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Abstract

To break the security paradigm of isolation, two appications can use the thermal
covert channel. The thermal covert channel exploits temperature variations of the
CPU, to establish communication. In this master thesis I evaluate the interference
factors of the thermal covert channel exposed by previous work [1], and find a way
to compensate for them outside a controlled environment. I then develop a trans-
mission scheme that achieves bitrates as high as 20 bits per second with less than
5% error probability. Last, I manage to leak a RSA private key through the thermal
covert channel in a real attack scenario, with an average goodput of 1.358 bits per
second.
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1
Introduction

Multicore processors are vastly used inside modern devices, from desktop comput-
ers to hand-held devices. Processes run in parallel and share resources, allowing
the system achieve a higher performance. If applications share physical compo-
nents, new security concerns regarding processes isolation arise, i.e. it is not fully
clear if it is safe to run sensitive applications (e.g. bank, health) and non sensitive-
applications on the same silicon piece.

The Operating System (OS) has the responsibility of providing security to applica-
tions by using well established techniques. Confidentiality of an application’s infor-
mation can be enforced using permission separation and application isolation, i.e.
by using sandboxing. What threatens applications segregation are covert channels,
which are communication channels between applications hidden from the OS. If a
covert channel is established between two applications, the isolation imposed by the
OS is broken and confidentiality cannot be granted.

There are many types of covert channel that exploit various vulnerabilities of the
system, such as network protocols [2] or cache timing [3]. Physical covert channels
exploit physical characteristics of the device, for example the temperature of the
CPU or its frequency. This thesis focuses on the study of thermal covert channel.

1.1 Previous Work
Thermal covert channels are physical covert channels created by observing the tem-
perature of the processor’s cores. Thermal variations in a core are caused by the
heating generated by running processes, and the cooling. Modern devices employ
thermal sensors close to the processing units in order to apply thermal manage-
ment (e.g. adapt fans’ speed). The possibility of accessing the temperature measure-
ments on the system creates a vulnerability that can be exploited to create a thermal
covert channel between two applications. One application generates a variation in
the cores’ temperature, while the second application reads the data from the ther-
mal sensors.
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Chapter 1: Introduction

On multicore system, the thermal covert channel has been studied in the work of
Masti et al. [4]. The authors show how to establish communication between a send-
ing application (source) and a receiving application (sink), reaching a transmission
rate of 12.5 bits per second (bps). Bartolini et al. [1] expand the research on the mul-
ticore thermal covert channel, by finding a capacity bound and proposing a more
robust transmission scheme.

In order to determine the thermal channel capacity, Bartolini et al. [1] devised a new
methodology, which uses empirical data and information theory to find a capacity
bound. The authors show that the thermal covert channel has a maximum capacity
of up to 300 bps, and an implementation with a robust communication scheme that
achieves rates higher than 45 bps.

The transmission rates reached by Masti et al. [4] and Bartolini et al. [1] in their
respective work were achieved under laboratory conditions in which they tested the
thermal covert channel. Interfering system characteristics have been mitigated and
the testing devices were hold in a thermally controlled server room.

Whether the thermal covert channel can still be considered a threat in a real case
scenario has still not been shown. In this master thesis I aim to demonstrate the
potential of this threat by leaking sensitive information through the thermal covert
channel on two representative of different modern devices in a real attack scenario,
i.e. outside of a laboratory setup.

1.2 Threat Model

Figure 1-1
Attack scenario exploiting a thermal covert
channel

The threat model used to study the ef-
fectiveness of the thermal covert chan-
nel in a real scenario is based on the
model described by Bartolini et al. [1].

In the proposed attack scenario, de-
picted in Figure 1-1, two applications
are running on different cores on the
same CPU and are isolated from one an-
other. The source has access to sensitive
information, but doesn’t have permis-
sions to communicate through the inter-
net or access the thermal sensors. This
way, the segregated source should not be
able to leak the important information
even if it has been maliciously infected. The second application in the scenario is
the sink. Opposed to the source, the sink doesn’t have access to the sensitive data,
but can freely communicate over the internet. If both applications manage to suc-
cessfully establish a covert communication channel, the isolation is broken and the
data can be leaked to a malicious third party.

