
Institut für
Technische Informatik und
Kommunikationsnetze

Roman May

Practical Concurrency Analysis
for SDN

Master's Thesis
June to December 2016

Supervisor/Tutor: Prof. Dr. Laurent Vanbever
Co-Tutor: Ahmed El-Hassany

Abstract

By operating in highly asynchronous environments, SDN controllers often su�er from
bugs caused by concurrency violations. Unfortunately, state-of-the-art concurrency ana-
lyzers for SDNs often report thousands of possible violations, limiting their e�ectiveness
in practice.
This work presents BigBug, an approach for automatically identifying the most repre-

sentative concurrency violations: those that capture the cause of the violation. The two
key insights behind BigBug are that: (i) many violations share the same root cause; and
(ii) violations with the same root cause share common characteristics. BigBug leverages
these observations to cluster reported violations according to the similarity of events in
them as well as common SDN-speci�c features. BigBug then reports the most represen-
tative violation for each cluster using a ranking function.
We implemented BigBug and showed its practical e�ectiveness. In more than 2000

experiments involving di�erent controllers and applications, BigBug systematically pro-
duced 6 clusters or less, corresponding to a median decrease of 95% over state-of-the-art
analyzers. The number of violations reported by BigBug also closely matched that of
actual bugs, indicating that BigBug is e�ective at identifying root causes of SDN races.

Contents

Contents

1. Introduction 1

1.1. Motivation . 1
1.2. Challenges and contributions . 3
1.3. Related work . 3
1.4. Thesis structure . 4

2. Overview 5

2.1. Motivating example . 5
2.2. BigBug . 7

3. Pre-processing 9

3.1. Trimming SDNRacer HB-graph . 9
3.2. Extracting per-violation graphs . 10

4. Clustering 12

4.1. Cluster initialization . 12
4.2. Identifying related violations through SDN-speci�c features 14
4.3. Distance calculation . 16
4.4. Clustering algorithm . 17
4.5. Discarded approaches . 19

4.5.1. Discarded clustering algorithms . 20
4.5.2. Discarded distance metrics . 21

5. Ranking 24

6. Evaluation 27

6.1. Experimental setup . 27
6.2. Usability . 29
6.3. Use case . 32
6.4. In�uence of trace length on BigBug . 34
6.5. Performance . 35

7. Outlook 38

8. Conclusion 40

Bibliography 41

Appendix A. Complete evaluation table 44

Appendix B. Declaration of originality 46

III

List of Figures

List of Figures

1. Number of violations reported by SDNRacer compared to BigBug 2

2. Example concurrency violation in Floodlight Load Balancer module 5
3. Example HB-graph . 6
4. Working pipeline for BigBugs concurrency analysis 8

5. Example trimming HB-graph . 10
6. Example extraction per-violation graph 11

7a. Example isomorphic cluster initialization (isomorphic) 13
7b. Example isomorphic cluster initialization (not isomorphic) 13
8. Example weakly connected components 22

9. Example ranking function . 26

10. CDF of the % of violations reduced by BigBug 31
11. Usecase example graph . 32
12. CDF of the execution time of BigBug . 35

IV

List of Tables

List of Tables

1. Example cluster features . 15
2. Example distance matrix . 17
3. Example updated distance matrix . 19

4. Example ranking features . 24

5. Feature weights for evaluation . 28
6. Evaluation of 200 step traces . 30
7. Comparison of original and �xed Floodlight Load Balancer module 33
8. In�uence of the trace length on the number of �nal clusters. 34
9. Execution times of SDNRacer and BigBug on 200 steps traces 36

V

Listings

Listings

1. k-medoids algorithm . 20
2. DBScan algorithm . 21

VI

1. Introduction

1. Introduction

1.1. Motivation

Software De�ned Networking (SDN) [1] is a recent approach to improve today's commu-
nication networks. The key idea is to separate the control plane from the data plane, and
ochestrate the network from a single point of control, called SDN controller. Further,
SDN provides di�erent abstractions for forwarding, state-distribution and speci�cations
to the network administrator. The data plane consists of SDN switches that communi-
cate with the controller via OpenFlow [2]. When a packet arrives at a switch, the switch
forwards it based on the entries in its forwarding table. If there is no matching rule in the
table, the switch dispatches the packet to the SDN controller, which then adds, modi�es,
and removes entries in the switches �ow tables. The controller orchestrates the tra�c
in the network either proactively, e.g., network initialization, or reactively, e.g., packets
sent from switches or �ow expiry messages. Further, it provides a well-de�ned API for
networking applications.
Even though SDN is a promising approach, it can also be a source of new di�cul-

ties: SDN controllers operate in highly asynchronous environments where events such as
packets arriving at a switch or expiring �ows can be dispatched to the controller at any
time, non-deterministically. Programming highly asynchronous programs is known to be
hard. In particular, interfering accesses to shared variables (e.g., a switch forwarding
table) can often lead to unwanted behaviors and bugs. A classic example is an SDN
controller which modi�es the content of a forwarding table according to the packets it
sees and its internal state. Depending on the order in which writes (FLOW_MOD) and
reads (PACKET_IN) occur, the forwarding state of the switch can di�er dramatically.
Recently, SDNRacer [3, 4], a dynamic concurrency analyzer, showed that it is possible

to identify concurrency violations in existing SDN controllers. At its core, SDNRacer is
based on a Happens-Before (HB) model, a speci�cation of how di�erent OpenFlow events
are ordered. Given a trace of OpenFlow events and the HB model, SDNRacer builds a
dependency graph (HB-graph) which it uses to detect concurrency violations.
SDNRacer runs on traces generated by STS [5], which simulates a SDN network, uses

real SDN controller to control the networks and records all events happening in the net-
work. In the whole process, the controller is treated as a black box, making it compatible
with any current or future controller.

Problem Statement While a precise concurrency analyzer (such as SDNRacer) is
a useful �rst step, if used only by itself, it (or any other state-of-the-art concurrency
analyzer) is not yet a complete practical solution to the problem of identifying the key
concurrency violations in an SDN setting. The fundamental reason is that there are too
many (thousands) concurrency violations even for short traces of few seconds. These
violations are not false positives�these are real violations that can actually occur�

1

1. Introduction

200 400 600 800 1000
0

2000

4000

6000

8000

Steps

0

2000

4000

6000

8000

V
io

la
tio

ns
 r

ep
or

te
d

by
 S

D
N

R
ac

er

●

●
● ●

●

0

2

4

6

8

10

V
io

la
tio

ns
 r

ep
or

te
d

by
 B

ig
B

ug

● ● ● ● ●

● 5th %−ile
median
95th %−ile

● 5th %−ile
median
95th %−ile

Figure 1: Even when considering one SDN application (Floodlight Load Balancer) run-
ning in a star topology with 4 hosts, the number of concurrency violations
reported by SDNRacer is huge and of little practical use. BigBug reduces it to
3 representative violations which, when �xed, make more than 99.6% of the
violations disappear.

and thus a HB sound concurrency analyzer (like SDNRacer) will report them. As an
illustration, Figure 1 depicts the number of violations reported by SDNRacer as a function
of the trace length collected on a Floodlight [6] controller running the default Load
Balancer application [7]. A trace of 200 steps corresponds to ∼30 seconds. We can see
that a 1000 steps trace (∼2.5 minutes) generates no less than 6,000 distinct concurrency
violations! Clearly, trying to sift through such a high number of (actual) violations is
practically infeasible. Further, we expect the number of violations to be much higher in
practice as SDN controllers tend to run more than one application.
Intuitively, however, the number of causes that trigger these violations should (hope-

fully) be orders of magnitude less, meaning that many violations originate from the same
cause (i.e., the same bug). Indeed, in Figure 1, the controller only contains two distinct
bugs. While di�erent violations resulting from the same cause will di�er in some ways (at
the very least, because di�erent packets trigger them), one can expect that they share a
common structure. Yet, even (sometimes, highly) similar, violations will also share dis-
tinctions making it hard for a human to distinguish them. While a lot of these violations
are a result of the same bug, the output is not ordered or �ltered in any way and it is
the duty of the developer to painfully go through each of them and reason about their
root causes.

