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Preface

In this thesis culminates a tumultuous yet revelatory journey through the labyrinth
of knowledge; a journey plagued with eternal questioning, continuous self-doubt
and everlasting disenchantments; a journey of uneven struggle with the colossal
achievements of science, in an idealistic and quixotic endeavor to master them all.
Only to be left with the debilitating felling of grief and sorrow in the realization of
my vanity; in the realization of the infinitesimality of my masteries; in the realization
of the triviality of our beings when juxtaposed to the models conceived to describe
them. A feeling that, ironically, impels me to surge through my ashes, reborn and
keep struggling with the Leviathan of science; keep walking this futile road to the
sempiternal quest for knowledge and drawing satisfaction in every tiny step. The
end of this journey is marked by insurmountable gratification but signals no future
consumed in sloth and self-indulgence. It rather harbingers the inception of a new
journey; a harder journey of a continuous, life-long struggle in the vain hope of
satisfying my greed for knowledge; the greed that has always kept me wondering in
this labyrinth; the greed that clarifies, cuts through and captures the essence of my
inquisitive spirit; the greed that - for the lack of a better word - is good.

Panagiotis Kyriakis
Zürich, April 2017
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Abstract

The emergence of complex networks appearing in engineered, physical, biological and
socio-economic systems and the higher-order structure of the observed interactions
necessitate the development of novel techniques as, traditionally, simple pairwise
relations are postulated. Axiomatically accepting that every networked system ad-
mits such representation may lead to loss of information and sub-optimal solutions
when the interactions deviate from the pairwise model. In order for this pitfall to
be circumvented, higher-order structures need to be considered and adopted. Not
surprisingly, this reinforcement of the model comes with a caveat, as the complexity
of the problem increases; an issue that needs to be addressed.

In this thesis, we address this issue by embedding and approximating the higher-
order structure with a simpler one. More specifically, we consider the hypergraph
model of n nodes and |E| hyperedges in order to capture higher-order interactions
among elements in a network and equip it with an appropriately chosen k-order met-
ric. Then, we design a centralized probabilistic clustering algorithm that produces a
hierarchical partitioning of the hypergraph. Constitutively, we create a rooted tree
using the produced clusters, define a shortest-path based tree-metric and prove that
the distortion associated with this embedding is O(k

2 logn
log k

), tightly bounded on the
number of points. Additionally, departing from the centralized approach and confin-
ing ourselves to the 3-order case, we present a distributed structure that encodes the
clustering procedure and develop an algorithm, tailored to the CONGEST model,
intended for its computation. We prove the correctness of this distributed algo-
rithm and provide linear on the shortest path diameter bounds of its message and
round complexity, namely O(SPD3|E| log n) and O(SPD3 log n). Constitutively,
we introduce a representation of the tree resulting from this distributed embedding
and construct a distortion-invariant algorithm which reduces its height to O(log n).
Finally, we conclude by proving that the message and round complexity of the last
algorithm are bounded, in terms of the weighted (∆) and the hop (hD) diameter,
by O(|E|hD log ∆) and O(hD log ∆), respectively.

Keywords

hypergraphs, generalized metric spaces, tree metric, embedding, probabilistic ap-
proximation, clustering algorithms, distributed tree embedding, height reduction

v





Chapter 1

Introduction

1.1 Metric Embeddings
Loosely speaking, a metric space is a set of points equipped with a distance function
("metric") that defines how far apart two points of the space are. What formally
defines a metric space is a set of axioms, which every candidate function must satisfy
in order to be considered a metric. These axioms, arissing from the natural intuition
of distance are commonly called identity, symmetry and triangle inequality.

Even though the study of metric spaces is a topic of theoretical mathematics,
many researchers in computer science, motived by their wide applicability to practi-
cally useful problems, have put extensive effort in using them into their field. From
this perspective, computer scientists are more interested in designing effective and
efficient algorithms that can provide optimal solutions to the problems represented
by metric spaces, and less interested in understanding their induced topological
properties, even though the latter may sometimes aid in the former.

In computer science, metric spaces arise in certain classes of several important
graph theoretical problems. When a problem can be represented by a graph, weights
can be added to the edges and a distance function satisfying the aforementioned
axioms can be induced, then the resulting set is a metric space. Even though
virtually all problems can, in theory, be solved in the above setting, due to their
computational intractability or our desire to obtain approximate but really fast
solutions, it is often preferable to convert then to a simpler metric space, with trees
being the most commonly chosen one. This "conversion" is called metric embedding
and can be informally described as a mapping from the first space ("original") to
the second ("host"). Trees are a special case of graphs, occurring when there exists
only one way to reach any point from any other point and as one would expect.
They are the most commonly chosen host space owing to all problems being easily
if not trivially solvable on them.

Although this method appears as panacea, its utilization comes with a caveat:
one cannot expect that the distances would remain invariant when embedding ar-
bitrary graphs into trees, except in trivial cases. Thus, a certain amount of dis-
tortion shall be expected and ideally, with sagaciously chosen embedding methods,
minimized. After the embedding the original space into the desired tree has been

1



2 1.2. Motivation

obtained, we can tackle the problem by implementing a simper, a faster or more effi-
cient algorithm and by converting the solution back to the former space. Whenever
the algorithm on the tree is itself approximative, which is often the case, the distor-
tion induced by the embedding only contributes a factor to the overall asymptotic
approximation ratio. It should be noted that the embedding and the algorithm de-
sign procedure on the host space can be implemented completely independently from
each other. In fact, owing the their simplicity, there exist already several algorithms
for a wide range of problems on trees. Hence, purely by the embedding, one can
solve the corresponding problems on arbitrary graphs or achieve better performance
on existing solutions.

1.2 Motivation
Motivated by the theoretical as well as practical interest of the above technique,
many researchers have proposed several1 - initially centralized - algorithms for em-
bedding and approximating metric spaces arising from the shortest path distance on
graphs into trees. Additionally, the advent of large scale distributed and parallel sys-
tems, which makes centralized implementations primitive, costly or even intractable,
reinforced by the fact that the simplicity of tree problems over graph problems is
not particular to centralized systems, has led to the retrospective modernization and
refinement of some of the original embedding methods.

Although the implicit assumption that simple pairwise interactions govern every
problem chosen to be modeled by a graph may undermine the effectiveness of the
solution and lead to substantial loss of information, the research community has
not been enthralled by the possibility of devising methods to embed and approxi-
mate spaces arising from higher-order structures, such as hypergraphs. Dropping
the naive hypothesis of pairwise relationships and adopting a hypergraph model
can lead to substantial improvement of the applied methods, as it has been demon-
strated by a plethora of examples in several fields, including spectral clustering
techniques for machine learning [SPH07] and computer vision [ALZM+05], link pre-
diction [LXLS13], music recommendation systems [BTC+10], community structure
detection [LSC+09], matching and combinatorial auctions [KRTV13], multi-interface
wireless networks [ACKP09], just to name a few. Additionally, many combinatorial
optimization problems with a wide range of applications can be naturally expressed
using the hypergraph model, including the full Steiner tree concatenation [BZ15], the
minimum-flow maximum-cut [PM03], the perfect matching [AY05] and the multi-
way partitioning [EN14].

In order to improve the effectiveness of the solutions of such problems, it is im-
perative to consider approximating hypergraphs by a simpler structure. However,
whenever the hypergraph model is chosen as a representation of the problem at hand,
inevitably the notion of distance between three or more points arises. The intrinsic
inability of the so far proposed algorithms to deal with such higher-order metrics
necessitates the development of novel embedding methods, adapted to higher-order

1Look at the following section for a literature review.



Chapter 1. Introduction 3

structures. Such methods, if shrewdly chosen, are guaranteed to improve the cur-
rent solutions of problems defined on hypergraphs, as they would only need to be
solved in the simpler space. Motivated by this need to lessen the ostracism the
appears to have plagued higher-order embeddings and in the idealistic hope of act-
ing as quintessential exemplar for further research in this topic, we develop in this
thesis a method that embeds and approximates higher-order metrics that arise on
hypergraph models.

1.3 Previous Work

Finite metric embeddings have been a vibrant field of research. In the realm of
normed host spaces, Burgain’s famous theorem [Bou85] guarantees an O(log n) dis-
tortion bound when embedding into l2 of dimension exponential in n. The dimension
was later improved to O(log2 n) and the distortion bound of Euclidean embeddings
was proved to be tight [LLR95]. In [Mat96], a embedding into a O(Dn2/D log n)-
dimensional l∞-space inducing distortion of D was proved to exist. In [Fei00], Feige
strengthened the previous embeddings by accounting for the volume distortion of
k-simplices and proved a O(log n+

√
k log n log k) distortion bound in l2. As the lit-

erature on embedding finite metrics into normed spaces is vast, for a comprehensive
review of state-of-the-art techniques the reader is directed to [Mat02, IM04].