In order to evaluate the threat potential in a real case scenario, some more limita-
tions have to be added to the threat model. None of the two applications can have
root access at runtime, but sink can use a one-time root access or privilege escalation
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at installation time. Furthermore, system characteristics that may influence ther-
mal behaviour cannot be modified. Last, the attacked device is placed in a normal
working environment (e.g. office) and not a cooled server room or similar.

The final evaluation of the covert channel will be made on its ability to leak a cryp-
tographic key under real conditions. Moskowitz and Kang [5] defined the small mes-
sage criterion and pointed out that the bandwidth and capacity of a covert channel
are not a sufficient measure to quantify its threat potential. The scenario and the
leaked data are also important factors that needs to be taken into consideration.
The quantification of the threat potential can only happen after a holistic analysis
of the channel that includes capacity and threat model. So I assume that the abil-
ity to leak a cryptographic key undetected under realistic circumstances is a valid
criterion to evaluate the threat potential of the thermal covert channel.
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2
Influence Factors on the Thermal

Covert Channel

The power consumption of a CPU is correlated to its heat generation. By controlling
how much power a core is currently using, one can influence the core’s temperature.
By inducing variations in the power consumption and consequently variations in
the temperature of the CPU, the source app can transmit data through the thermal
covert channel. In order to increase the power consumption, the source generates
utilization on the system’s cores. The transmitted symbols can then be encoded in
different utilization pattern and decoded from the resulting temperature variations.

In an ideal scenario, the thermal behaviour can be entirely controlled by the source,
however in modern systems this is not the case. Power and thermal management,
and other system’s performance tools change the way the source affects the channel.
Other processes may also impose CPU utilization creating thermal noise.

In order to shift the experiments from the lab environment to a realistic scenario,
all the factors that can influence the thermal behaviour of a system have to be taken
into account. Bartolini et al. [1] provide a description of these factors and how they
can be controlled in a laboratory environment, in order to prevent strong interfer-
ences on the thermal channel.

In this chapter, I will analyse the interference factors and will show their respective
mitigation strategy devised, to comply with the threat model as described in section
1.2.

2.1 Thermal Noise
Thermal noise can be caused by two main factors: changes in the device surrounding
temperature and other processes generating high load on the CPU. In the work of
Bartolini et al. [1] the utilization noise caused by other processes is kept to a min-
imum, allowing just the core processes of the OS to run. The temperature changes
are then almost entirely caused by the source.
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In a real attack scenario, the same condition of low base utilization can be reached
when the system is not actively used, such as a phone charging at night or a laptop
left turned on in the office during the weekend. I consider the covert channel attack
to happen during those low usage periods. I expect that the remaining background
noise will not be able to disturb the thermal channel, meaning that no high external
utilization will occur over a long period of time.

In order to exclude thermal noise generated by the sink, the rate at which the tem-
perature measures are sampled and the execution of the sampling itself cannot gen-
erate a high load on the CPU. This means that the sampling rate of the sink needs
to be adapted accordingly.

2.2 Fans
Fans and passive thermal radiators are the most used combination to physically cool
devices’ hardware. The fan speed alters the efficiency of heat disposal. Modern sys-
tems usually change the fan speed depending on the current temperature, altering
the behaviour of the thermal channel with correlated thermal noise.

To exclude interference from changes in fan speed, Bartolini et al. [1] fixed it to
the maximum level during the experiments. When fixing the fan speed is not pos-
sible, the transmission scheme has to be adapted to changes in thermal dynamics.
Since the changes in thermal dynamics caused by the fan speed is correlated to the
actual temperature, the source could adapt the transmission scheme depending on
the measurement of the thermal sensors. However, in the proposed thread model,
the source has no access to the temperature readings. This means that the source
does not have the ability to create a back-channel, i.e. cannot use the output of the
channel to improve its input.

2.3 Core Pinning
Modern multicore systems take advantage of their multiple logical cores to increase
the system performance. This can result in processes being shifted between logical
cores. To exclude these events from happening, Bartolini et al. [1] pinned the source
and sink processes to specific cores. However core pinning is not an option in the pro-
posed threat model, since it changes the normal behaviour of the thermal channel
and this is not allowed. Thus the source will generate load on different cores.