This work The key idea of our work is an approach and a framework which can
automatically process thousands of SDN concurrency violations and identify the most
representative ones. BigBug takes as input a set of violations reported by a concurrency
analyzer (e.g., SDNRacer or similar) and clusters these reports into equivalence classes.
BigBug then selects the most representative violation in each class and presents it to the

2

1. Introduction

SDN developer. The developer can then focus on understanding the root cause of that
violation, knowing that thousands of others share the same characteristics. The blue part
of Figure 1 illustrates the bene�ts of BigBug: while the number of violations reported by
SDNRacer grows linearly, BigBug automatically reduces it down to 3 equivalence classes.
More importantly, 99.66% of the violations disappear on average after �xing the root
cause behind each of them.

1.2. Challenges and contributions

Identifying the most representative violations among 1,000s is challenging for at least
two reasons. First, to de�ne a cluster, we need to de�ne a notion of distance between
two distinct violations. Here, BigBug uses an isomorphism-based approach to initialize
the clustering process using �look-alike� violations. Yet, as many similar violations are
not isomorphic, BigBug leverages feature-based clustering derived from domain-speci�c
knowledge of SDN networks. Second, after a cluster is determined, BigBug selects the
most representative candidates for each cluster so as to maximize usefulness for the
developer.
We implemented BigBug and evaluated its e�ectiveness. We show that it successfully

reduces SDNRacer output by orders of magnitude on average.
Overall, we believe that the techniques behind BigBug may be applicable in many

other contexts where many graphs have to be sorted out and the most representatives
ones selected. One example among others is HTTP request �ltering so as to identify
outliers among millions of Web requests [8].

Our main contributions are:

• A set of domain-speci�c features to measure the similarities between reported con-
currency violations (sections 4.1 and 4.2).

• A novel technique to cluster related concurrency violations using the set of domain-
speci�c features (chapter 4).

• A set of ranking techniques which allows BigBug to select a representative candidate
of each cluster (chapter 5).

• A complete implementation of BigBug along with a comprehensive evaluation where
we show its practical relevance: BigBug systematically reported 6 violations or less
in more than 2000 experiments. In a case study, we also show that solving the bug
behind the reported violations caused 99.66% of them to disappear (chapter 6).

1.3. Related work

As mentioned before, BigBug goes beyond current SDN speci�c concurrency analyzers
like SDNRacer, and clusters related concurrency violations. To the best of our knowledge,
this is a novelty for the SDN domain.
However, �ltering or clustering of concurrency violation reports has been applied for

event-driven concurrency analyzers in other domains before, as for example [9] shows. [10]

3

1. Introduction

uses a HB model to �nd concurrency violations in Android applications and groups
them based on event sources (e.g. threads, input, etc.), while [11] uses a ligthwight
HB representation to �nd concurrency violations in multithreaded programs. [12], [13]
and [14] cluster reported alarms of static code analyzers by �nding dependencies and
correlations between alarms. Further, [15] �nds relations between di�erent reported
warnings in a cluster-code analyzer, so as to reduce the redundancy.
Similar to those works, our work clusters reported violations to reduce the developers

e�ort, but mainly di�ers as our clustering method is based on �ne-grained semantic
HB information rather than coarse-grained indicators (e.g., whether an operation in a
violation is in the framework [10]). Also, the use of domain-speci�c features of violation
graphs to measure similarities between them is unique among this works.
Moreover, our work does not rely on static analysis and actually considers the controller

code as a black box, as opposed to static code analyzers. Thanks to this, our clustering
approach based on HB information is general and can thus bene�t existing analyzers
such as [10].
BigBug also goes beyond reducing the number of false positives produced by traditional

concurrency analyzers by automatically reasoning about the common causes underlying
the violations using domain-speci�c knowledge. Although there are tools available that
also classify concurrency violations, like [11] and [16], they use known classes to group
violations, while BigBug dynamically clustering concurrency violations based on domain-
speci�c features, which allows it to classify the violations based on, potentially unknown,
root causes.

1.4. Thesis structure

The remainder of this report is structured as follows: an overview of BigBug is provided
in chapter 2. We explain the processing pipeline of BigBug, the pre-processing, the
clustering and the ranking, in chapters 3, 4, and 5, in detail. The evaluation of BigBug
is covered in chapter 6, and suggestions for future work are provided in chapter 7. We
complete this report with a conclusion in chapter 8.

4

2. Overview

2. Overview

In this section, we provide a high-level overview of BigBug. We start with a motivating
example (section 2.1), illustrating how several concurrency violations can result from the
same bug in the SDN controller. We then highlight how BigBug (section 2.2) clusters a
large amount of concurrency violations into few representative clusters.

2.1. Motivating example

We consider a Floodlight controller running the default Load Balancer application which
redirects Web requests to two replicas in a round-robin fashion (Figure 2). We assume
that an external host, say Host#1 (H1), sends a Web request, we call this a Host Send
event, which hits S1 1©. As it is a new request there is no matching forwarding entry in
S1s �ow table 2©, and thus S1 directs it to the controller using an OpenFlow PACKET_IN

message 3©. The controller selects the best replica, say Replica#1 (R1), and sends three
OpenFlow messages to S1. The �rst one is a FLOW_MOD to install a new forwarding entry
to forward packets coming from H1 to R1 5©. The second message is also a FLOW_MOD
that forwards packets from R1 to H1 6©. The third message is a PACKET_OUT that
carries the original packet sent to the controller 4©. S1 relies on its �ow table to forward
that packet, since the controller assumes that there are entries already installed to match
on this packet.
According to the speci�cation [2], S1 can process these three events in any order

unless separated by barrier messages. A possible execution is therefore S1 processing
the PACKET_OUT before the two FLOW_MOD messages. In this case, S1 does not have
any �ow entry matching on the packet, and it sends another PACKET_IN message to the
controller as a result 7©. This �ping-pong� e�ect lasts until S1 installs the �ow entry

Internet

S1

SDN controller

load-
balancer

Replica #1

Replica #2

1

3 7

4 5 6

Host #1

2

Figure 2: One of the many sequence of events creating concurrency violations in the
default Floodlight Load Balancer application.

5

2. Overview

S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 FlowMod(R1->H1)6

S1 Read(pkt2)10

H1 Send(pkt2)9

S1 FlowMod(Remove)11

 S1 Barrier Request12

S1 FlowMod(H1->R1)5

Ctrl PktIn(pkt1)7

Violation

Figure 3: A simpli�ed example of a possible HB-graph created by SDNRacer for a trace
of the Floodlight Load Balancer module.

directing packets from H1 to R1. In addition to the obvious ine�ciencies, this behavior
can also create serious forwarding issues such as non-deterministic load-balancing between
the two replicas (e�ectively killing the connection) or forwarding loops [3, 4].
SDNRacer detects and reports all these violations�every single one of them�which

can amount to thousands even in minutes-long traces. Analyzing and troubleshooting
all these violations is tedious for at least three reasons. First, violations originating from
the same bug might di�er (either subtly or vastly), which makes them hard to classify
manually. In our previous example, violations would di�er in the number of �bounces�
observed between the controller and the switch. Worse, multiple switches can also be
involved leading to a combinatorial explosion in the number of distinct violations. Second,
the number of violations induced by each bug can vary signi�cantly (chapter 6) and does
not necessarily correlate with the importance of the problem. For instance, ∼90% of
the violations reported when running the above controller originate from the relatively
benign bug explained in the motivating example (section 2.1). Third, a developer has no
information on the number of bugs that are causing the violations. A naive approach to
randomly �x one violation at a time and then re-run the analysis can therefore take a
long time to converge and be sub-optimal (especially, if done in a greedy way).
As explained in the previous chapter, SDNRacer �rst builds an HB-graph. Figure 3

depicts a simpli�ed section of the HB-graph for the previous example. Normally, a HB-
graph consists of thousands of events, even for short traces. The rectangles illustrate
single events, while the directed edges provide information about the ordering of the