Motivated by the algorithmic point of view, trees are a commonly chosen host
metric space. On the backbone of proposed methods lie probabilistic algorithms,
which embed the original space not into a single but rather into a distribution over
different tree metrics. Their superiority stems from the fact that they provide accept-
able distortion bounds even for classes of metric, for which deterministic methods
fail to do so, as it can be easily inferred by constructing graphs that cannot be
embedded into a single tree metric with lower than Ω(n) distortion [RR98]. This
bound can be improved by using probabilistic methods, as outlined in the following.

One of the earliest probabilistic approaches, inducing a distortion bounded ex-
ponentially on O(

√
log n log log n), was presented in [AKPW95], where a graph was

approximated by a distribution over spanning trees. In [Bar96], Bartal defined
probabilistic embeddings over distributions trees and proved an O(log2 n) distor-
tion bound. His trees had a special structure, which he termed hierarchically well
separated, whereby the weights on successive levels decay by a constant factor.
Additionally, he showed that the embedding of arbitrary graphs into distribution
over2 tree induces a distortion of at least Ω(log n). Later [Bar98], he improved his
previous result by providing a O(log n log log n) upper bound. His latest method
was derandomized and used in order to obtain deterministic approximation algo-
rithms for several problems, such as the buy-at-bulk network design [CCG+98], and
group Steiner tree [CCGG98]. In [KRS01], the distortion upper bound of Bartal’s
algorithm was shown to be O(log n) for planar graphs. The relevant probabilistic
approaches culminated in the FRT-method presented in [FRT04], which was proved

2Since we are only concerned with distributions over trees, the "distribution over" may be
omitted.



4 1.4. Contribution of the Thesis

to be existentially optimal as it provided anO(log n) approximation, therefore closed
the gap between the upper and the lower bound.3

Due to its proclaimed optimality, the FRT-method has evolved into a highly in-
fluential and archetypal technique and given a profound impetus to further improve
and tailor it to different settings. A parallel implementation, requiring O(n2 log n)
work and O(log2 n) depth, was presented in [BGT12] and used for obtaining RNC
approximation algorithms for the k-median and buy-at-bulk network design prob-
lems. The work was latter reduced to O((|E|+n1+ε) log n) in [FL15] at the expense
of an increased stretch of ε−1 on the distortion bound. In [KKM+12], a distributed
implementation of a round complexity bounded by O(SPD log n)4 was presented
and used for developing a distributed approximation algorithm for the Steiner forest
problem. The round complexity was then improved to almost O((hD +

√
n) log n)5

[GL14] inducing only a constant factor on the distortion bound. Finally, in [BGS16],
a time efficient implementation of O(|E| log n) complexity was proposed and used
for constructing approximate distance oracles based on the resulting FTR trees.

1.4 Contribution of the Thesis
The work presented in this thesis is of theoretical as well as practical interest, due to
universality of the proposed methods and the wide range of applications of hyper-
graph models, as argued in Sec. 1.2. Its novelties and contributions are essentially
threefold: the cornerstone of the originality is the first embedding algorithm that ap-
proximates higher-order metrics (also called generalized metrics) with a distribution
over tree metrics. The algorithm is itself probabilistic and produces a hierarchical
decomposition of the hypergraph. The second major contribution is its distributed
implementation, achieved by constructing an appropriate structure to encode the
decomposition, developing an efficient algorithm to compute it and by distributively
representing the resulting tree. Finally, an original algorithm, which reduces the
height of such distributed tree representations, was designed.

The rest of the text is organized as follows: In Chapter 2, we present the fun-
damental concepts of generalized metric spaces and hypergraphs. We define the
probabilistic embedding and approximation problem and, finally, introduce some
rudimentary properties of distributed systems. In Chapter 3, we present and analyze
the probabilistic embedding algorithm. We prove that it solves the approximation
problem and bound the expected distortion it induces. Also, we argue for the exis-
tential optimality of the embedding and manipulate the properties of the resulting
tree. In Chapter 4, we present the distributed tree embedding and height reduction
algorithms, prove their correctness and analyze their performance using the message
and round complexity. In Chapter 5, we conclude by summarizing and discussing
our results and by giving directions for future research.

3With some abuse of notation, we may use the term "lower bound" in place of "lower bound of
upper bound". Look at Def. 2.9.

4SPD = shortest path diameter, look at Sec. 2.2.
5hD=hop diameter, look at Sec. 2.2.



Chapter 2

Metrics, Graphs and Embeddings

In this chapter we formalize the concepts and give the pertinent mathematical back-
ground necessary for understanding the methods developed in this thesis. We start
by reviewing the axiom systems of metric spaces and by examining their induced
graph representations. Then we give the formal definition of the metric embedding
problem and finally present the distributed computation model which is used for the
decentralized implementation of our methods.

2.1 Generalized Metric Spaces
The notion of metric ("distance") between two points is one of the most known and
widely understood concepts in mathematics and can by expressed by the following
axioms.

Definition 2.1. Let X be a set of points, then metric is said to be any function
d : X ×X → R≥0 that satisfies

A 1. d(x, y) = 0⇔ x = y

A 2. d(y, x) = d(y, x)

A 3. d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. The resulting tuple (X, d) is called metric space. �

The axioms are called identity, symmetry and triangle inequality, respectively. When
X is an inner product space, the Euclidean metric, defined as d(x, y) =

√
〈x, y〉,

where 〈·, ·〉 denotes the inner product, is a commonly used metric and corresponds
to our natural intuition of distance.

Even though such metrics between two points are a well studied topic in mathe-
matics, generalized1 metric spaces, which formalize the concept of distance between
three or more points, have been ignored. Only in 1928 Menger in [Men28] intro-
duced that notion by taking k points in a high-dimensional Euclidean space and
assigning their distance to be the volume of the simplex that they define. Following

1When it is clear from the context that we refer to a generalized metric or the distinction makes
no difference, we omit the word "generalized"

5



6 2.1. Generalized Metric Spaces

that, Gähler in [Gäh63, Gäh64] restricted himself to three points, defined an axiom
system, which he named 2-metric and studied the properties of the resulting space.
Motivated by the pitfalls of the 2-metric, namely the lack of necessity for continuity
[Lin90] and the absence of an easy correspondence to a metric (which was proved
by Gähler himself), Dhange slightly modified the axioms and defined the D-metric
[Dha92]. Both of these metrics encompass similar definitions, which we present here
by following Menger’s approach for arbitrary number of k points.

Definition 2.2. Let X be a set of points and p(·) be a function that returns the
permutations of its arguments, then 2k-metric (Dk-metric) is said to be any function
d : Xk → R≥0 that satisfies the following axioms

A 1. d(x1, x2, . . . , xk) = 0⇔ at least two of (x1, x2, . . . , xk) equal (all equal)

A 2. d(x1, x2, . . . , xk) = d(p(x1, x2, . . . , xk))

A 3. d(x1, x2, . . . , xk) ≤
∑k

i=1 d(x1, x2, . . . , xi−1, xk+1, xi+1, . . . , xk)

for all x1, x2, . . . , xk+1 ∈ X. The resulting tuple (X, d2k) ((X, dDk))2 is called 2k-
metric space (Dk-metric space) and the integer k ≥ 2 is called order of the metric. �

We observe that the only difference introduced by Dhange is the identity ax-
iom, namely k points are identical if at least two of them are equal (2k-metric)
or if all of them are equal (Dk-metric). The third axiom is a generalization of the
tetrahedral inequality for k-simplices. These metrics can be picturized as the vol-
ume (24-metric) and the surface (D4-metric) of the hexahedron formed by 4 points
in a three dimensional space. Dhange’s modification was not however sufficient to
provide the intended correspondence, as the metric induced by a given Dk-metric
need not satisfy the triangle inequality [MS04]. Based on that, Mustafa and Sims
introduced in [MS06] a new generalized metric, which they named G-metric

Definition 2.3. Let X be a set of points and p(·) be a function that returns the
permutations of its arguments, then Gk-metric is said to be any function d : Xk →
R≥0 that satisfies the following axioms

A 1. d(x1, . . . , xk) = 0⇔ all (x1, . . . , xk) equal

A 2. d(ai) ≤ d(ai+1), ai = (x1, . . . , x1︸ ︷︷ ︸
k−i

, x2, . . . , xi+1)⇔ |{x2, . . . , xk}| = k − 1

A 3. d(x1, . . . , xk) = d(p(x1, . . . , xk))

A 4. d(x1, . . . , xk) ≤ d(x1, xk+1, . . . , xk+1) + d(xk+1, x2, . . . , xk)

for all x1, . . . , xk+1 ∈ X and i = 1, . . . , k. The resulting tuple (X, d) is called Gk-
metric space and the integer k ≥ 2 is called order of the metric. �

The newly introduced second axiom accounts for the fact that the distance of a
set of points increases as new points are added to the set. The Gk-metric can be
picturized as the perimeter of the polygon formed by the k points. As pointed out
in [MS06], for the G3-metric there exists a simple correspondence to a metric (which

2We subscript the functions to avoid confusion.