Since the attack is happening on a not actively used system, only the core on which
the source is running will have strong temperature variations. Bartolini et al. [1]
defined the allcore channel, which consists of the thermal channel created by ob-
serving the summed temperature of all cores. All the thermal noise generated by
other processes are also summed up in the allcore channel along with the temper-
ature variations of the transmission. Thus in a system with low thermal noise, the
main variations of the allcore channel represent the transmitted signal. The sink
will collect ans sum the temperature measurement of all cores to decode the signal
on the allcore channel.

6



2.4. Sleep States

2.4 Sleep States
When the system is idle, as in the attack scenario, the CPU can enter so called sleep
states to optimize energy consumption. Waking up a physical core takes some time,
lowering the immediate performance and introducing delays in the execution of a
process.

The system used by Bartolini et al. [1] was not allowed to enter deep sleep states
by limiting the cpu dma latency. In the threat model presented in section 1.2, this
system functionality cannot be modified by our attack because changing the cpu
dma latency requires root access. Hence the source will have the task to wake up
the CPU before transmitting in the case all cores entered a sleep state. This can be
done by generating an initial utilization on the system, and not allowing longer idle
periods during the transmission.

2.5 Frequency Governor
Modern devices try to optimize power consumption through Direct Voltage and Fre-
quency Scaling (DVFS), which changes CPU frequency at runtime in order to de-
crease the amount of power consumed, while still maintaining high performance.
The OS software that regulates the operating frequency is called governor. The gov-
ernor uses the CPU utilization to decide which frequency to set, depending on its
policy. Since different frequency levels produce different amount of heat, in a system
with varying frequency the thermal behaviour will have a more complex correlation
with the utilization generated by the running processes.

In the systems used by Bartolini et al. [1], the frequency was fixed to exclude in-
terference from the governor’s behaviour. In the presented scenario, processes won’t
have the rights to fix the frequency, so the effects of governors on the system have to
be taken into account. Different devices have different default governors on them,
which may hinder or enhance the thermal dynamics of the thermal channel. How-
ever, frequency governors base their policy for the operating frequency on the CPU
utilization, which source can influence. This means that I can adapt the transmis-
sion scheme to the frequency governor running on the target device.

2.6 Scheduling
Scheduling is used by the OS to assign resources to the different processes. For ex-
ample schedulers can work with a priority system, where higher priority processes
will have precedence over lower priority ones in receiving access to resources. More-
over, a scheduler may force a process to leave resources to another one, in order to
prevent starvation or to support critical system processes. Thus the scheduler can
cause timing jitters in the channel, which means that there are variations between
the expected and the actual execution timing of processes.

To exclude interference from the scheduler, First In First Out (FIFO) scheduling
has been used in previous work [1] and source and sink had highest priority. Using
FIFO scheduling, also known as ’first come, first served’, any process that uses a
resource cannot be interrupted until completion by processes with same or lower
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priority. FIFO scheduling and maximum priority allows source and sink to work
undisturbed.

In the real case the attacker cannot change scheduling algorithm, which means
that the default has to be used. However, in an idle system, timing jitter caused by
the scheduling algorithm should be sufficiently small to be corrected by inserting
synchronization patterns in the transmission.
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3
Transmission Scheme

Figure 3-1
Transmission scheme of the communication through the thermal covert channel

The transmission from a sender source to a receiving sink is depicted in figure 3-1.
Initially the message bits are encoded in symbols, which are composed by a uti-
lization in percentage and a duration in seconds. The source sends the sequence of
symbols through the channel by applying utilization on the core. The heat generated
by the fixed utilization patterns caused by the source on the CPU produce temper-
ature variations, which are measured by the sink through the thermal sensors. By
analysing the resulting thermal trace the symbols are extracted and then decoded
back into bits.

3.1 Symbol Coding
Taking into account the thermal channel interfering factors showed in chapter 2,
the source would need a feedback loop, also called back-channel, of thermal mea-
surements in order to be able to reach and maintain a determined temperature.
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Since in our threat model, described in section 1.2, the source doesn’t have access to
the readings of the thermal sensors, the symbols cannot be coded using specific tem-
peratures or temperature variations. A line code based on just one type of pulse is
more suited for the symbol coding. The choice made by Bartolini et al. [1] is Manch-
ester coding, which they show to work very well for the transmission on the thermal
covert channel.