6

2. Overview

events. Note, that the dotted red violation connectors are not considered edges, as they
do not indicate an ordering of the events. They only serve to point out the events that
are part of the concurrency violation. Further, the event IDs in the graphs #© are only
used to identify di�erent events, and do not indicate an ordering of events.
The grey events 11©12© are part of the network initialization. Most controllers �rst

remove all �ow rules from the �ow tables of all switches and send a synchronization
barrier to bring the whole network to a known state.
The blue events 1©- 7© illustrate the events described in the Load Balancer exam-

ple above. SDNRacer �rst marks all combinations of the two FLOW_MOD 5© 6© and the
PACKET_OUT 4© as potential harmful concurrency violations. Since the FLOW_MOD that
adds the return path from R1 to H1 6© has a di�erent match than the other two mes-
sages, SDNRacer will only report a concurrency violation between the PACKET_OUT 4©
and the FLOW_MOD 5© that adds a rule to forward packets from H1 to R1.
The green events 9©10© show what happens if the same host sends another request

shortly after the �rst one. There is now way to tell if the resulting �ow table read at S1
10© is processed before or after the FLOW_MOD 5©. Therefore, SDNRacer also reports a
concurrency violation between these two events.
We will use the above example, in the following chapters to illustrate each step of the

processing pipeline of BigBug. All paragraphs that begin with Example refer to this
example of the Load Balancer application.

2.2. BigBug

To aid the debugging process, BigBug aims to present the developer with only the rep-
resentative violations which, ideally, corresponds to the actual bugs. This allows SDN
developers to focus on addressing the most serious cases. BigBug reduces the number of
concurrency violations according to a three step process (Fig. 4).

Step 1: Pre-processing Out of a given execution trace, a concurrency analyzer (e.g.,
SDNRacer) will typically build a directed graph according to a Happens-Before (HB)
relationship (where event a is connected to b if a happens before b). The analyzer will then
report a concurrency violation for any two events which are unordered in the graph (i.e.,
are disconnected), both events access the same location, and one is a FLOW_MOD(write
event).
As BigBug needs to compare violations together, a pre-processing step �rst produces

one sub-graph per violation given the HB-graph. This sub-graph only contains the events
that led to the violation.

Step 2: Clustering Given a set of per-violation graphs, BigBug clusters these graphs
into a number of (ideally, representative of the bugs) classes. BigBug initializes the
clustering process by grouping all isomorphic per-violation graphs. The intuition is that
because these graphs share the same sequence and structure of events, they are more
likely to exert the same code path (and therefore the same bug) inside the controller.
While isomorphic-based clustering is e�cient at identifying �look-alike� violations, dif-

ferent violations from the same bug can take di�erent shapes (as we illustrated in section
2.1). For instance, in the bug we described in the Load Balancer application, the packet

7

2. Overview

…

race!

BigBug

Clustering RankingPre-processing

SDNRacerSTS

A

B

C

f(.)
events concurrency

violations

per-violation graphs clusters
1 to 6

ranking
function

representative
per-violation graphs

10—1000s

10—1000s

Figure 4: A practical working pipeline for SDN concurrency analysis. Out of potentially
thousands of violations reported by SDNRacer, BigBug reduces them to a hand-
ful of representative ones which closely map to actual controller bugs.

might bounce between the controller and the switch more than one time before the for-
warding entry is committed to the �ow table. Just using isomorphic clustering will group
only the races with the same number of bounces between the switch and the controller.
Therefore, in the second phase, to reduce the number of clusters, BigBug applies a

clustering strategy based on whether two per-violation graphs are similar to each other.
BigBug de�nes this similarity based on distance de�ned over a set of domain-speci�c
features. If two per-violation graphs exhibit the same features, they are considered
similar to each other and are clustered together. BigBug uses several features for the
distance computation, for instance, two violations are closer to each other if both have a
packet bouncing between the controller and the switch (as described in our example).

Step 3: Ranking Since the number of clusters reported by BigBug is very low (6 or
less in all our experiments), each of the clusters contains many violations, sometimes in
the order of 1000s. In the �nal step of the pipeline, BigBug uses a ranking function to
select �the most interesting� violation representative of the entire cluster. This is done
by identifying the most commonly occurring features in each cluster. We then select the
per-violation graphs that exhibit the most features and select the smallest of these, thus,
showing the simplest representative graph.

In the next chapters, we explain each step of the processing pipeline of BigBug, the
pre-processing (chapter 3), the clustering (chapter 4) and the ranking (chapter 5), in
detail.

8

3. Pre-processing

3. Pre-processing

BigBug starts by pre-processing the output of SDNRacer: the directed graph induced
by the HB relationship (HB-graph) and a list of violations, to produce one graph per
violation with only the events that led to it.
In section 3.1, we show how BigBug reduces the size of the HB-graph. Then, in section

3.2, we present how BigBug extracts sub-graphs to help analyzing each concurrency
violation individually in later stages.

3.1. Trimming SDNRacer HB-graph

While the number of events in each trace is large, not all of these events pertain to
concurrency violations, some of them are irrelevant. Such events are �ltered by BigBug,
so as to reduce the computational complexity of the following stages, especially the
clustering stage.
BigBug removes three categories of events from the HB-graph. First, it removes all

the events that occurred during the network initialization phase and did not cause any
concurrency violations such as the handshake messages between each switch and the
controller. Second, it removes all the events that do not lead to a concurrency violation.
Third, it removes redundant HB edges in the HB-graph.

Network initialization The �rst task SDN controllers accomplish in a network is to
bring all switches in the network to a known state. Normally, the controller �rst sends
a FLOW_MOD messages to each switch that removes all �ow rules from the forwarding
table, followed by a synchronization barrier. With this, the controller resets each switchs
initial state and makes sure, that there are only rules in all forwarding tables that it knows
about. As depicted in Figure 3, the synchronization barrier that follows the FLOW_MOD
messages connects multiple events, and therefore makes operations on the graph more
computational expensive. BigBug removes these events given that they do not take part
in any concurrency violation.

Irrelevant events As we are only interested in the events that lead to a concurrency
violation, we remove all events that do not lead to, nor are part of, a violation. Speci�-
cally, we recursively remove all leaf nodes, i.e. nodes with only incoming and no outgoing
edges, in the graph if they do not take part in a concurrency violation until all leaf nodes
of the HB-graph are violation events.

Redundant edges SDNRacer uses several rules to connect events with HB-edges, e.g.
based on packet or message IDs. Therefore, the resulting HB-graph often has more than
one path between two ordered events. As one path is completely su�cient to order any
two events, the trimming removes redundant edges from the graph.

9

3. Pre-processing

S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 Read(pkt2)10

H1 Send(pkt2)9

S1 FlowMod(H1->R1)5

Violation

V
io
latio

n

Figure 5: HB-graph from Figure 3 after the trimming step of the pre-processing stage.

Example Figure 5 shows the HB-graph in Figure 3 after the trimming. The trimming
removes the two grey events 11© and 12©, as they are part of the network initialization and
are not part of a violation. Further, events 6© and 7© neither take part in nor lead to
a concurrency violation, so they are removed as well. In a not simpli�ed version of the
HB-graph in Figure 3, there would also be an additional edge between event 2© and 4©
as they share the same packet ID. The last step of the trimming would remove this edge,
as the path 2©→ 3©→ 4© already indicates that 4© happens after 2©. However, as there
are no redundant edges in our example HB-graph, this step does not remove any edges
from the graph.

