical aerial picture.

2. A new base image gets calculated, based on the bounding box from the
previous step. The base image and the historical now cover almost the
same area. This is where guided matching can be applied, using an image
mask which allows matching features only in specific parts of the pictures.
In this step we use a higher resolution of the image than in the first step
for detecting more features.

3. If there are still not enough matched features after the second step, the
matching may be computed again in an even smaller neighborhood.

2.5.2 Calculating the Correct Base Image

To be able to apply the image mask in the second step, the historical image and
the georeferenced image need to have the same rotation and to cover approx-
imately the same area. We can use the stored bounding box of the historical
picture and crop a fitting base image with this information.

As shown in Figure 2.5, bounding boxes describe the corner coordinates of a
georeferenced image. If the image is rotated, the corner coordinates are chosen
so that the whole rotated image fits inside the box, as shown in Figure 2.6.
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Figure 2.6: A rotated picture and its corresponding bounding box

Additionally to the rough bounding box, Swisstopo also provides information
about the rotation of the aerial pictures. If there is no rotation, getting a fitting
base image is trivial, as we can just crop an image from the already georeferenced
base image. This can be done by the GDAL library, using the corner coordinates
as input.

In the case of rotation, the problem is harder. First, we need to decide if the
base or the historical image has to be rotated. We do not want to waste any
picture information from the historical data by cropping too much of the picture
or rotating it. Therefore, we decide to rotate the base image as it can cover a
much bigger area and we do not lose visual information.

We start with an image that has the size of the bounding box and then,
we rotate the image in the reverse direction of the historical image’s rotation
(Figure 2.8b). After this step, both pictures, the base and the historical, have
the same orientation. Now, we can calculate the corresponding corner pixels of
historical image. Figure 2.7 shows the current situation. For calculating the
desired point (mx, my), we are using the parametric equations for the vectors
−−→
OM (from (0, 0) to (mx, my)) and

−−→
AB (from (ax, ay) to (bx, by)). The point

(mx,my) can be expressed with the two following equations:

(ax, ay) + t ∗
−−→
AB

(0, 0) + s ∗ (−y/x)
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Figure 2.7: The rotated base image (white) with the historical picture inside.
The arrows show the parametric equations with the desired parameters which
get calculated in our method

where x is the width of the historical aerial picture and y its height.
This can be formulated as an linear equation system:

ax + t ∗ (bx− ax) = s ∗ x
ay + t ∗ (by − ay) = −s ∗ y

In our method, the values for variables s and t get calculated by Numpy. The

upper left part can be calculated by using the parametric equation for
−−→
OM and

negating s. Having the pixel coordinates for M and the opposite corner, we are
finally able to crop the proper base image.
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(a) The cropped base using
the bounding box’s coordi-
nates

(b) After the rotation (c) The calculated points

Figure 2.8: The implemented calculation of the bounding box (Images from [2])



Chapter 3

Implementation

3.1 Used Programming Languages and Libraries

We kept most parts of the implementation from the code developed by Florian
Zinggeler. His code was written in Python, using multiple additional libraries.
For geospatial data, the GDAL library [9] is used. It provides many useful
features such as the handling of GeoTiff files. We can also use it to warp aerial
pictures based on georeferenced points. This is used to remove the perspective
distortion from the original image. For computer vision tasks, the OpenCV
library [11] is used, as it provides many of features for feature matching and is
well documented.

3.2 Adding More Robustness to the First Matching
Step

All the aerial pictures not only differ from the years they were shot, but also
from a lot of other different aspects as flying height and size of the covered area.
To give our algorithm more robustness, we decided to apply the first step from
our guided matching algorithm in Chapter 2.5 multiple times, using different
resolutions. This is implemented because we were testing an ideal resolution for
the first matching step. Due to differences among the pictures, there was no ideal
resolution. Some images already had good matches with a height of only 150
pixels, others needed a height of approximately 300 pixels for a good estimate.

Our final implementation uses a loop that that iterates in steps of 40, starting
from a height of 120 pixels up to 600 pixels. We only store the result of an
iteration if it contains more than 9 matches, as a lower number of results often
contain wrong matches. At the end of the loop, all results with more than 9
matches are combined and are then used for the calculation of the more precise
bounding box.