Manchester coding uses a binary code in which the two symbols, 0 and 1, are com-
posed of a high utilization part and a low utilization part, as depicted in figure 3-2(a).
A 0 starts with low and then switches to high utilization, while a 1 starts high end
ends low. Lets name the high utilization part of a symbol xup and the low part xdn,
then a 0 can be written as xdn, xup, while a 1 is xup, xdn. In our transmission scheme,
the high utilization is set at the maximum of 100% and the low one at the minimum,
which is 0%. This choice has been made to maximize the effect of the encoded symbol
on the core’s temperature.

The increase in temperature caused when passing from a low to a high utilization
period is not instantaneous, there is a channel delay between the applied load and
its thermal effect. On the other hand the temperature starts decreasing as soon
as the transition from high to low utilization occurs, which shoes that there are
different channel dynamics for the rising and falling edge. The steepness of the
change in temperature mostly depends on the DVFS governor used. Since higher
frequencies drain more power than lower ones, governors that can jump between
high and low frequencies quickly, will generate a more steep temperature variation.

Figure 3-2
Manchester code with different mh

The effect of the thermal delay on the
transmitted 0 or 1 results in an out-
put symbol with an high-to-low ratio
smaller than the input symbol. Higher
transmission rates suffer more than
lower ones from this effect due to the
fact that the delay remains of similar
length, while the symbol duration is
shorter. To achieve a higher rate, the
Manchester code can be adapted to the
situation.

While in the standard Manchester code
half of the symbol is low and the other

half is high, a different partition may improve the detectability of the output sym-
bols at higher transmission rates. Instead of using a 50% − 50% partition of the
input symbol, a different high-to-low ratio can be used. By increasing the length
of the high utilization part the effect of the thermal delay and the different chan-
nel dynamics on rising and falling edge on the output symbol can be compensated.
Lets then name the percentage of xup with respect to the whole symbol mh. In fig-
ure 3-2, two different mh values are presented. The standard Manchester code with
mh = 50% in (a), and a modified symbol with mh = 75% in (b).
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3.2. Packet Structure

3.2 Packet Structure
A message sent by the source through the thermal channel will be composed of
one or more packets. Each packet is structured as in figure 3-3, starting with a
synchronization pulse, in short sync pulse, followed by the payload composed of the
data bits and error detection coding.

Figure 3-3
Packet structure

The sync pulse is used
during the decoding of
the thermal trace to lo-
calize the packets in
order to extract the
payload. This initial
pulse needs to be dis-
tinguishable from the
rest of the signal, but
the longer it is, the more the effective transmission rate is reduced. We construct
the sync pulse by using high utilizations xup and low utilizations xdn of a symbol.
Our sync pulse is the sequence xdn, xup, xup, xup, xdn. The proposed sync pulse can-
not be created by any combination of symbols 0 and 1, thus it’s distinguishable from
the rest of the signal inside the measured trace. Its duration is exactly two symbol
lengths plus a high utilization part.

Another aspect of the transmission that the implementation of sync pulses helps is
to correct timing jitters inside packets. Timing jitters occur because source and sink
use different timing sources, which are not synchronized. For example when one of
the applications runs inside of a Virtual Machine (VM) and the other on the host
OS. The two timing sources used are different and timing jitter on the VM process
causes synchronization issues between source and sink.

To correct the timing of a packet, two sync pulses of neighbouring packets are used.
By locating the falling edge of the two pulses, the timing of the packet between them
can be stretched or compressed to match the expected timing. This procedure can be
repeated for all packets except the last one, because no other sync pulse follows the
end of the message. The end of the last packet is calculated by taking into account
the expected length and the timing jitter of the preceding packet. In order to choose
a good packet length the maximum timing jitter has to be taken into account with
respect to the symbol length. For example, with a maximum timing jitter of 0.5%
per symbol, the 40th symbol can have a maximum of 20% jitter with respect to the
expected timing.