3.2. Extracting per-violation graphs

Even after removing irrelevant events, the resulting HB-graph is still massive contain-
ing many events and concurrency violations. As we are interested in how individual
concurrency violations compare with each other, BigBug isolates each one of them into
a separate graph such that each graph contains a single concurrency violation with all
the events that led to it. BigBug builds the violation graphs by performing an upward
traversal of the HB-graph starting from the two events involved in each violation until it
reaches one of the entry points (,e.g. host send or proactive update) present in the trace.
Note, that any single event might cause more than one violation, in this case, the event
appears in multiple violation graphs.

Example Figure 6 illustrates the two per-violation graphs that BigBug extracts from the
trimmed HB-graph in Figure 5. As mentioned before, there are events that contribute
to both violations, and therefore, they are present in both violation graphs (i.e. 1©- 3©

10

3. Pre-processing

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 Read(pkt2)10

H1 Send(pkt2)9

S1 FlowMod(H1->R1)5 S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 FlowMod(H1->R1)5

ViolationViolation

Figure 6: Extracted per-violation graphs from the trimmed HB-graph in Figure 5. Each
graph contains exactly one concurrency violation and all events that led to it.

and 5©).
The graph on the right side of the �gure provides enough information for a developer

to �gure out that there is a missing synchronization barrier between the FLOW_MOD 5©
and the PACKET_OUT 4© messages.
The graph on the left side on the other hand is an example of an un�xable violation.

As the controller has no control on when a host in a network sends a packet, it is always
possible that a packet from a host arrives at the switch at the same time as it receives a
FLOW_MODmessage from the controller. This does not mean that this reported violation
has to be harmful and leads to a non-deterministic behavior of the network, just that one
can not predict which of these packets, the FLOW_MOD 5© or PACKET_IN 10©, is processed
�rst. For the case that 10© is processed before 5©, the switch sends it to the controller. In
this case, an error-free controller detects that it already sent the FLOW_MOD messages
to the switch and bu�ers the packet until 5© is processed by the switch. After this, it
can send the packet back to the switch without any further FLOW_MOD messages.

After the pre-processing stage, we have a set of violation graphs. Each of them contains
exactly one violation and all events that led to the violation. This set of graph is the
input for the next stage, the clustering.

11

4. Clustering

4. Clustering

In this section, we describe BigBugs clustering algorithm. BigBug �rst relies on graph
isomorphism to initialize the set of clusters (section 4.1). Then, it re�nes those by
grouping related (but not equivalent) violations according to the SDN-speci�c features
they share (section 4.2). For this, BigBug relies on a distance metric (section 4.3). We
describe the full clustering algorithm in section 4.4. Finally, in section 4.5 we present
di�erent approaches we discarded throughout the implementation of BigBug.

4.1. Cluster initialization

BigBug �rst clusters each violation according to an isomorphism check, essentially group-
ing together violations containing equivalent event sequences.
In BigBug, we restrict the notion of event equivalence to the event type, not the

actual content of the event. Speci�cally, we say that two violation graphs G and H are
isomorphic (and therefore grouped in the same cluster) if each node in G can be exactly
mapped to a node in H with the same event type and the same set of edges.
While checking for graph isomorphism can be done in quasipolynomial time [17], it

can still take a long time to complete in practice. Therefore, we added a timeout of 10
seconds for the computation that checks if two graphs are isomorphic. If the timeout is
hit, two graphs are considered not isomorphic and put in di�erent clusters. Note, that
they can still be clustered together in later stages.

Example To illustrate the isomorphic cluster initialization, we expand our example of
the load-balancing application. Assume an additional host (H2) that sends a Web request
analogous to H1. The extracted graphs for the additional violations look exactly the same
as the previous ones, but with di�erent event content, e.g. di�erent packets, di�erent
hosts and depending on the load balancing di�erent replicas. Figure 7a depicts the two
known graphs from Figure 6 along with two new graphs. The isomorphic initialization
correctly clusters the two pairs of isomorphic graphs as shown in the �gure.
Figure 7b shows two additional violations, that are not isomorphic, but originate from

the same bug: the missing synchronization barrier between the FLOW_MOD and the
PACKET_OUT messages from our example. The two graphs in the �gure basically show
the events that happen after the �rst packet bounce between switch and controller: The
controller assumes that this is a new request and sends three new messages back to the
switch. As shown in the �gure, the additional messages cause new concurrency viola-
tions between them, but also concurrency violations with the previous messages caused
by the �rst PACKET_IN. These violations serve as an example of why the isomorphic
initialization by itself is not enough to cluster violations caused by the same bug.

12

4. Clustering

S1 Read(pkt3)14

H2 Send(pkt3)13

Ctrl PktIn(pkt3)15

S1 Read(pkt4)20

H2 Send(pkt4)19

S1 FlowMod(H2->R2)16 S1 PktOut(pkt3)16

S1 Read(pkt3)14

H2 Send(pkt3)13

Ctrl PktIn(pkt3)15

S1 FlowMod(H2->R1)17

ViolationViolation

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 Read(pkt2)10

H1 Send(pkt2)9

S1 FlowMod(H1->R1)5 S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 FlowMod(H1->R1)5

ViolationViolation

Isomorphic Cluster 1 Isomorphic Cluster 2

Figure 7a: The graphs in the two clusters are caused by the same root cause and clustered
by the isomorphic initialization.

S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 FlowMod(H1->R1)5S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

Violation

S1 PktOut(pkt1)32

S1 Read(pkt1)30

Ctrl PktIn(pkt1)31

S1 FlowMod(H1->R1)33

S1 Read(pkt1)30

Ctrl PktIn(pkt1)31

S1 PktOut(pkt1)32

Isomorphic Cluster 3 Isomorphic Cluster 3

Figure 7b: Example of two graphs that are caused by the same bug, but are not cap-
tured by the isomorphic cluster initialization step, and thus, show that the
isomorphic initialization by itself is not su�cient.

13

4. Clustering

4.2. Identifying related violations through SDN-speci�c

features

As already mentioned in the overview (chapter 2), the isomorphic cluster initialization
successfully clusters �look-alike� violation graphs, but already fails to cluster slightly
di�erent graphs. Therefore, BigBug detects domain-speci�c features computed over each
graph to calculate a distance between clusters. The distance between any two initialized
clusters is used to build a distance matrix which is used to re�ne the initial clustering,
clustering together closely related (but not equivalent) violations.
BigBug uses two di�erent feature types: (i) boolean features that either exist or not in

a violation graph, e.g. the graph has a packet �ooding event; and (ii) numerical features
that represent how often the feature is present in the graph, e.g. the number of host send
events in a graph.
Formally, let Gk be the set of graphs in cluster Ck and Fi : Gk → N be a function that

returns the number computed for feature i. If feature i is boolean, Fi returns 1 if a graph
has this feature, 0 otherwise. If feature i is numerical, Fi returns the actual number of
occurrences of the feature.
We now present the seven di�erent features currently implemented in BigBug.

1. PACKET_IN/PACKET_OUT bounce This boolean feature captures repeated
PACKET_IN and PACKET_OUT events between the controller and a given switch for
the same given packet. This situation occurs when the controller does not use proper
synchronization primitives to ensure the rule that matches the packet has been com-
mitted to the Flow Table before sending the PACKET_OUT back to the switch (see
section 2.1).

2. Reply packets This boolean feature captures if the violation was triggered by a
host replying to a packet that it received. In many cases, the controller installs the
forward path and the return path for a �ow at the same time. The intuition behind
this feature is to consider graphs with concurrency violations on either path closer to
each other.