12



Chapter 4

Results

4.1 Increased Number of Matches

Using SIFT instead of ORB and the guided matching approach significantly
increased the number of found matchings during the automatic georeferencing
step.

In Figure 4.1 we can see the found matches from Florian Zinggeler’s method [3].
All 40 matches are concentrated in the center of the picture.

In one iteration of the first stage, our approach already produces much better
results as illustrated by Figure 4.2. Compared to Figure 4.1, our matches are
much better distributed over the whole picture.

Figure 4.3 shows the accumulated matches over all defined neighborhoods.
After that we still have several wrong matches that need to be filtered. We
use the RANSAC algorithm [17] to accomplish this, as RANSAC detects and
eliminates outliers.

After applying RANSAC, the valuable matches in the corner of the images
disappear, as one can see in Figure 4.4. This leaves us with the same problem
that already existed in the old method, although we have much more matches.
Additional to our final matches we could also use all the matches from the
previous stage, as they are distributed more evenly. The georeferenced points
assign a coordinate to a pixel, low-resolution georeferences, since the ones from
the first stage, lack accuracy. However, since the matches from the first stage
have a better distribution, we decided to add them to the ones from the second
stage and use them for the final warping of the historical aerial picture.

One reason for the unsatisfactory result at the edges of the image could be
that the cropping after the second stage does not seem to be exact. Unfortu-
nately, We did not manage to identify the source for this mistake.

13
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Figure 4.1: The found matches in Florian Zinggeler’s method [3] (Images
from [2])

Figure 4.2: Matches in one iteration of the first stage (Images from [2])
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Figure 4.3: Unfiltered matches produced in the second stage, using the masks
(Images from [2])

Figure 4.4: The matches after applying the RANSAC algorithm (Images from [2])
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Figure 4.5: Wrong matches in Florian Zinggeler’s method [3] (Images from [2])

4.2 Performance on Older Image Data

With the higher amount of matches we were hoping to be able to match more
older images, since the old method was unable to produce a good result, as one
can see in Figure 4.5. The picture on the right dates back to the year 1951 and
a lot of changes have happened since then.

We were hoping that our more robust guided matching implementation is
able to detect more correct features. Unfortunately, our implementation already
failed during the first stage. In none of the different iterations from the first
stage, enough features were found. An example is shown in Figure 4.6, higher
and lower resolutions performed similarly.
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Figure 4.6: Wrong matches with our approach during the first stage (Images
from [2])



Chapter 5

Conclusion and Outlook

We presented multiple improvements to the existing method of Florian Zinggeler
[3]. Ranging from performance improvements to improvements regarding the
used storage space. We developed an approach that results in a much higher
amount feature matches when compared to the previous solution. Despite these
improvements, the automatic georeferencing algorithm often fails on old images,
dating from the 1960s and before.

5.1 Outlook

Although we were able to increase the amount of matches, our algorithm still
often fails on old image data. In this chapter we give an outlook what could be
done for further improvements.

5.1.1 Using Graphics Cards for Better Performance

Our multistage approach involves multiple matching processes. As the image
resolution grows bigger in every step, the computational time for the matching
algorithm grows in time too. OpenCV provides a CUDA library [18] which could
increase the performance of this process by a factor of 5.

5.1.2 Matching Street Data

The course of streets does not change as often as buildings or other features.
Matching streets may, therefore, be a good approach, especially for older data.
This was done by Cléry et al. [6]. They extracted line segments in historical
pictures and matched them with vector data from streets. The implementation
of this would either require a high-resolution vector map of the Swiss street
network or a robust algorithm which is able to extract street data from aerial
pictures.

18
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Figure 5.1: Comparison between the base image and a aerial picture of the same
area from 1931 (Images from [2])

5.1.3 Georeferencing Back in Time

Matching a current aerial picture with an image from 1931 is challenging, even
for humans, as one can see the many changes in Figure 5.1. We could solve this
issue by first georeferencing the newest aerial picture and then using the already
georeferenced ones for older data. With this approach, the changes between the
images would be much smaller and a feature matching algorithm should be able
to find much more matches. The influence of errors would have to be observed
in this approach, as the propagation of them could lead to wrong georeferences
in older pictures.
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