Chapter 2. Metrics, Graphs and Embeddings 7

can be extended to k points), hence guarantying also the continuity of the former.
Therefore, the Gk-metric alleviates the shortcomings of the other two and appears to
be the most prudent choice of an axiom system for the k-point distance. Finally, the
three new metric spaces simplify to the Def. 2.1 for k = 2, as intuitively expected.

2.2 Hypergraph Representations
From the computer science perspective we are interested in utilizing metric spaces to
model "costs" arising from practically useful problems and in designing algorithms
to efficiently solve them. As such, it is imperative that they are represented by a
"computer-friendly" structure, with the most appropriate being that of a weighted
hypergraph.

Definition 2.4. A weighted hypergraph H is a triple (V,E,w) consisting of a set of
vertices (or nodes) V , a set of multisets3 called hyperedges E, which is created by
taking from elements of the powerset 2V and a weight function w : E → R. The
set N(v) = {u ∈ V : (v, u) ⊆ e for some e ∈ E} is called neighbors of the node
v. If the cardinality of each hyperedge is equal to k then the hypergraph is called
k-uniform and if each possible multiset of cardinality k belongs to E, then it is
called k-complete. Finally, if for all e ∈ E ⇒ p(e) ∈ E ∧ w(e) = w(p(e))4, then the
hypergraph is called undirected. �

It is easy to see that each metric space defined in the previous section admits a
hypergraph representation. Specifically, given a finite Gk-metric space (X, d) we
construct a (possibly directed) k-regular, k-complete hypegraph consisting of the
vertex set X and for each hyperedge e assign its weight to be d(e). Naturally, the
same observation holds for the 2k and Dk-metric spaces and we also note that for
the special case k = 2 the representation is the commonly understood notion of
graphs5. Having established this correspondence of a generalized metric space to
a hypergraph, the question that naturally arises is whether the converse can be
deduced. In order to answer that, we need some additional definitions.

Definition 2.5. Given a k-regular hypergraph H = (V,E,w) and a set S ∈ V k,
a chain CS on H is said to be any alternating sequence {v0, e1, v1, e2, v2 · · · el, vl}
of distinct vertices vi and distinct hyperedges ei such that vi−1, vi ∈ ei and for all
s ∈ S ⇒ s ∈ CS. The path of the chain is defined as PS = {e : e ∈ CS}. If H is
non-negatively weighted, then the shortest path, the distance of S and the diameter
of H are defined respectively as

P ∗S = arg min
PS

∑
e∈PS

w(e) (2.1)

Wd(S) =
∑
e∈P ∗S

w(e) (2.2)

3Multiset is an unordered set that allows repeated elements.
4Function p(·) as previously defined
5The absence of the prefix "hyper" implies k = 2.



8 2.3. Embedding and Approximation

WD(H) = max
S∈V k

Wd(S) (2.3)

Similarly, we define the hop distance hd(S) and hop diameter hD(H) simply by
setting w(e) = 1 for all e ∈ E. Finally, the k-shortest path diameter SPDk of the
hypergraph is the lowest positive integer h such that for all S ∈ V k there exists a
least-weight path PS of cardinality at most h. �

We can easily deduce that the function Wd(S) induces a Dk or Gk metric on the
hypergragh, as it satisfies the respective axioms. However, the same need not hold
for the 2k metric due to contradictory definitions of the identity axiom. Hence, we
have established a duality between the Dk or Gk-metric and a hypergraph, since the
former gives rise to the latter and vice versa. As such, we are using the two terms
interchangeably in the rest of the thesis.

Definition 2.6. A graph G is called tree T if there exist a unique path between any
two nodes. When T has a node designated as root then it is called rooted tree and
the set of terminal nodes of every maximal-weight path originating from the root is
called leaves. The hop diameter of the tree is called tree height. Also, if the weights
from the root to its children are equal and they decrease by a factor of l in each
step on every root-to-leaf path, then the tree is called l-hierarchically well separated
(l-HST ). �

Similarly to graphs, trees can also induce a metric. In the latter case the metric
itself is quite simpler, as there is no need to find the shortest path between any two
nodes. The l-HST is a pivotal type of tree in this thesis, as it appears in the solution
of the embedding problem defined below.

2.3 Embedding and Approximation

Given a metric space6 the procedure encompasses the construction of a mapping to
a new space and a metric function in the latter.

Definition 2.7. Let (X, dX) be an original k-th order metric space and (Y, dY ) be
a host l-th order metric space, then a metric embedding of X into Y is defined to be
any mapping φ : X → Y . The distortion induced by φ is defined to be σφ = inf

σ∈Sσ
σ,

where

Sσ =
{
σ ≥ 1 : ∃r > 0 s.t r · dX(e) ≤ dY (φ(e)) ≤ r · σ · dX(e),∀e ∈ Xk

}
(2.4)

The number r is called scaling factor. �

Note that r permits scaling of the metric without any effect on the distortion. Given
this definition, we formalize the probabilistic approximation problem as follows.

6Or a hypergraph, remember that the concepts are used interchangeably.
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Definition 2.8. Given an original k-th order metric space (X, dX), a family of l-
th order host metric spaces (Y, dY ), an embedding φ : X → Y and a distribution
P : (Y, dY )→ [0, 1], we say that (Y, dY ,P) aU -probabilistically approximates (X, dX)
and write

(X, dX)
aU

↪−−−→
φ

(Y, dY ) −−−→
P

[0, 1]

if, for some aU > 0, the following hold

dY (φ(e)) ≥ dX(e) (2.5)

EP

[
dY (φ(e))

dX(e)

]
≤ aU (2.6)

for all e ∈ Xk. The number aU is called upper bound of the distortion. �

We observe that the first requirement ensures that no distance gets contracted, that
is, the host metrics dominate the original, and the second one bounds the expected
distortion induced by the embedding, with the expected value taken with respect to
the given probability distribution. It is obviously desired that the parameter aU is
as small as possible, ideally equal to its lowest possible value, which is given by the
following definition.

Definition 2.9. Given the following embedding

(X, dX)
aU

↪−−−→
φ

(Y, dY ) −−−→
P

[0, 1]

the lower bound of the upper of the distortion is defined as

aL = min
SH

{
a : ∀e ∈ Xk ⇒ EP

[dY (φ(e))

dX(e)

]
≤ a
}

(2.7)

where SH is the set of all hypergraphs, whose representation is the space (X, dX).
When an embedding induces distortion such that aU = O(aL), we say that it is
tightly bounded. �

The above definition essentially provides an optimality criterion for the embedding,
as it is outlined in the following theorem.

Theorem 2.1. Given the following embedding

(X, dX)
aU

↪−−−→
φ

(Y, dY ) −−−→
P

[0, 1]

assume that (Y, dY ,P) aU -probabilistically approximates (X, dX) and aU = O(aL),
then there exists no other embedding such that (X, dX) can be a-probabilistically
approximated by (Y, dY ,P) for a < aU = O(aL).

Proof. Let H′ be the hypergraph that achieves the minimum in Eq. 2.7 and assume
that a lower-distortion embedding φ′ 6= φ exists, that is, the embedding

(X, dX)
aU

↪−−−→
φ′

(Y, dY ) −−−→
P

[0, 1]



10 2.4. Distributed Model

a-probabilistically approximates (X, dX) for some a < O(aU). However, since H′

can also induce a (X, dX) space, we infer, based on Eq. 2.7, that previous embedding
induces a distortion of at least aU = O(aL), which contradicts the initial assumption.
Hence, no such φ′ exists.

It is evident from the above, that we can prove the optimality of an aU -probabilistic
embedding simply by constructing a hypergraph that cannot be embedded with
distortion less than O(aU). Such a tight bound is a really powerful tool in met-
ric embeddings, because, in its presence, one need not search for lower-distortion
embeddings.

2.4 Distributed Model

Even though the so far proposed methods are inherently centralized, the metric
embedding and approximation problem defined above is not restricted to such a
case. Given that the distributed algorithm design is often easier on trees than on
general graphs, one should expect that there exists some merit in implementing such
embedding techniques distributively.