Payload symbols are divided between data and error detection. Since the transmis-
sion is not error free, given the interfering factors in chapter 2, the packets need
error detection to allow the receiving part to discard faulty packets. We use Cyclic
Redundancy Check (CRC) error-detecting code inside the packets sent in our exper-
iments. The CRC coding uses a fixed polynomial to calculate the remainder of the
polynomial division on the packet’s data. The remainder is then attached at the end
of the packet as a check value, which is recomputed and compared after the trans-
mission. CRC is good at detecting random errors generated by noise in transmission
channels and easy to implement.
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4
Experimental Setup

The thermal covert channel attack is performed on two platforms representative of
modern commercial devices, a business laptop and a smartphone.

The business laptop is a Lenovo ThinkPad T460s, with an Intel Core i7-6600U CPU
that has two physical each running two threads resulting in four logical cores. The
OS on the device is Ubuntu 15.10, and to grant isolation between the two appli-
cations, Orcale VM VirtualBox is used. The used VM runs the same OS (Ubuntu
15.10), has two cores and the CPU execution cap is at 100%. Other notable specifi-
cations of the laptop that influence the thermal covert channels are the default fre-
quency governor, which is intel p-state powersave, and the default scheduler called
Completely Fair Scheduler (CFS).

A Samsung Galaxy S5 with an Exynos 5422 Octa chipset is used as for smartphones.
It’s running Android 5.0 Lollipop and uses Cortex A15 and A7 in a big.Little compo-
sition. The application sandboxing enforced by Android is already sufficient to grant
the isolation between source and sink.

Apart from the presented laptop and a smartphone, other two devices are also used
in the experimental setup: a computer that runs the data processing framework and
a server for storage purposes. Data processing is done with Matlab while the neces-
sary scripts to control the framework are written in bash. The source and sink appli-
cations are written in C++ for the laptop, and most of the code has been encapsulated
into Java using the Android Native Development Kit (NDK) for the smartphone.
The frequency governor of the phone is the default interactive governor, which has
a quick reaction to utilization changes on the CPU.

4.1 Source
The core of the source works as follows. The symbols are fed to the main loop in
the form of a list of instructions. An instruction contains a mode, 1 or 0, and the
duration in microseconds of the mode. If the mode is 1, 100% utilization is generated
on the CPU for the necessary duration, using a tight loop similar to cpuburn. If the
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Chapter 4: Experimental Setup

instruction mode is a 0 instead, the process goes to sleep for the requested amount
of time. The timing is calculated using Time Stamp Counter (TSC) on the laptop
and the clock_gettime function on the smartphone. After the completion of the set of
instruction the loop is finished.

In a first experimental version used for the empirical evaluations in section 5.1.1,
the instructions are given to the source through an external file the application
reads. The application begins the transmission as soon as an external scripts, which
handles the experiment execution.

In the final version use for the real attack in section 5.1.2, the source directly en-
codes the bits of a target file and creates the list of instructions internally. Moreover,
the source will start the transmission on the thermal covert channel at previously
hardcoded rendezvous points using the local time of the system.

4.2 Sink
The application reads the temperature from "/dev/cpu/[CPU#]/msr" for the lap-
top, and "/sys/devices/10060000.tmu/curr_temp" in the smartphone. While for the
Android device no extra permission has to be granted to access the thermal data,
reading privileges to the msr file are not granted by default on the laptop. In order
to allow the sink access to the temperature reading without root permissions at run-
time, three actions need to be executed with highest privileges during installation.
Firstly we make sure that the msr module is loaded with "modprobe msr". After-
wards the msr file needs to be made readable and writeable by all, and then the
command "setcap cap_sys_rawio=ep <executable>" has to be run on the sink binary.

Timing within the application is handled as in the source. When the measurement
part is over, the remaining time until the next sampling instant is calculated and
the process is put to sleep for the remaining duration. The sink samples the tem-
perature each five milliseconds in our experimental setup. Higher sampling rates
may improve the decoding process, but it is limited by the measurement rate of the
thermal sensors.

As explained in the previous section, the transmission on the covert channel is per-
formed at rendezvous times. The transmission rate and the data size are fixed, since
the target file for the attack is chosen beforehand and its path is already hardcoded
inside the source. This way the sink knows approximately how long it has to mea-
sure the temperature to ensure recording the whole message.