3. Flow expiry OpenFlow allows �ow entries to expire after a certain speci�ed (hard
or soft) timeout [2]. While soft timeout helps cleaning the �ow table, de�ning the
timeout is usually tricky in asynchronous environments. Often, early �ow expiry leads
to many concurrency violations. This boolean feature captures violations caused by
a �ow expiry event.

4. Flooding Often, controllers �ood packets for various reasons; i.e., the controller dis-
covering the network topology or it is not aware of the location of the destination host
of the packet. However, the paths and the event ordering that follows a packet �ood
is completely nondeterministic. If miss-handled, �ooded packets cause concurrency
violations. The corresponding graphs are often completely di�erent. As such, this
boolean feature simply captures if packet �ooding caused the violation.

5. Number of root events This numerical feature returns the number of root events in
the violation graph. A root event is an event with only outgoing edges in the violation
graph. The number of root events indicates if the violation is caused by just a single
root event or by multiple ones.

14

4. Clustering

6. Number of host sends This numerical feature, similar to the previous one, returns
the number of host send events in the violation graph.

7. Number of proactive violation events SDNRacer distinguishes two types of
events: reactive and proactive. Reactive events are the ones sent by the controller
in response to received messages, while proactive events are sent independently. This
numerical feature returns the number of events involved in the concurrency violation
which are proactive, i.e. zero, one or two.

Our experiments (section 6) and manual analysis of various HB-graphs indicated that
not all features carry the same signi�cance in relating two violations. For instance,
violations sharing the �ooding feature tend to be more related than violations sharing
the feature reply packets. We capture this e�ect in the distance function (section 4.3) by
assigning di�erent weights to each feature.

Example Consider the violation graphs from the cluster initialization in Figures 7a and
7b. Table 1 displays the features for the graphs in the four initialized clusters, as the
graphs in the clusters have the same features.

Bounce Reply Pkt Flow Exp. Flood. # Roots # Host Sends # Proactive

Cluster 1 0 0 0 0 2 2 0
Cluster 2 0 0 0 0 1 1 0
Cluster 3 1 0 0 0 1 1 0
Cluster 4 1 0 0 0 1 1 0

Table 1: Features of the four clusters after the isomorphic initialization in Figures 7a and
7b.

The graphs in cluster 1 have 2 root events each, e.g 1© and 9© in the upper graph,
that both are host send events. Therefore, the two functions for the features number of
root events and number of host sends both return 2. All other features are not contained
in these two graphs, so the respective functions return 0 for them. Similar to the �rst
cluster, the graphs in the second cluster have the same features, except that they both
only have one root event, a host send. The graph in cluster 3 has exactly the same
features as the graph in cluster 4. They both have one root event that is a host send
and do share the PACKET_IN/PACKET_OUT bounce feature. All other features are not
exhibited in theses graphs, and therefore 0.

Adding features Even though the feature set presented in this section provides a
sound clustering (see chapter 6), it still is a heuristic approach. We are aware, that
there is no guaranteed relation between the root causes of any two violations, even if
the corresponding graphs have exactly the same features. Further, it might be necessary
to implement additional features for applications or controllers which we did not use for
the implementation and evaluation of BigBug. Therefore, we made it easy to add new
features to improve the clustering for those cases. To add features, one needs to do the
following:

1. Detect the feature in the violation graphs (see section 4.2)

15

4. Clustering

2. Provide a function that uses this feature to calculate a distances between 0 and 1
between any two cluster (see section 4.3)

3. Assign a weight to this feature (see section 4.3)

4.3. Distance calculation

After BigBug extracts the features of each graph in a given cluster, it computes the mean
of each feature in the cluster. Even though the calculation of the mean is the same for
numerical and boolean features, the meaning of it di�ers. While it means the average
number of occurrences of the feature in the graph for numerical features, it can be seen
as a percentage of graphs that have the feature for boolean features.
Let {g1, . . . , gn} ∈ Gk be the set of graphs in cluster Ck. The mean of feature i is

computed as:

mk
i =

∑l=|Gk|
l=1 Fi(gl)

|Gk|

Observe, that with the currently implemented isomorphic initialization step, all graphs
in an initialized cluster share exactly the same features, which makes the above calcula-
tion redundant. Still, there is a good reasons to keep it this way: as mentioned before,
it might be necessary to add new feature, and this new features might not be the same
for isomorphic graphs. We want BigBug to be extendable without the restriction that
features have to be consistent for isomorphic graphs, and thus use this calculation. Fur-
ther, with this approach, we also allow di�erent initialization methods, not only the
currently used isomorphic initialization, as the feature based clustering is independent of
the cluster initialization method.
After the calculation of the mean for each cluster, our distance calculation algorithm

computes the distance between any two clusters per-feature. The computation for each
feature returns a value between 0 and 1 for both feature types, but the algorithm treats
boolean and numerical features di�erently:

Boolean features The main idea behind the distance calculation for boolean features
is to put clusters that have similar percentages of graphs with a certain feature closer
together. For instance, if all graphs of a cluster have the �ooding feature but only a few
of the graphs of another cluster have it, the distance between these clusters should be
bigger then for two clusters whit most of the graphs having the �ooding feature.
The calculation for the per-feature distance between two clusters Cl and Ck for boolean

feature i is:

di(Cl, Ck) = abs(ml
i −mk

i)

Numeric features With the per-feature distance calculation for numeric features, we
want to put graphs with the same number of occurrences to be close together. For
example, two clusters that contain only one host send per graph are related regarding

16

4. Clustering

the feature number of host sends, therefore the distance between them should be small.
On the other hand, even a small di�erence in the average number of occurrences of a
feature between two clusters can mean that they are completely unrelated. Therefore,
we only di�erentiate between equal and unequal average number of occurrences in two
clusters.
The calculation for the per-feature distance between two clusters Cl and Ck for numeric

feature i is:

di(Cl, Ck) =

{
0 if ml

i = mk
i

1 if ml
i 6= mk

i

Total distance As mentioned in section 4.2, we use weights according to the signi�cance
of the features. The total distance between any two clusters Cl and Ck regarding all j
features is therefore:

d(Cl, Ck) =

j∑
i=1

widi(Cl, Ck)

BigBug computes the distance between any two initialized clusters. Then, it uses this
distances to build a distance matrix which is then used by to the clustering algorithm.

Example Again, consider our example with the four initialized clusters with the features
in Table 1 and assume an equal weight of 1 for each feature. Table 2 shows the resulting
distance matrix.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0 2 3 3
Cluster 2 2 0 1 1
Cluster 3 3 1 0 0
Cluster 4 3 1 0 0

Table 2: Distance matrix calculated from the cluster features in table 1, assuming equal
weights of 1 for each feature.

4.4. Clustering algorithm

We now describe BigBugs complete clustering algorithm. The four major steps of the
whole clustering algorithm are:

1. Initialize the clusters using the isomorphic check (section 4.1)

2. Evaluate all the feature-based pair-wise distances (section 4.2 and 4.3)

3. Construct a distance matrix using distances values (section 4.3)

4. Agglomerative clustering

17

4. Clustering

The �rst three steps, were already explained in the previous sections. They provide the
basis for the fourth step, the agglomerative clustering, a variant of hierarchical clustering.
In general, hierarchical clustering [18] builds a hierarchy of clusters, either bottom-up
(agglomerative) or top-down (divisive). The agglomerative clustering starts with each
element in an own cluster and recursively merges the closest clusters to new ones, until
only one cluster is left. Divisive clustering does exactly the opposite: it starts with a
single cluster and recursively splits it until each element is in its own cluster. We decided
to use agglomerative clustering for BigBug as there is already an implementation of it
in the SciPy hierarchical clustering package [19]. Speci�cally, we used the two function
linkage and fcluster.
The agglomerative clustering algorithm takes the initialized clusters and the previously

calculated distance matrix as inputs. The algorithm treats the initialized clusters as
single elements and starts with each element in a separate cluster. Then, it performs the
following recursively:

1. Find the smallest distance between any two clusters

2. Merge all clusters with this minimum distance between them into new clusters

3. Calculate the distance from each new cluster to any other cluster

4. Update the distance matrix

The �rst two steps are straight-forward: the algorithm selects all clusters with min-
imum distance to each other and merges them. The third step needs a more detailed
explanation: To calculate the distance between a newly merged cluster and any other
cluster, we use the linkage criterion complete linkage. This means, the distance between
the new cluster and any other cluster is the maximum distance from any of its elements
to the other cluster. Formally, let C be the set of all clusters and Cnew be the cluster
formed out of the clusters Ci. Cp denotes any clusters which is element of C but not
Cnew. The distance between Cnew and Cp is calculated as follows:

d(Cnew, Cp) = max{d(Ci, Cp) : ∀Ci ∈ Cnew}

After the algorithm calculated all distances from the new cluster to all other clusters,
it updates the distance matrix with the new values. To do so, it removes the clusters
that were merged and adds the new clusters instead. Then it repeats this four steps.
As a clustering until only one cluster is left is pointless, we use a stopping criterion

for the agglomerative clustering. To do so, we de�ne a maximum distance that we allow
between any elements in a cluster. The algorithm stops as soon as the next merging step
would result in a new cluster in which the distance between any two elements is more
than the maximum distance.

Example Consider the distance matrix in Table 2. In the �rst step, the algorithm �nds
the minimum distance of 0 between any clusters, i.e. the distance between clusters 3 and
4. Therefore, the two clusters are merged into a new one, lets say cluster 5. Then, the
algorithm calculates the distance between the new cluster and the remaining clusters,

18

4. Clustering

and updates the distance matrix accordingly. As said, the distance between a new cluster
CNEW and another clusters Cp is de�ned as the maximum distance between any of its
elements and Cp. The resulting distance matrix is shown in table 3.

Cluster 1 Cluster 2 Cluster 5

Cluster 1 0 2 3
Cluster 2 2 0 1
Cluster 5 3 1 0

Table 3: Updated distance matrix from Table 2 after �rst merging step of the agglomer-
ative clustering algorithm.

In the second iteration of the agglomerative clustering, the algorithm detects 1 as the
minimum distance between any clusters, and therefore, merges clusters 2 and 5 to cluster
6. The new distance between cluster 6 and the remaining cluster is 3 as it is the maximum
distance between cluster 1 and the merged clusters 2 and 5.
The third iteration would simply merge the last two cluster 1 and 6 and we would end

up with a single cluster containing all graphs. As this would be pointless, we need to
�nd an appropriate value for the maximum distance in the stopping criterion. Generally,
the distance has to be in the range of 0 to the sum of the feature weights, as the sum
of the weight equals the maximum achievable distance between any two clusters. In our
example, the weights are all 1, and therefore, the maximum distance should be in the
range 0 to 7.
If we choose the maximum distance to be 0, the clustering stops right after the �rst

merge operation and we end up with three �nal clusters. Even tough this results in a
sub-optimal clustering, as the violations in the clusters 2,3 and 4 are all caused by the
same bug, the missing synchronization barrier, it still already cuts the expense for the
developer in half as it reduces the six violations to 3 clusters. In reality, this would be
much more, as there are thousands of violations in the trace, and a lot of them share the
features in the examples.
Still, if we choose the maximum distance to be 1 or 2, the merging in the second

iteration of the algorithm takes place and the algorithm therefore clusters the violation
that origin from same bug correctly. We end up with two clusters, which is the optimum
for this example.
A maximum distance of 3 or higher result in only one cluster, which is not appropriate,

as the graphs in cluster 1 have a di�erent root cause than graphs in cluster 6.
Even tough coming up with appropriate weights and maximum distance seems simple

in this example, it is normally a di�cult task, as we want BigBug to provide a solid
clustering for di�erent applications and controllers, that have di�erent bugs. As the
violation graph from di�erent bugs have di�erent appearances, �nding the right values is a
trace-o� between accurate clustering and support of multiple controllers and applications.

4.5. Discarded approaches

In the process of developing BigBug, we tested di�erent distance metrics and clustering
algorithms, which we later discarded for di�erent reasons. In this section, we present

19

4. Clustering

two clustering methods (section 4.5.1), as well as two additional comparison methods for
clusters (section 4.5.2), that did not make it into the �nal version of BigBug.
Apart from the actual clustering and the distance calculation, the processing pipeline

for the clustering was always the same as in the �nal version described in this chapter.
We start with the isomorphic initialization of the clusters, providing us with the elements
for the actual clustering. Then, we calculate the pair-wise distances between all these
clusters and build a distance matrix. Finally, we run the clustering algorithm.

4.5.1. Discarded clustering algorithms

In the following, we present the two clustering algorithms k-medoids [20] andDBScan [21],
together with the reasons why we did not use them in the �nal version of BigBug.

k-medoids k-medoids is a variant of the k-means clustering algorithm. The idea behind
k-means is to partition elements into k clusters, where each element is put in the cluster
with the closest mean. Since, in our case, we only de�ned a pair-wise distance between
graphs and clusters, we can not calculate an absolute cluster mean, and therefore, have to
use k-medoids. k-medoids follows the same principle as k-means but does choose actual
element as cluster centers (i.e., medoids) instead of the mathematical mean of a cluster.
The medoid of a cluster is de�ned as the element with the smallest sum of distances
to all other elements in the cluster. Further, the total cost of a clustering is de�ned as
the sum of the distance from each element to its respective cluster medoid. To start the
algorithm, it is necessary to �rst initialize k medoids. We choose the medoids for the �rst
iteration to be the k isomorphic initialized cluster with maximum distance in between
them. Another approach we tested was to randomly initialize the cluster medoids, but the
results generated with the previously explained initialization were better. The k-medians
algorithm in pseudo code can be found in Listing 1. Note that the single elements for
the algorithm are the isomorphic initialized clusters, not single violation graphs.

Listing 1: k-medoids algorithm

1 i n i t i a l i z e medoids
2

3 while co s t de c r ea s e s :
4 for each element not in medoids :
5 a s s i gn e to c l o s e s t medoid
6

7 for each c l u s t e r C:
8 c a l c u l a t e medoid o f C
9

10 c a l c u l a t e co s t o f c l u s t e r i n g

This method provided accurate results for k close to the number of bugs, but as the
number of bugs is normally not known previously this algorithm was not suited for our
purpose.

DBScan DBScan is a density based clustering method. It aims to cluster elements in
high-density areas (elements with many close neighbors) and marks elements that are
far apart from others as outliers. It has two parameters, a minimum number of elements
(eMin) and a radius (r).

20

4. Clustering

An element e is marked as core element if it has at least eMin elements in its neighbor-
hood with distance r or smaller (r-neighborhood). All elements in the r-neighborhood
of e are reachable from e. Further, if an element p is reachable from e and p is a core
element, then an element q is reachable from e if q is reachable from p. Note that reach-
ability is not symmetric: p is only reachable from q if q is a core element as well. All
elements that are not reachable from any core element are marked as outliers. The DB-
Scan algorithm is depicted in Listing 2. Note that the single elements for the algorithm
are the isomorphic initialized clusters, not single violation graphs. Further, an element
e that is �rst marked as an outlier, can later be added to a cluster if it is reachable from
one of its core elements.

Listing 2: DBScan algorithm

1 for each element e :
2 i f e was a l ready v i s i t e d :
3 continue
4 else :
5 mark e as v i s i t e d
6

7 i f e i s not core element :
8 mark e as o u t l i e r
9 else :

10 c r e a t e new c l u s t e r C
11 add a l l e lements r eachab l e from e to C

Even with multiple di�erent values for eMin and r, we could not get a good clustering
for most cases. Either we had clusters with big distances between the single graphs in
them or we ended up with far too many clusters. Therefore, we decided to discard this
algorithm and use the agglomerative clustering instead.