In the distributed setting, each node v in a hypergraph H = (V,E,w) of n nodes
knows only its neighbors u ∈ N(v) as well as the respective weights w(·), while being
completely unaware of the topology of H. The presence of a unique clock, that
synchronizes the transmissions, is assumed and in each clock’s time step ("round")
each node can send an arbitrary message of size O(B) to all of its neighbors. Such a
restriction in the transmission capacity is necessitated by natural limitations arising
in every physically implementable communication channel. Moreover, note that in
the absence of a restriction the distributed algorithm design is itself futile, as one can
simply send all the information in a single convergecast to a leader node (set Th. 4.3
for leader election) and perform all the computation there. They above presented
setting is a commonly used model in distributed computing called CONGEST (B)
model [Pel00].

Taking into consideration that the round time interval is usually of several orders
higher than the processor clock, we further refine the CONGEST (B) model by
assuming that local computations performed in each node are free up to a polynomial
factor. As such, the time complexity of local computations is of no relevance, as
long as it remains within O(nm) for some positive constant m. As it can be easily
inferred, all the distributed methods proposed in Ch. 4 satisfy this requirement.
Therefore, in the distributed setting we use different measures to assess and compare
our algorithms, as outlined bellow.

Definition 2.10. Given a distributed, synchronous algorithm A over a hypergraph
H = (V,E,w), let Mv be the set of all messages that node v ∈ V needs to send
during the worst-case execution of A. For all messages m ∈ M =

⋃
Mv, define the

message hop hm as the number of nodes that m is expected to visit before reaching
its destination. Also, let tv be the waiting hop count, during which node v needs to
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wait for other messages to be transmitted. Then we define

CM(A) =
∑
m∈M

hm (2.8)

CR(A) = max
v∈V

{
tv +

∑
m∈Mv

m · hm
}

(2.9)

as the message and round complexity of A, respectively. �

It is straight forward to see that, unless none or one message is transmitted per
round, the message complexity is higher than the round complexity and that the
former one is upper bounded by the latter, that is CM(A) ≤ CR(A)

∑
e∈E |e|. Both

of those measures are equally important in assessing the performance of distributed
algorithms, as the first one accounts for storage and bandwidth and the second
one for time requirements of the algorithm. Finally, as pointed out it Th. 2.1, the
optimality of an algorithm with respect to CM or CR can be proved by providing the
respective tight bound.



Chapter 3

Embedding Gk-Metric Spaces

Along the lines of the exemplary FRT-method presented in [FRT04], we develop
a centralized method that embeds a Gk-metric space into a distribution over tree
metrics. The approach is based on a probabilistic, hierarchical partitioning of the
hypergraph into clusters of decreasing diameters. The Gk-metric was chosen as an
axiom system for the k-point distance due to its postulated superiority over the
other two metrics, as commented in the previous chapter. Also, even though our
ultimate goal is to embed the k-th order metric, presenting our method for arbitrary
k would be a laborious and cumbersome task. Given that its extension from the
special to a general case is intuitive, it appears to be prudent to restrict ourselves
to the k = 3 case.

We start by describing how the our algorithm partitions the hypergraph into
a set of clusters. Then we map them to the host metric space, define the host
metric, prove its dominance over the original one and bound the induced expected
distortion. After that we comment on the properties of the resulting host space and
on how it can be further manipulated and optimized. Finally, we intuitively describe
the extension to the k-order case.

3.1 Clustering Algorithm

Before we start describing the method we need to give some preliminary definitions
of what a cluster and a laminar family are.

Definition 3.1. Given a set of points X a cluster C is defined to be any subset of
the powerset 2X . A set of clusters F ⊆ 2X is said to be a laminar family of clusters
if for any A,B ⊆ F it is the case that A ⊆ B or B ⊆ A or A ∩ B = ∅. A laminar
family can be easily mapped to a tree T as follows: Each set C ⊆ F is mapped to
a node nC on T and each maximal subset of C corresponds to a child of nC . �

Having been equipped with the above definition, we present in the following a clus-
tering algorithm AC , which, given an original G3-metric space (X, d) of n points,
decomposes the hypergraph recursively to a laminar family of clusters. We assume,
without loss of generality, that each hyperedge has a distance of at least 1 and that

12
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the diameter ∆ can be written as ∆ = 3δ, for some positive integer δ. Note that such
assumption poses no restriction as the weights of the hypergraph can be scaled at
will. Such a scaling has no impact on the distortion due to multiplicative constants
being of no importance, as it will become apparent later. Noting that the algorithm
is recursive, we define the following.

Definition 3.2. Define L = {δ, δ − 1, δ − 2 . . . 0} as the recursion level set and for
all i ∈ L let Sij be the j-th cluster created at the i-th level. Also, for all v ∈ V ,
define

ai(v) =

{
1 if and only if there exists k : v ∈ Sij
0 otherwise

(3.1)

When ai(v) has unit value we say that vertex v has been assigned to some cluster
at level i. �

Level 1 Level 2 Level 3

S31 = X

S21

S22

S23

Figure 3.1: Laminar family and levels

The clustering algorithm, formally presented1 in Algorithm 1, can be intuitively
described as follows: Initially, we pick a random permutation π of all the vertices
in X, which remains constant throughout the algorithm. Additionally, we sample a
number β from the distribution

fb(x) =

{
1

x ln 3
x ∈ [1, 3]

0 otherwise
(3.2)

At each iteration four parameters are given to the algorithm: a cluster S, the level i,
the number β and the random permutation π. If the termination condition (|S| = 1)

1∧: logical AND, ⊕: logical XOR, ↓: logical NOR
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is invalid, we set all ai(u), u ∈ S equal to 0 and compute βi = 3i−1β. Then, we loop
over the random permutation and for each vertex pj ∈ π create a sub-cluster Sij
consisting of all edges2 (u, v) ∈ S that have not been assigned to a different cluster
at the same level and whose distance from pj is at most βi. In this case, we call pj
the origin vertex of the cluster Sij. Finally for each created sub-cluster we reduce
the level by one and call the algorithm recursively. Initially, the algorithm is called

pk

u w

v

z1

z2

z3

S

Sik

Figure 3.2: Cluster Construction

Algorithm 1 The AC Clustering Algorithm
1: procedure ACalgorithm(S, i, β, π)
2: if |S| = 1 return
3: For all u ∈ S set ai(u)← 0
4: βi ← 3i−1β
5: for j = 1, 2 · · ·n do
6: pj ← π(j)

7: Sij ←
{

(u, v) ∈ S |
(
i⊕ u 6= v

)
∧
(
d(u, v, pj) ≤ βi

)
∧
(
ai(u) ↓ ai(v)

)}
8: For all v ∈ Sij set ai(v)← 1
9: end for
10: For all non empty Sij, j = 1, 2 · · ·n call ACalgorithm(Sij, i− 1, β, π)
11: end procedure

with S = X, i = δ and terminates when it reaches singleton clusters (|S| = 1). Since
each edge can be assigned only to one cluster at each level and given that clusters
at lower levels are subsets of clusters at higher level, the above procedure defines a
laminar family. We need to note that pj need not belong to the set S, since we loop
over all vertices of the hypergraph. However, this creates no intersections between

2With some abuse of notation; a pair of nodes need not belong to the hyperedge set of a 3-regular
hypergraph.
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the created sub-clusters because pj itself is not included in any of them. The vertex
pj will eventually be included in a cluster, but only when the condition on line 10
is satisfied.

3.2 Host Metric Space
As we mentioned above, the above decomposition defines a laminar family which,
as outlined in Def. 3.1, corresponds to a rooted tree as follows: Each cluster Sij
corresponds to a node in the tree and each maximal sub-cluster in Sij corresponds
to a child of the node corresponding to Sij. The tree distance between the parent
node and its children is assigned to be 3iβ (which is equal to the maximum diameter
of each cluster at level i, as it will be proved in the following). It should be obvious
from the clustering algorithm that the root of the tree (i = L = δ) is the set of all
vertices in the hypergraph and the leafs (i = 0) are the vertices themselves.

Figure 3.3: The resulting 3-HST

The above constructed tree is formally denoted as T = (VT , ET , wT ) where VT is the
set of nodes, ET is the set of edges connecting these nodes and wT are the weights
of the edges. Following Def. 2.6, since the weights on any root-to-leaf path decrease
by a factor of 3 in each step, T is a 3-hierarchically well separated (3-HST ) tree,
with its height being O(log ∆).

Definition 3.3. Let XT be the set of all leaves of T and for all (u, v, w) ∈ X3
T define

the host metric as

dT (u, v, w) = Wd(u, v) +Wd(v, w) +WT (w, u) (3.3)
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where Wd(·, ·) is the weighted distance of the respective leaves, as defined in the Eq.
2.2. The tuple (XT , dT ) is host metric space. The mapping from the original to the
host space is

φ , 1 : u 7→ u for all u ∈ X (3.4)

where 1 is the identity function. �

3.3 Probabilistic Approximation
Having defined in the previous section the host metric space, we summarize the
main result of our method in the following theorem.