4.3 Data Processing
The output traces of the sink are fetched by the device responsible for the data pro-
cessing after an arbitrary amount of time, e.g. one night or weekend. On the device
the data is fed to the data processing framework, which analyses the temperature
traces and decodes the signal.

Finding the beginning of the transmission inside the thermal trace is the first prob-
lem to be solved during the data processing. Before starting the transmission the
source waits one second before sending the message. This prevents the source to
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start sending the transmission before the sink has started recording temperature
values. The one second margin results in a quiet channel before the first sync pulse
begins, which is easily identifiable on the thermal trace.

After the beginning of the signal has been identified, the message is split into pack-
ets by searching for the sync pulses one at a time. To correct timing jitters, the
method described in 3.2 is used. The end of the signal is reached once the tempera-
ture variations are below a certain threshold.

The symbols of each packet are extracted and then multiplied with two perpendic-
ular carriers. The resulting symbol space is analysed with decision device, which
decodes the symbols into bits. The decision device needs a training round, which is
executed during the first evaluation phase in section 5.1.1. An attacker can use a
device equal to the target device for the training round of the decoder.

Once the bits are decoded the CRC remainder of every packet is calculated and
compared with the error-detecting bits at the end of every packet. Faulty packets
are discarded and error free packets are kept, and, since we are decoding bits of an
ASCII file as described in section 5.1.2, the characters are extracted from the bits.
Only characters composed of bits coming from good packets are considered for the
final decoding of the message.

The attack is considered successful as soon as every packet has been transmitted
without error at least once. This also includes the packets which had both data and
error-correcting symbols wrongly decoded, but the resulting packet CRC remainder
indicates a good reception. To counter this problem each packet has to be correctly
decoded at least twice, and if the two resulting bit sequences are different a third
correct decoding of the packet is needed to exclude the faulty one.
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5
Experimental evaluation

To perform the thermal covert channel attack proposed in this thesis we first need to
empirically evaluate the communication channel at our disposal, and devise a good
set of parameters for the transmission scheme. Thus the first experiments will be
performed with the first more easily controllable version of source and sink. Experi-
ment execution is managed by external scripts, which take care of the synchroniza-
tion between the two application via signalling.

The final transmission parameters are then chosen from the empirical results and
hardcoded in the final version of the two applications. The real attack is then per-
formed by transmitting a private RSA cryptographic key generated with ssh-keygen
-t rsa, which has a length of 1679 bytes.

5.1 Laptop
The parameters needed for the laptop transmission scheme are packet length,
amount of error-detecting bits, mh value and transmission rate. Once the param-
eters have been chosen and implemented, the attack through the thermal covert
channel will be executed periodically, at a rate depending on the length of one trans-
mission.

5.1.1 Empirical Evaluation
The packet length depends on the amount of timing jitter induced by the VM on
the resulting trace, and the amount of error-detecting bits needed depends on the
packet length. The first test runs on the laptop showed a maximum timing jitter
around 2.3% jitter per symbol. I take some security margin on this empirical value
and use 2.5% jitter per symbol to calculate a good packet size. I allow a maximum
accumulated timing jitter of 50%, which is reached after 20 symbols. I thus choose
to have packets with a payload of 20 bits, 16 bits carry the information, while 4 bits
are used for error detection.

The bits transmitted by the source are encoded using Manchester coding with dif-
ferent mh percentages as explained in section 3.1. Thus I evaluate the different
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Figure 5-1
Laptop, BER of different mh values over
transmission rates

Figure 5-2
Laptop, PER of different mh values over
transmission rates

transmission schemes for symbols with mh from 35% to 85%, each 5% step, at trans-
mission rates from 4 to 20 bps. Each run is composed of a training and an evaluation
bit sequence. The training sequence, which is then used to train the decision device,
contains 1′000 randomly generated bits, while the evaluation part contains 10′000
random bits.

The results are presented in the figure 5-1 and 5-2, which show BER and PER of
some of the evaluated transmission schemes. To better show the results, only part
of the evaluated transmissions has been plotted. The curves of both figures are the
trend lines of the resulting data fitted with a sigmoid function.