4.5.2. Discarded distance metrics

In addition to the feature-based distance functions explained in sections 4.2 and 4.3, we
utilized two other methods to measure the similarity between clusters. These methods
are not feature-based, but also return a value between 0 and 1, and can ,therefore, be
added in the weighted sum of the distance calculation formula (section 4.3). The two
methods are isomorphic components and common write events.

Isomorphic components To explain this violation graph comparison method, we �rst
have to provide some more information about the violation graph structure. As already
explained in section 3.2, we extract the per-violation graphs by upward traversal of the
HB-graph, starting from the two violation events. All of these graphs have exactly
two leave nodes, the violation events and a variable number of events that led to the
violation. Further, the violation graphs can either consist of one or two weakly connected
components [22]. A weakly connected component is a part of a graph, where each node
is weakly connected to all others in the same part. Weakly connected means connected
regardless of the edge direction (consider the edges as undirected). For our case, a graph
either consists of only one component, if and only if the two violation events are weakly
connected, or of two components, if not.
Figure 8 shows two generic violation graphs. On the left side, the violation graph

21

4. Clustering

Event 3

Event 2

Event 1

Event 4 Event 3

Event 1

Event 2

ViolationViolation
Component 1 Component 1Component 2

Figure 8: Example of two generic violation graph. The left one consitsts of two weakly
connected components, the other only has one.

consists of two components, whereas the graph on the right side has only one. Note that
the �violation marker� (red dotted edge) is not an actual edge of the graph, but only to
show which events take part in the violation.
The idea behind the function isomorphic components was to extend the isomorphic

initialization for parts of violation graphs. While in the initialization we restrict the
isomorphism to the whole graph, we check not connected components of the graphs in
this functions. Speci�cally, we do the following: �rst, we check if each of the two violation
graphs we want to compare consist of two weakly connected components. If there is
only one connected component in one of the graphs, there is no need to proceed this
function, as we already checked the whole graph for isomorphism in the initialization.
The function returns 1 in this case, meaning the graphs are not related in terms of
isomorphic components. Second, we build violation subgraphs out of the two separate
components of both graphs. Third, we check if a component of one graph is isomorphic
to a component of the other graph. Here, we only consider components that contain a
FLOW_MOD, i.e. write event. This, because else we would consider components with
only a �basic read�, i.e. a read event like in the example of the un�xable violation shown
on the left side of Figure 6 (green events), even though this read can violate concurrency
with any arbitrary write event. Summarized, the function consider violation graphs close
to each other if the have isomorphic components that contain a FLOW_MOD.
We explained the comparison of two single graphs above, not clusters as in the distance

calculation, but since we use the isomorphic initialization all graphs in a cluster have the
same structure and we can take an arbitrary graph out of each cluster as input for this
function.
Even though this function helped to �nd related graphs in the �rst versions of BigBug,

it also added another computational expensive check for isomorphism. Further, with the
�nal domain-speci�c feature set we described in section 4.2 the bene�t was negligible.
Therefore, we discarded this function.

Common write events Apart from isomorphic components, we also tested a function
we called common write events. The idea behind this function is that violations that
share a violation event � exactly the same, not only the same type � have something in
common. Again, as in the isomorphic components function, we only consider FLOW_MOD
violation events in the check, as the read events can be arbitrary. The function basically

22

4. Clustering

returns a value between 0 and 1 representing a percentage of graphs of one cluster that
do not share a FLOW_MOD event with at least one graph of the other cluster.
As with the isomorphic components function, common write events did not provide

signi�cant bene�ts when tested with the �nal set of features. Thus, we discarded this
function as well.

The clustering explained in this chapter successfully groups concurrency violations with
the same root cause. Still, it is necessary to �nd the graph in each clusters that best
represents it. The next chapter presents our ranking function.

23

5. Ranking

5. Ranking

While the clustering algorithm groups the concurrency violations into a small number
of clusters, the number of violations per cluster can be large; potentially in the order of
1000s. Our ranking function selects the most representative violation for each cluster.
The main intuition is to �nd the smallest graph that exhibits the most common features

across all graphs in one cluster. The ranking function starts with examining the boolean
features �rst. It selects all violation graphs that have all the boolean features exhibited
in 50% or more of the reported violations in the cluster. The second stage is to reduce
the set of chosen graphs based on the numerical features, one by one. Generally, we
chose the graphs with the minimum di�erence between the feature in the given graph
and the overall mean for the cluster. The order of selecting the graphs based on the
numerical features is: the number of proactive violation events, the number of host
sends, and �nally, the number of root events. For the �nal set of chosen graphs, our
ranking function selects the graph with the minimum number of events to present to the
controller developer, as we think a smaller graph is easier to understand for the developer.
If all of them have the same size, the ranking randomly picks one of them.
In summary, the ranking works as follows for each cluster:

1. Find the graphs that have all boolean features, that appear in minimum 50% of all
graphs of the cluster, but none of the others, and mark them as candidates.

2. Process the numerical features sequentially in the order: proactive violation events,
host sends and �nally root events. For each of the numeric features do:

a) Find the graph with minimum distance in the feature to the cluster mean

b) Remove all graphs that have a higher distance from the candidates

3. From the �nal set of candidates, choose the smallest graph as the representative
graph. If there are multiple smallest graphs in this set, choose one randomly.

Bounce Reply Pkt Flow Exp. Flood # Roots # Host Sends # Proactive

Graph 1 0 0 0 0 1 1 0
Graph 2 0 0 0 0 1 1 0
Graph 3 1 0 0 0 1 1 0
Graph 4 1 0 0 0 1 1 0

Cluster 0.5 0 0 0 1 1 0

Table 4: Features of each graph in Figure 9 separately and average of the whole cluster.

24

5. Ranking

Example Figure 9 depicts one of the two �nal clusters from the clustering example in
chapter 4. For each of the graphs in the �gure, table 4 shows its features as well as the
average in cluster.
The ranking function �rst considers the boolean features only (�rst four columns). As

there are 50% of graphs in the cluster that have the PACKET_IN/PACKET_OUT bounce
feature, the ranking considers the graph 3 and 4 as potential representative graphs. Then,
the ranking considers the numeric features in the order the number of proactive violation
events, the number of host sends, the number of root events. For each of the numeric
features, it chooses the graphs among the candidates that have minimum distance o the
cluster mean. As both, graph 3 and 4, have the same numeric features, they both still
are in the set of potential representative graphs. In the last step, the ranking chooses the
smallest of the remaining graph. Still, graph 3 and 4 have the same number of events, and
therefore, the ranking randomly picks one of them and outputs it as the representative
graph of the cluster.

The ranking was the last stage of the processing pipeline of BigBug. First, the pre-
processing trims the HB-graph and extract per-violation sub-graphs of the HB-graph.
Then, the clustering starts with an isomorphic cluster initialization. After that, domain-
speci�c features are used to de�ne a distance metric between clusters, which is then used
for the agglomerative clustering. The ranking function selects the most representative
graph for each of the �nal clusters. In the next chapter we present the evaluation of
BigBug.

25

5. Ranking

S1 PktOut(pkt3)16

S1 Read(pkt3)14

H2 Send(pkt3)13

Ctrl PktIn(pkt3)15

S1 FlowMod(H2->R1)17

Violation

S1 PktOut(pkt1)6

S1 Read(pkt1)4

H1 Send(pkt1)3

Ctrl PktIn(pkt1)5

S1 FlowMod(H1->R1)7

Violation

S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

S1 FlowMod(H1->R1)5S1 PktOut(pkt1)4

S1 Read(pkt1)2

H1 Send(pkt1)1

Ctrl PktIn(pkt1)3

Violation

S1 PktOut(pkt1)32

S1 Read(pkt1)30

Ctrl PktIn(pkt1)31

S1 FlowMod(H1->R1)33

S1 Read(pkt1)30

Ctrl PktIn(pkt1)31

S1 PktOut(pkt1)32

Graph 3 Graph 4

Graph 2Graph 1

Figure 9: Example of graphs in a �nal cluster. The ranking function selects the most
representative graph.