Theorem 3.1. For a given G3-metric space (X, d), the host metric space (XT , dT )
and the mapping φ defined above, the following holds

(X, dX)
O(logn)
↪−−−−−→

φ
(Y, dY ) −−−→

P
[0, 1]

where P is a probability distribution function.

The proof of this theorem is partitioned to several different lemmas. Initially, we
upper bound the diameter of each created cluster, then prove that the host metric
dominates the original and finally provide the postulated by the above theorem
O(log n) upper bound of the expected distortion. Although the distribution P is
implicitly defined, its explicit definition is of no interest, thus no attempt is made
to find it.

Lemma 3.2. The diameter of each created cluster is at most 3iβ.

Proof. Assume that the vertex p is the origin of a cluster S . Then, by definition,
for each u, v ∈ S ⇒ d(u, v, p) ≤ 3i−1β. Based on that, for all (u, v, w) ∈ S we have

d(u, v, w) ≤ d(u, p, p) + d(p, v, w) ≤ d(u, v, p) + d(v, w, p) ≤ 3iβ (3.5)

where we used the the second and the fourth axioms of the G3-metric.

With the aid of the above lemma, we prove the dominance of the host metric.

Theorem 3.3. The host metric dominates the G3-metric.

Proof. We say that an arbitrary hyperedge (u, v, w) is separated at level L if for
each e ∈ {(u, v), (u,w), (v, w)} it holds that L is the lowest level for which there
exists a cluster in which e belongs. Based on that, there exist two separation levels
L1, L2. Assuming, that L2 ≥ L1, the host metric can be expressed as

dT (u, v, w) = 4

L2∑
i=1

3iβ + 2

L1∑
i=1

3iβ > 3L2β ≥ d(u, v, w) (3.6)

The equality holds because the host metric is essentially the sum of three paths
between three leaves. Two of these paths have one of their least common ancestors
at level L2 and the other at level L1. Note that the hyperedge (u, v, w) appears in
the right hand side of the equality only implicitly, through the separation levels.
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Theorem 3.4. The original G3-metric is distorted in expectation by O(log n), at
most.

Proof. Let us fix an arbitrary hyperedge (u, v, w). We say that the vertex p settles
the hyperedge (u, v, w) at level i if at least one of the vertices u, v, w is include at
level i in the cluster originating from p. We say that the vertex cuts the hyperedge
if at least one and at most two of the vertices are included.

p

u
w

v

Sik

d(u, v, w) ≤ 3i−1β

Figure 3.4: Hyperedge settling

p

u

v

w

Sik

d(u, v, w) > 3i−1β

Figure 3.5: Hyperedge cutting

Then, we define the following

dpT (u, v, w) ,
∑
i

1

(
p cuts (u, v, w) at level i

)
3i+2β (3.7)

where 1(·) is an indicator function3. Taking into account Eq. 3.6 and the separation
levels as defined in Th. 3.3, we upper bound the host metric using the previous
equation as follows

dT (u, v, w) ≤
∑
p

dpT (u, v, w) = 2

L2∑
i=1

3i+2β +

L1∑
j=1

3j+2β (3.8)

3The indicator function is equal to 1 if the argument is true, otherwise it is 0.
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The equality in the above equation holds because between levels L2 and L1 the
hyperedge is being cut twice and between levels 1 and L2 trice, while the inequality
part is obvious from Eq. 3.6. Next, we define the distance of the vertix p from the
hyperedge (u, v, w) as

dp(u, v, w) , min{d(u, v, p), d(u,w, p), d(v, w, p)} (3.9)

Given this definition, we arrange every vertix on the hypergraph in order of increas-
ing distance from the hyperedge (u, v, w) (breaking ties randomly) and pick the s-th
vertix in the sequence. We assume without loss of generality that

d(u, v, ps) ≤ d(u,w, ps) ≤ d(v, w, ps) (3.10)

For ps to cut (u, v, w) the following must hold

I d(u, v, ps) ≤ βi ≤ d(u,w, ps) or d(u,w, ps) ≤ βi ≤ d(v, w, ps)

II ps settles (u, v, w) at level i

The above conditions create two independent events and their probabilities can
be computed as follows: When the first event occurs, there exists a contribution
of 3i+2β = 27βi to dpsT . Consider a particular x ∈ [d(u, v, ps), d(u,w, ps)]. The
probability that βi falls in the range [x, x + dx] is at most 1

x ln 3
dx. Conditioned

on βi = x, any of the vertices up to and including ps in the above sequence can
settle (u, v, w) at level i. The first one among these in the permutation π will settle
(u, v, w) and thus the conditioned probability is 1

s
. Thus,

P
[
ps settles (u, v, w) at level i|d(u, v, ps) ≤ βi ≤ d(u,w, ps)

]
≤ 27

s

∫ d(u,w,ps)

d(u,v,ps)

x

x ln 3
dx =

27

s ln 3
(d(u,w, ps)− d(u, v, ps)) (3.11)

We can compute the probability of the second event similarly and, given their inde-
pendence, sum them up to get

E
[
dpsT (u, v, w)

]
≤ 27

s ln 3
(d(u,w, ps)− d(u, v, ps)) ≤

27

s ln 2
d(w, v, v)

≤ 27

s ln 3
d(u, v, w), u 6= w (3.12)

where in the last two steps we used the fourth and the second axioms of the G3-
metric, respectively. Note that the requirement u 6= w does not imply that the
result does not hold when the hyperedge has a cardinality of 2; in this case we can
simply skip the last step. Using the linearity of the expectation and Eq. 3.8 we have

E
[
dT (u, v, w)

]
=

27d(u, v, w)

ln 3

n∑
k=1

1

s
<

27d(u, v, w)

ln 3
lnn = O(log n) · d(u, v, w)

(3.13)

where we use the the fact that
∑n

k=1
1
s
< lnn+ 1.
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We observe that we are only interested in the order of the approximation, thus
multiplicative and additive constants are of no relevance, as already mentioned in
Sec. 3.1, and no attempt was made to optimize them. This lemma concludes the
proof of Th. 3.1.

3.4 Distortion Lower Bound
It was stated in Th. 2.1 and in the discussion therein that it is desired to obtain
tight bounds on the distortion induced by metric embeddings, as this proves the
optimality of the method. The previously presented algorithm is indeed optimal, as
outlined by the following theorem.

Theorem 3.5. The expected distortion induced by the algorithm AC and the subse-
quent procedure is tightly bounded by Θ(log n).

Proof. Following the previous notation, assume that (X, d) is the original G3-metric
space, that (XT , dT ) is the host metric space, as defined above, and that the em-
bedding is the identity function. Let G = (V,E,w) be an expander graph and for
all u, v ∈ V let Wd(u, v) be the weighted distance, as given in Eq. 2.2. As noted in
[Bar96], the embedding of the G2-metric space (X1, d1) = (V,Wd) induced by G into
a tree metric space (X

′
T , d

′
T ) incurs a distortion of at least Ω(log n), that is

d
′

T (u, v) ≤ a · d1(u, v),∀u, v ∈ X1 ⇒ a = Ω(log n) (3.14)

Now, let X = X1 and for all u, v, w ∈ X define

d(u, v, w) = d1(u, v) + d1(v, w) + d1(w, u) (3.15)

We can easily verify that the above function is indeed a G3-metric. Hence, by means
of simple summation we extract the lower bound, which is Ω(log n), and by taking
into account the Th. 3.1, we obtain the desired Θ(log n) bound, which concludes the
proof.

The above proof strengthens our result as it guarantees the existential optimality
of our method; one need not search for a lower-distortion embedding of G3-metrics
into metrics arising from the shortest path distance on trees (or equivalent to that
metrics) as its existence is precluded by the lower bound. Nonetheless, the pos-
sibility of a different embedding, which achieves a lower distortion, into a metric
non-equivalent to the above, cannot be eliminated.

3.5 l -HST and Tree Height
As mentioned in Sec. 3.2, the constructed host metric space is the leaves of a 3-
HST, which has a height of O(log ∆). However, the properties of the tree, namely
the decay factor of the weights and the height, can be further manipulated, as outline
in the following theorems.
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Theorem 3.6. A G3-metric space can be embedded into a l-HST, for arbitrary l ≥ 3,
inducing a distortion of O( l logn

log l
), tightly bounded on log n.