In figure 5-1 the trends in bit error probability of transmissions with different mh

values are plotted against the transmission rate. As is can be seen in the plot, trans-
missions with small mh with respect to the standard Manchester code, which has
mh = 50%, rapidly reach a high BER with increasing bit rate. Because of the delay
between the utilization rise and the thermal effect, at high rates most of the symbols
are not able to generate the necessary thermal variation.

A consistent improvement in performance can be achieved when using a higher mh.
With respect to the mh = 50% case, all higher mh encoding show a more robust
behaviour at faster transmission rates. However, there is a limit to how much we
can increase the mh percentage. The optimum mh in our case is mh = 70%, values
above and below it show a worse performance. This makes 70% a good mh choice for
the real attack. Even at the highest rate of 20 bps, the mh = 70% trend line reaches
less than 5% BER.

Figure 5-2 shows the PER of the same set of data, with respect to the transmis-
sion rates. Since we are interested in decoding good packets, the PER gives a better
understanding of the performance of a specific combination of mh value and trans-
mission rate during a real attack.

The plot shows that the PER of the traces with high mh values, i.e. 80% and 85%,
suffers a greater decrease in performance at higher rates compared to their BER
trend. In particular the mh = 85% trace at high rates has a worse PER, with respecto
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5.1. Laptop

to mh = 50%, but half its BER. The distribution of faulty bits inside the message is
worse at high mh values, since it generates a higher PER.

fewer close to the performance of the standard manchester code with mh = 50%. In
the BER plot however, the performance of the first trace was higher than the second
one, meaning that higher mh values may lead to an error distribution which causes
high PER.

For the real attack we need a transmission scheme with a good trade-off between
PER and bit rate. We choose the combination of mh = 70% and a transmission rate
of 17 bps. As it can be seen from figure 5-2 this combination leads to a packet loss
of less than 10%, while maintaining a high performance. We then hardcode the final
transmission scheme in the attack version of the source.

Before executing the attack through the thermal covert channel, we investigated the
effect of a different frequency governor on the transmission. In the previous work,
Bartolini et al. [1] found in their robustness study, that the actions of the acpi-
cpufreq conservative governor degenerated the performance of the transmission in
a critical way. We had the same problem when we applied the transmission scheme
we developed for the intel p-states powersave governor, the temperature changes
caused by utilization pulses were sometimes normal and other times too small to be
decoded. After an investigation on the conservative governor behaviour, we managed
to recover most of the lost performance, by inserting a long utilization period at
the beginning of the transmission. This forces the frequency governor to increase
the frequency to its maximum level, and by ensuring short idle period during the
transmission itself the frequency stays high, enhancing the thermal dynamics of
the channel. We intended to continue investigating the possibility to also exploit the
thermal channel of the conservative governor, but we didn’t have enough time to
continue.

5.1.2 Realistic Attack
During the final attack with the powersave frequency governor setup, we intend
to leak the id_rsa private SSH key file over the thermal covert channel. The file
contains 13′432 bits of ASCII characters that are spread over 840 packets, the last
one being zero padded. Each packet also contains 4 bits of error-detecting code and a
sync pulse, which is 2.7 bits long. The total length of the message is 19′068 bits, which
will take approximately 18 minutes and 42 seconds for a complete transmission. The
communication will happen at rendezvous points between source and sink every 30
minutes .00 and .30 hour mark. Since our target devices are always idle, we don’t
need to differentiate between busy and idle periods to send the message.

The resulting average PER of the attack is around 21.942%, an I managed to suc-
cessfully decode the message after 8.818 complete transmissions on a total of 100
transmissions. The resulting average goodput is 1.358 bps, which was calculated by
taking the total amount of data bits (13′432) and dividing it by the netto transmis-
sion time (8.818 · 18′42′′).
I also discovered that activating the Graphical User Interface (GUI) of the VM de-
generates the transmission on the thermal channel. Since we are using the VM as a
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mean to enforce the isolation between source and sink, and not because of the threat
model, the resulting average goodput we obtained without a GUI on the VM is still
correct.

5.2 Smartphone
Since the smartphone thermal channel does not present timing jitter, more than
one synchronization pulse is not necessary during the empirical evaluation part,
thus the message is sent using one single packet.

The results from the phone are not nearly as good as those on the laptop. We did not
grasp the thermal dynamics of its channel yet, and we cannot pursue the research
on the smartphone due to timing limitations.

Figure 5-3
Smartphone, extract of output trace showing
allcore temperature

In figure 5-3 we show an extract with 20
bits of a transmission of 100 total bits
on the thermal channel. The transmis-
sion parameters used are mh = 70% at
a bit rate of 1 bps. The figure shows the
temperature variation that this commu-
nication has managed to induce on the
system.

It is intuitive that the presented trace
cannot be decoded to obtain the 20 bits it
should contain. After the first two tem-
perature pulses the temperature drops
to its low level, while following utiliza-
tion pulses do not manage to generate
enough heat to be recorded. The data
comes from the four thermal sensors
placed on the eight cores of the proces-
sor. As stated before due to the project time we couldn’t further investigate the cause
of this behaviour.
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Concluding Remarks

In this thesis we analysed the previous work done by Bartolini et al. [1] and found its
main weaknesses, which are the limited robustness study they performed and the
fact that they didn’t perform an attack in a real case scenario. We then compensated
the interference factors exposed by Bartolini et al. [1] in order to develop a robust
transmission scheme for a real attack.

The transmission scheme we developed reached bitrates as high as 20 bps with less
than 5% BER. This result has been reached mainly thanks to the modified Manch-
ester coding we applied when encoding the symbols for the transmission. This result
can still be improved, for example by optimizing the transmitted symbols by exploit-
ing the state of the channel after the previous one. If the previous symbol ended with
high utilization and the current one starts with high utilization, i.e. 01 symbol se-
quence, the temperature is already high. The utilization of the current symbol could
be improved to increase the distance between regions in the symbol space.

I then successfully performed an attack in a real case scenario exploiting the ther-
mal covert channel, successfully leaking the 13′432 bits of a id_rsa file containing a
private SSH key. The key was correctly decoded after an average of six transmis-
sions of all packets, which has a resulting average goodput of 1.358 bps.

In its Orange Book [6], the US department of defence (DOD) stated that trusted
computing environments should have the capability to audit covert channels with
bandwidths of more than 0.1 bps. The DOD also reported in the same book that
in most application environment bandwidth of at maximum 1 bps are acceptable.
The average goodput of 1.358 bps seems indeed to be low, but it has to be taken
into consideration that the goodput is already the throughput at application level.
Moreover, as stated in section 1.2, Moskowitz and Kang [5] argued that bandwidth
and capacity alone are not a sufficient measure of the threat potential of a covert
channel.

I thus showed that an attack that uses the thermal covert channel is indeed possible
even in a real case scenario.
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Appendix: Data Storage Location

Here are the file paths for the data used. On the storage server the folder containing
all the files is: /home/thermal/experimental_results/thermal-cc/

Empirical evaluation on laptop. Different mh values test:

• Pallando_20pk_35pw_LaptopVM_2017-03-16_1705.tar.gz

Pallando_20pk_40pw_LaptopVM_2017-03-16_2320.tar.gz

•• Pallando_20pk_45pw_LaptopVM_2017-03-17_0535.tar.gz

• Pallando_20pk_50pw_LaptopVM_2017-03-17_1152.tar.gz

• Pallando_20pk_55pw_LaptopVM_2017-03-17_1811.tar.gz

• Pallando_20pk_60pw_LaptopVM_2017-03-18_0031.tar.gz

• Pallando_20pk_65pw_LaptopVM_2017-03-18_0650.tar.gz

• Pallando_20pk_70pw_LaptopVM_2017-03-18_1309.tar.gz

• Pallando_20pk_75pw_LaptopVM_2017-03-18_1930.tar.gz

• Pallando_20pk_80pw_LaptopVM_2017-03-19_0151.tar.gz

• Pallando_20pk_85pw_LaptopVM_2017-03-20_1947.tar.gz

Empirical evaluation on laptop. Conservative governor test:

• Pallando_20pk_70pw_con_LaptopVM_2017-04-14_1906.tar.gz

Pallando_20pk_70pw_con_LaptopVM_2017-04-20_1744.tar.gz

Real attack on laptop:

•• Pallando_real_attack_final_2017-04-30.tar.gz

Empirical evaluation on phone:

• GS5_70pw_GS5_2017-04-23_1013.tar.gz
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