Proof. Since the proof follows that of Th. 3.1, only major modifications are outlined
here and the details are left to the reader. Assume that ∆ = lδ, δ ∈ N≥0 and let
A′C = AC be a new algorithm with the Line 4 of AC replaced by βi ← li−1β. Also,
set the probability distribution function, from with β is sampled, to

fb(x) =

{
1

x ln l
x ∈ [1, l]

0 otherwise
(3.16)

Following that, we construct the l-HST and the host space, similarly to Sec. 3.2 and
prove the liβ-upper bound of the cluster diameter and the dominance of the host
metric, similarly to Lem. 3.2 and Th. 3.3, respectively. Next, we define the following
function, for some ε > 0

dpT (u, v, w) =
∑
i

1

(
p cuts (u, v, w) at level i

)
li+εβ (3.17)

which, following similar reasoning as in Th. 3.4, leads to

∑
p

dpT (u, v, w) = 2

L2∑
i=1

li+εβ +

L1∑
i=1

li+εβ (3.18)

Using trivial calculations we conclude that the condition ε ≥ ln 2
ln l

is sufficient for the
last equation to upper bound the host metric and by letting it assume its lowest
possible value, a contribution of O(l) on

∑
p d

p
T (·) arises when the hyperedge gets

cut. The rest of the proof follows as in Th. 3.4 and the tight bound on log n arises
from Th. 3.5.

Additionally, it is desirable to keep the height of the resulting tree as low as possible
and when the diameter is higher-than-polynomial in the number of nodes, improve-
ment is guaranteed by the following theorem.

Theorem 3.7. The height of the resulting l-HST can be reduced to O(log n) incur-
ring a constant multiplicative distortion.

Proof. We say that a node is balanced if none of its children contains more than half
of the node’s nodes. A tree of n leaves and balanced nodes has a height of O(log n).
In order to make the previous tree balanced, we simply need to recurse from the
root and contract the edges of unbalanced nodes. Since the induced distortion is a
multiplicative constant, none of the previous asymptotic bounds changes. Further
details about the algorithm and the complete proof can be looked up in [BBMN15].

It should be evident that the requirement of a diameter higher-than-polynomial in
n is necessitated by the fact that, if ∆ = O(nm) for some constant m > 0, then the
height of the tree is O(log n) and the best-case improvement that the above method
can achieve is a constant factor.
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3.6 Extension to Gk-Metric
It was stated at the beginning of the chapter that our ultimate goad is to embed
Gk-metric spaces, for arbitrary integer k. The obtained result for the G3-metric space
can be easily generalized as follows.

Theorem 3.8. A Gk-metric space can be embedded into a k-HST, for arbitrary
k ≥ 3, inducing a distortion of O(k

2 logn
log k

), tightly bounded on log n.

Proof. As expected, there exist several similarities between this and Th. 3.1, so
only a brief scetch of the proof is presented here. Initially, let Akc = Ac be a copy
of the original algorithm, modified as follows: Given a cluster S in each iteration
and for each ps in the random permutation of the vertices, we create a sub-cluster
containing all of the cluster’s S hyperedges of cardinality k−1, whose distance from
ps is bounded by ki−1β. Also, the probability distribution of β is modified as in Th.
3.6.

The diameter of each cluster in the resulting laminar family is bounded by kiβ.
The family is then is mapped to a k-HST and the host metric is defined as the sum
of all

(
k
2

)
combinations of the respective hyperedge’s leaves. As in Th. 3.3, using

the separation levels {L1, L2...Lδ}, δ = log ∆, assumed to be in ascending order, the
host metric can be expressed as

dT (e) =
k−1∑
j=1

Lj∑
i=1

2j · kiβ (3.19)

where e ∈ Xk is a hyperedge. Then, we define dpT (e) similarly to Eq. 3.17 and using
the separation levels we have

∑
p

dpT (e) =
k−1∑
j=1

Lj∑
i=1

j · ki+εβ (3.20)

It is straightforward to see that the condition ε ≥ ln 2
ln k

suffices for the last equation to
upper bound the host metric, which gives rise to a O(k) term, as in Th. 3.6. Next,
we define the distance of a vertex p from a hyperedge e as

dp(e) = min
2≤i≤k−1

d(e1, · · · , ei−1, p, ei+1, · · · , ek) (3.21)

Given that, we arrange every vertex in order of increasing distance from e and choose
a random one from this ordering. In order for the chosen vertex to cut e, one of k
independent events must occur (look at Th. 3.1), the probability of each one being
O(k logn

log k
), which concludes the upper bound proof. The lower bound arises from Th.

3.5.
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Distributed Embedding

In this chapter we present the distributed implementation of our embedding method,
which draws upon the algorithm presented by Khan et.al in [KKM+12]. For the sake
of simplicity and better understanding of the procedure, we restrict ourselves to the
embedding of the G3-metric space, as before. We start by presenting a structure,
called least vertex lists, which is used for representing the distributed embedding.
Then, we develop an algorithm for calculating these lists, prove its correctness and
analyze its performance. Following that, we use the calculated least vertex lists in
order to define tree embedding and finally we give a distributed algorithm which
reduces its height.

4.1 Least Vertex Lists

In the distributed setting, each node of the hypergraph has limited information
about the topology and therefore needs to represent and construct the embedding
using information that is propagated to it by its neighbors. This is achieved by the
least vertex lists, which implicitly encode the embedding method of the previous
chapter. Before we describe it, we need to define some properties of the distributed
network.

Definition 4.1. LetH = (V,E,wH) be a 3-regular hypergraph of n nodes, diameter
∆ and weights greater than 1. Denote with (X, d) the G3-metric space induced
in H by the shortest path distance defined in Sec. 2.2. Also, assume that the
CONGEST (log n) model holds and in order to be able to transmit a weight in a
single round let w = O(nm) for some constant m > 0. Each node picks a unique
O(log n)−bit identifier (ID) uniformly at random. Let v ≺ w denote the fact that
that the ID of node v is less than the ID of w.. �

Having outlined the distributed setting, we proceed to the definition of the least
vertex lists, originally appeared in [Coh97, CK07] .

Definition 4.2. Let ρ be a non-negative number. Given two adjacent nodes u, v ∈ V
we say that w ∈ V is the least vertex Lρ(u, v) of u, v within a distance ρ if the

22
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following holds
Lρ(u, v) = w ⇔ @z : z ≺ w ∧ d(u,w, v) ≤ ρ (4.1)

For all ρ ∈ [0,∆] define

L(u, v) =
{

(w, ρ) : d(u, v, w) = ρ ∧ w ∈ Lρ(u, v)
}

(4.2)

as the least vertex list of (u, v). �

We ought to note that not all possible values of ρ appear in L(u, v), as duplicate
entries

(
(w, ρ) ∈ L(u, v) ∧ (w, ρ − ε) ∈ L(u, v), ε > 0

)
can be deleted. We also

notice that there exists an intrinsic redundancy in the definition of the structure,
as Lρ 6=0(u, v) = Lρ6=0(v, u), which, owing to the fact that each node u needs to
compute L(u, v) for all of its neighbors v ∈ N(u), may place additional stress to
the network. However, as it will become clear, this does not affect the message and
round complexity. In the following, we use the notation Lu(v) = L(u, v) in order to
explicitly clarify that each u ∈ V stores a least vertex list for each of its neighbors
v ∈ N(u).

4.2 Distributed Algorithm
Drawing upon a similar distributed tree embedding method presented by Khan
in [KKM+08], we present an algorithm, named AD, for computing the previously
defined least vertex lists. At the termination of the algorithm, each node u ∈ V has
one list Lu(v) for each of its neighbors v ∈ N(u). The algorithm, formally given in
Algorithm 2, can be described as follows: Each node u ∈ V creates one list L0

u(v)
for each of its neighbors, initializes it and sends all of them to its neighbors. Then,
using the lists received from neighbors, u updates its lists by adding all the elements
of the former. Finally, the resulting lists are scanned is ascending order of distance
and entries, whose ID is not less than all the previous ID encountered, are removed.
If successive iterations produce no alterations in any of the lists of the network, the
algorithm is terminated and the resulting lists are the desired least vertex lists. Its
correctness is guaranteed by the following theorem.

Theorem 4.1. The AD algorithm returns the correct least vertex lists.

Proof. We prove this theorem using an expansion technique and induction. Fix
two u, v ∈ V and let Hi

uv =
(
V i
uv, E

i
uv, w

i
uv

)
be the sub-hypergraph induced from

H by deleting all vertices of hop distance hd(u, v, ·) strictly higher than i, N i
uv(w)

be the neighbors of a node w ∈ Hi
uv and Liu(v) be the least vertex lists on Hi

uv.
We shall prove that Liu(v) = Liu(v), i ∈ N≥0, where Liu(v) are the lists calculated
at each iteration of AD when H is given as input. This holds trivially true for
i = 0. Assume that it is also true for arbitrary i > 0. Then, taking into account the
induction hypothesis, the new lists created by AD at phase i + 1, after the delete
step is completed, are

Li+1
u (v) = Liu(v) ∪

{
(z, d+ d(u, v, w))

}
(4.3)



24 4.2. Distributed Algorithm

Algorithm 2 The AD Least Vertex Lists Algorithm
1: procedure ADalgorithm(V,E,wH)
2: Initialize:
3: i← 0
4: set L0

u(v) = {(u, 0)} for all u ∈ V and (v, ·) ∈ N(v)
5: All u ∈ V do in parallel
6: send

⋃
v∈N(u) L

i
u(v) to w ∈ N(u)

7: set Li+1
u (v)← Liu(v) for all v

8: For all v ∈ N(u), w ∈ N(v) and (z, d) ∈ Liv(w)
9: set Li+1

u (v)← Li+1
u (v) ∪

{
(z, d+ d(u, v, w))

}
10: sort Li+1 in ascending distance
11: delete entries with ID greater or equal to a previous ID
12: i← i+ 1
13: while ∃u, v ∈ V such that Liu(v) 6= Li−1u (v)
14: return Liu(v) for all u ∈ V and v ∈ N(u)
15: end procedure

for all v ∈ N i
uv(u), w ∈ N i

uv(v), (z, d) ∈ I iv(w), where I i(v, w) ⊆ Li(w) are the set
of entries that survived the delete step. Assume that Li+1

u (v) 6= Li+1
u (v), which

implies that

∃t ∈ V i+1
uv ∧ ρ1, ρ2 > 0 : (t, ρ1) ∈ Li+1

u (v) ∧ (t, ρ2) /∈ Li+1
u (v)

Given the previous equation and the induction hypothesis, the third statement is
essentially equivalent to (t, ρ1) /∈ I i(u, v) (if it belonged to Liu(v) \ I iu(v) it would
not have been deleted). Hence, the above imply the following, respectively

@s ∈ V i+1
uv : s ≺ t ∧ d(u, v, s) ≤ d(u, v, t)

∧
∃p ∈ V i+1

uv : p ≺ t ∧ d(v, w, p) ≤ d(v, w, t)

Simply by setting s = p, we see that these two statements are contradictory. Hence
Li+1
u (v) = Li+1

u (v), which completes the induction step.

Having proved the correctness of the algorithm, we analyze in the following its
performance using the round and message complexity.

Theorem 4.2. The AD algorithm terminates w.h.p1 after O(SPD3 log n) rounds of
the CONGEST (log n) model, having sent O(SPD3|E| log n) messages, where SPD3

is the 3-shortest path diameter.

Proof. Using the notations of the previous proof, we fix u, v ∈ V , i ∈ N≥0 and order
the N nodes in Hi

uv in ascending distance from u, v. Given that the IDs are chosen
1With high probability (w.h.p) implies that there exists c > 0 such that an event occurs with

probability at least 1− 1/nc.
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at random, the j-th node in the above ordering has an independent from the other
nodes probability of 1/j of being included in Liu(v), which, as in Th. 3.4, implies
that E

[
|Liu(v)|

]
= O(logN). Applying the Chernoff’s bound we conclude that for

all u, v ∈ V, i ∈ N≥0
|Liu(v)| = O(log n), w.h.p (4.4)

Thus, given that the distributed model allows the transmission of O(log n) bits per
round, we infer that, for each phase of AD (each different i), O(log n) rounds are re-
quired. In order to find the number of phases required, let Puvw be the shortest path
between vertices u, v, w and assume that for some z ∈ N(u)∩N(v)∩Puvw it holds true
that (w, d(u, v, w)) ∈ Lu(v)∧(w, d(u, z, w)) ∈ Liu(z). Then, (w, d(u, v, w)) ∈ Li+1

u (v).
Thus, in each successive phase (one hop), the correct information about the least
vertex of u, v spreads on the shortest path. This implies that O(SPD3) phases are
required to reach the whole network, which, combined with the previous result, gives
the O(SPD3 log n) round complexity. Finally, since all edges transmit messages in
each round, the message complexity follows.

We ought to note that the termination condition of the algorithm is only locally
known, which necessitates the existence of global approach. Even though sophisti-
cated methods can be developed, it is sufficient to restrict to a primitive algorithm:
While a vertex detects alterations in its least vertex lists, it floods the leader (see
Th. 4.3 for leader election) with an alter signal. If the leader receives no such signal,
it waits O(hD) rounds, where hD is the hop diameter, and then floods the network
with a termination signal. In order to make sure that this flooding produces no
infinite cycles, an O(hD) counter is attached to each message and reduced by one
each time the message is re-transmitted by a node. This requires O(hD) additional
rounds and O(|E|hD) additional messages. The fact that none of them affects the
asymptotic complexities given above, renders an intricate algorithm needless.

4.3 Tree Embedding
One can easily understand the usefulness of the least vertex lists simply by assuming
that the randomly chosen IDs represent the random permutation π defined in the
previous chapter and looking at the proof of Th. 3.4: they represent the of i-th
level the cluster, in which node u is included. Formally, the embedding procedure
is described and proved in the following.

Theorem 4.3. Let the hypergraph H = (V,E,wH) be given as input to AD. The
resulting least vertex lists L(u, v), u ∈ V, v ∈ N(u) define the embedding produced by
the AC algorithm.

Proof. Assume that a different instance of AD is executed on the modified hy-
pergraph H′ = (V,E,wH = 1). Then, for the resulting lists, it holds true that
(vL,∆) ∈ L′u(v),∀u ∈ V,∧∀v ∈ N(u), where vL is the node of lowest ID. Thus,
since each node knows the lowest ID node, vL is elected as the leader, picks a num-
ber β from the distribution in Eq. 3.2 and sends it back to the network. These
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messages are exchanged using the flooding method described at the end of the
previous section. It can be easily seen that none of these procedures increases
the asymptotic complexities of Th. 4.2. When the nodes receive β, they calculate
βi = 3i−1β, i = 1, 2 . . . δ = log3 ∆ and then construct their β-lists as

βu(v) =
{

(ci, βi) : (ci, βi) ∈ Lu(v), i = 1, 2 . . . δ = log3 ∆
}

(4.5)

for all u ∈ V, v ∈ N(u). These lists imply that ci is the lowest ID node within
distance βi of (u, v). Thus, ci creates a i-level cluster, in which both u, v are included.
From a node’s perspective, each u could have been included in any i-level cluster
created by nodes that belong in any of the βu(·)-lists, since for all v ∈ N(u), (ci, βi) ∈
βu(v) it holds d(u, v, ci) ≤ βi. However, the node ciu ∈ βu(·) with lowest ID (first
in permutation π) is the one that creates the i-level cluster, in which u is included.
Thus, the set Cu =

{
(ciu, 3

iβ) : i = 1, 2 . . . δ = log3 ∆
}
defines the ancestor lists of u

and the edge heights of the desired tree T

We observe that each node u ∈ V can only reconstruct the root-to-leaf path ending
on itself, and it is unaware of edges not contained in this path. Thus, no explicit
representation of the T exists; the tree structure is encoded distributively by keeping
track of the ancestor of each leaf at each level. Nonetheless, this poses no restriction
in determining the host metric.

4.4 Distributed Height Reduction
In defining the distributed setting (Def. 4.1), in was necessary to assume that the
weights are polynomial in n, due to the transmission capacity being limited by the
CONGEST (log n) to O(log n) bits per round. This appears to be quite restrictive
as it precludes the application of the developed method on hypergraphs with weights
higher-than-polynomial in n. Dropping this assumption (thus increasing the trans-
mission capacity) results in a tree height that is non-optimal and can be further
reduced, as mentioned in Th. 3.7 and the surrounding discussion.

In the following we present the implementation of the tree height reduction
algorithm for the distributed representation of the tree given by the method in
the previous section. The algorithm AT , as presented in Algorithm 3, implements
distributively the method briefly presented in Th. 3.7 and can be described as follows:
Node u initializes the variable γu to 1 and sends it along with its i+ 1-level ancestor
ci+1
u to its i-level ancestor ciu. Then, ciu creates the set V of all the nodes, from which
it received a message, calculates the sum of all the received γ”s and asks a random
node in V to increase its γ by one. Following that, it sends the calculated sum to
ci+1
u . The last node, in turn, sums up all the values it received and verifies whether
a value grater than the half of the computed sum was sent by any node. If that
holds true, the tree edge connecting the latter node to ci+1

u needs to be contracted.
It should be obvious that the above algorithm implements the one described in

Th. 3.7, because, essentially, each node of the tree, as it is encoded in the distributed
representation, balances the sub-trees rooted at its children. However, strictly speak-
ing, AT , as described, cannot be directly implemented in a distributed system, as it
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Algorithm 3 The AT Tree Height Reduction Algorithm
1: procedure ATalgorithm(H, Cu)
2: Initialize:
3: set γu = 1 for all u ∈ V
4: for i = 1, 2 · · · δ = log ∆ do in parallel
5: u sends (γu, c

i+1
u ) to ciu

6: ciu computes s(ciu) = 1 +
∑

v∈V γv, V = nodes that sent γ(·) to ciu
7: ciu sends a control message to a random node in r ∈ V
8: vr sets γvr ← γvr + 1
9: ciu sends s(ciu) to ci+1

u

10: ci+1
u computes p =

∑
w∈W s(w), W = nodes that sent s(·) to ci+1

u

11: if there exists w ∈ W such that 2s(w) > p then
12: replace (w, βi) ∈ Cu with (ci+1

u , βi+1)
13: end if
14: end for
15: return new Cu, u ∈ V
16: end procedure

is not explicitly expressed with respect to a single node. It is presented in this way
in order to make it intuitive to understand. Nonetheless, it is in fact distributed as
it only requires knowledge of the neighbors and the ancestor lists. The modifica-
tions required for an real-life implementation are straightforward. The performance
is analyzed in the following.

Theorem 4.4. Assume that a tree T is represented by the ancestor lists Cu, u ∈ V ,
as given by the AD algorithm. Then, AT returns new ancestor lists C ′u, which rep-
resent a tree of O(log n) height, without asymptotically increasing the induced dis-
tortion of the embedding. It requires O(hD log ∆) rounds and sends O(|E|hD log ∆)
messages.

Proof. The proof that the tree balancing gives a tree of height O(log n) without
increasing the distortion can be looked up in [BBMN15]. The algorithm requires
O(log ∆) phases in order to verify that all of the levels of the initial tree represen-
tation are balanced. In each phase, the nodes of the graph exchange O(1) messages
using the flooding method described at the end of Sec. 4.2, which requires O(hD)
rounds. Thus, we have an overall round complexity of O(hD log ∆) and given that
in general each edge transmits a message in each round, the message complexity is
O(|E|hD log ∆).

In the above, only the bound on log ∆ is tight, as one can easily construct a dis-
tributed representation of a tree, which requires only O(1) rounds per phase (e.g
when the graph is itself a tree). Finally, we should note that this algorithm is of
wider interest, not necessarily tailored to embeddings, as it can be applied to any
distributed tree representation given by its ancestor lists.
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Concluding Remarks

5.1 Summary of Results
This thesis dealt with the problem of approximating generalized distances between
multiple points that arise on hypergraphs with distributions over tree metrics. After
presenting the underlying concepts and definitions, we developed a probabilistic al-
gorithm, named AkC , which produces a hierarchical decomposition of the hypergraph
to a laminar family of clusters. Then, we mapped those clusters into a hierarchical
well separated tree and defined the tree metric. Consecutively, we provided the
upper bound of the induced distortion and proved the existential optimality of the
method with respect to the number of points. Following that, we presented, for
the special case k = 3, a representation of our embedding method via a structure
termed least vertex lists and provided a distributed algorithm, AD, which computes
those lists. We proved the correctness of this algorithm and analyzed its perfor-
mance using the message and round complexity. We also presented a distributed
representation of the resulting tree via its ancestor lists and developed an algorithm,
named AT , which reduces the height of this implicitly defined tree. We concluded
by analyzing the number of messages and communication rounds that AT requires.

From a practical point of view, the contribution of the thesis can be summa-
rized in the tree developed methods: the clustering algorithm, AkC , its distributed
implementation, AD and the distributed tree height reduction algorithm, AT . In
the realms of theoretical interest lie the approximation, correctness and performance
analyses presented and the optimality guarantees given. The novelty and original-
ity stem from the fact that, to the best of our knowledge, no other centralized (let
alone distributed) embedding method for higher-order metrics has ever been pro-
posed. This is greatly amplified by the fact that the purposed height reduction
algorithm is a novel attempt to apply that concept to distributed representations
of trees. However, one limitation of our methods stems from the fact that we con-
fined ourselves to the 3-order case when distributively implementing the embedding,
which precludes us from understating the effect of the order k on the performance
of the respective algorithms.

In the following we present the main conclusions of this thesis. Broadly speaking,
this is a restatement of Th. 3.8, 4.2, 4.4. However, the definitions, the algorithms

28
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and the respective proofs, upon which they are based, are spread in all three previous
chapters. They are simply given here for the ease of reference and in order to grasp
the essential contributions without having to plough through technicalities.

Conclusion 1. Let Hk = (X,E,w) be a positively-weighted, undirected, k-regular
hypergraph of n points and (X, d) be the Gk-metric space that arises by the k-point
shortest path distance. Then, using the algorithm AkC, the metric space (X, d) can
be embedded into a k-HST-metric space (X, dT ) with a distortion O(k

2 logn
log k

), tightly
bounded on log n.

Conclusion 2. Let H3 = (X,E,w) be a positively-weighted, undirected, 3-regular
hypergraph of n points and (X, d) be the G3-metric space that arises by the 3-point
shortest path distance. Then, the algorithm AD implements distributively the em-
bedding produced by A3

C in O(SPD3 log n) rounds and O(SPD3|E| log n) messages
of the CONGEST (log n) model, where SPD3 is the shortest path diameter.

Conclusion 3. Let the tree T be represented by the ancestor lists, as given by AD.
Then, the algorithm AT returns new ancestor lists, which represent a tree of O(log n)
height, without asymptotically increasing the induced distortion of the embedding. It
requires O(hD log ∆) rounds and sends O(|E|hD log ∆) messages, where ∆ and hD
are the diameter and the hop diameter, respectively.

5.2 Applications and Open Problems

Hypergraphs are an intricate structure and, with graphs being a special case of
them, it is reasonably expected that whenever problems defined on the latter are
extended to the former they become harder to solve. In fact, their time complexity
may increase, such as the minimum cut problem [CX16], they may become com-
putationally intractable (NP -hard), such as the minimum spanning tree [AF95], or
they may even become hard to approximate, such as the set packing [HSS06]. It
is therefore prudent to claim that hypergraph problems are in general harder and
that our methods emancipates us from the burden of their intractability. In fact,
as argued in [FRT04], graph embeddings into trees lead to substantial improvement
on the approximation ratio of several underlying problems. Given that our method
essentially embeds hypergraphs into similar metrics, we can expect that its benefit
is higher. Any problem on a (metric inducing) hypergraph and be approximated
with a factor O(k

2 logn
log k

), the only difference with [FRT04] being the term k2

log k
, which

can be considered acceptable given that we are dealing with k-th order metrics.
This thesis paves the way for further research in the field of hypergraphs and

their embeddings. Since our focus was on the G-metric, one topic that deserves fur-
ther attention is the 2-metric [Gäh63, Gäh64] and the D-metric [Dha92]. It would
be worth to investigate whether there exists any merit in embedding and approx-
imating these metrics. One possible approach for alleviating their oddities would
be to refine the axiom systems. Additionally, when our method was extended to
embed the G3-metric into an l-HST rather that a 3-HST, only the optimality with
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respect to the number of points was guaranteed, thus it is also important to provide
a lower bound on l. An expander graph similar to the one used in [Bar96] would
be the first line of attack and a tight bound on l would also provide an optimal-
ity guarantee for the 2-HST to l-HST conversion method presented in [BCR01].
Naturally, the same observation holds for the Gk-metric, where a lower bound on k
would also be interesting. Also, since we refrained from non-probabilistic methods,
following the paradigm of [CCG+98, CCGG98], where the probabilistic embedding
is viewed as linear optimization problem, our method could be derandomized and
used for obtaining deterministic approximation algorithms. The time complexity of
our algorithm is prone to further improvements, as it was demonstrated in [BGS16],
where the authors, using an approximate shortest path algorithm, purposed a time-
efficient algorithm to construct probabilistic tree embeddings, for the method, upon
which ours draws. This also suggests an additional research direction, as in real-
world applications it is necessary to drop the assumption of a priori knowledge of
all k-point distances. Thus, shortest path algorithms on hypergraphs, such as the
one presented in [GZR+12], should be tailored to our method and ideally used for
reducing the time-complexity. The performance of the distributed implementation
may also be improved and ideally made similar to the near-optical presented in
[GL14], where the least vertex list were initially computed for a small skeleton sub-
graph and then propagated to the rest of network. Additionally, since we confined
ourselves to the distributed embedding of the G3-metric, it would be interesting to
extend it to the Gk-metric in order to unmask the effect of the k-point distance on
the message and round complexity. A parallel implementation, drawing upon the
archetype of [BGT12] and its subsequent improvement in [FL15], would also be of
practical interest, as it could provide RNC approximation algorithm for problems
defined on hypergraphs.
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