26

6. Evaluation

6. Evaluation

We implemented a working prototype of BigBug and used it to �lter out the output
produced by SDNRacer. Then, we evaluate it on multiple di�erent applications of dif-
ferent controllers on a variety of topologies to show its usability. Further, we present
a real world example where we used BigBug to �x bugs in an application. The results
show, that BigBug is of great use in �nding representative violations, that hold enough
information to �x them and when �xed, reduced the number of violations by more than
99%. Additionally, we evaluate the performance and show that BigBug �nishes analyzing
traces within one second for 60% of the traces.
In this chapter, we show the experimental setup in section 6.1. We analyze the usability

and provide a real-world use case in sections 6.2 and 6.3. Then, we evaluate the in�uence
of the simulations length on the number of representative graphs reported by BigBug in
section 6.4. Finally, we evaluate the performance of BigBug in section 6.5.

6.1. Experimental setup

We used BigBug to �nd violations produced by actual SDN controllers on multiple net-
work topologies. Each simulation con�guration was ran for 200, 400, 600, 800 and 1000
simulation steps and repeated 15 times to provide more reliable results. All simulations
were executed on a laptop with an Intel Core i7-3740QM CPU running at 2.70GHz with
16 GB RAM. These traces where then copied to a server with two Intel Xeon E5-2670
CPUs running at 2.30GHz and 128GB of RAM to run BigBug on them.
We mainly report the number of violations for Floodlight v0.91 [6] and POX EEL [23].

Additionally, we also �xed the concurrency issues in the Floodlight Load Balancer module
(Floodlight Fx) so as to provide a real-world use case. Further, we used the �xed POX
EEL Forwarding module (POX EEL Fx) that was �xed in the development process of
SDNRacer. We used the following applications shipped with these controllers for the
evaluation:

Admission Control (Floodlight [24]): This application is used to allow or block com-
munication between hosts in a network. Whether two hosts are allowed to communicate,
is controlled by ACL rules (Access Control List) with di�erent priorities.

Circuit Pusher (Floodlight [25]): The Circuit Pusher proactively installs permanent
routes between hosts in the network. Routes can be added by the network administrator
or programs via Floodlights rest API.

Forwarding (Floodlight [26], POX [27], POX Fx): This applications builds and main-
tains a network wide MAC address table, as opposed to the per-switch tables used by

27

6. Evaluation

common L2 Learning Switch applications. Flow rules are added once the controller learns
about a new device.

Learning Switch (Floodlight [28], POX [29]): Common L2 Learning Switch application.
Builds and maintains a MAC address table for each switch separately, storing the physical
port on which each device can be reached.

Load Balancer (Floodlight [7], Floodlight FX): This applications balances load (ping,
TCP and UDP �ows) on a set of replicas behind a virtual IP address. Every time a new
packet is sent to the virtual IP, the application selects a replica and installs �ow rules
for the entire path through the network.

As di�erent network topologies can signi�cantly in�uence the results, we generated traces
on three di�erent network topologies:

Single A single switch connected to two hosts1.

Linear Two hosts connected via two switches.

Binary tree Seven switches in a binary tree topology with four hosts connected to each
leaf switch.

As explained in section 4.2, we assign a weight to each feature in the distance calculation.
A simple sensitivity analysis, where we tested di�erent weights for each feature, led us
to use the weights shown in Table 5 for the distance function (section 4.3). Further, we
de�ne the maximum distance between any to violation graphs in a cluster to be 2 (section
4.4). We are aware that di�erent weights can result in an even better (or worse) clustering
and leave a full sensitivity analysis for later work. Throughout all this experiments, we
used the default con�guration for SDNRacer.

Feature Weight

PACKET_IN / PACKET_OUT Bounce 2.0
Packet Flood 2.0
Flow Expiry 2.0
Number of Proactive Violations 1.5
Number of Host Sends 1.0
Number of Root Events 0.5
Reply Packets 0.5

Table 5: Feature weights used for the evaluation of BigBug.

The above experiment con�gurations resulted in more than 100 di�erent experiments
that we repeated 15 times each, totalling in more than 2000 executions of BigBug. In
the following sections, we use representative parts of these results to evaluate BigBug.
A full table containing the results of all experiments can be found in appendix A. The

1 We used four hosts for the Load Balancer module.

28

6. Evaluation

values reported in all this tables, the full table in the appendix and the ones used in the
remainder of this chapter, are the median of the 15 repetitions we carried out for each
con�guration. The following legend explains the columns in the di�erent result tables.

Legend:

App Tested application

Topology Network topology used for the simulation

Controller Tested controller

Steps Simulation length (number of simulation steps)

SDNRacer Values reported by SDNRacer

Events Number of events in the trace

Violations Number of violations reported by SDNRacer

BigBug Values reported by BigBug

Isomorphic Clusters Number of clusters after the isomorphic initialization

Timeouts Number of isomorphism checks that hit the timeout

Final Clusters Final number of clusters after the agglomerative clustering

Cluster Information about the size of the �nal clusters

Median Median of the cluster size

Max Maximum cluster size

Timing Timing information

Total Total execution time (SDNRacer + BigBug)

SDNRacer Execution time of SDNRacer

BigBug Execution time of BigBug

6.2. Usability

In this section, we evaluate the usability of BigBug on a �xed trace length of 200 steps.
Table 6 shows the results for di�erent applications and topologies. Each value in the
table is the median of the 15 repetition we ran for each con�guration.
As the results show, BigBug is able to reduce the number of reported violations by up

to three orders of magnitude to a maximum of 6 �nal clusters throughout all experiments.
Moreover, the results also show that the number of �nal clusters is not proportional to the
number of concurrency violations, as traces with more than thousand violations produce
more or less the same number of clusters as traces with less than ten violations. The
number of �nal clusters is much more dependent on the variety of violation graphs that
are caused by a single bug in an application and how these graphs are related by our
domain-speci�c feature set than by the number of violations in the trace. With this, we

29

6. Evaluation

SDNRacer BigBug Clusters

App Topology Controller Events Violations Isomorphic Clusters Timeouts Final Clusters Median Max

Adm. Ctrl. BinTree Floodlight 908 81 26 (32.10 %) 0 (0.00 %) 3 (3.70 %) 24 33
Linear Floodlight 287 17 11 (64.71 %) 0 (0.00 %) 3 (17.65 %) 5 8
Single Floodlight 160 11 3 (27.27 %) 0 (0.00 %) 1 (9.09 %) 7 10

CircuitPusher BinTree Floodlight 1017 39 6 (15.38 %) 0 (0.00 %) 2 (5.13 %) 19.5 32
Linear Floodlight 248 42 6 (14.29 %) 0 (0.00 %) 2 (4.76 %) 24 39
Single Floodlight 363 47 3 (6.38 %) 0 (0.00 %) 2 (4.26 %) 23.5 29

Forwarding BinTree Floodlight 3016 288 58 (20.14 %) 0 (0.00 %) 3 (1.04 %) 31 215
POX EEL 5632 310 160 (51.61 %) 4 (2.08 %) 4 (1.29 %) 64.5 143
POX EEL Fx 5419 52 48 (92.31 %) 0 (0.00 %) 4 (7.69 %) 7.5 32

Linear Floodlight 273 18 11 (61.11 %) 0 (0.00 %) 3 (16.67 %) 4 8
POX EEL 389 13 12 (92.31 %) 0 (0.00 %) 3 (23.08 %) 4 7
POX EEL Fx 347 6 6 (100.00 %) 0 (0.00 %) 3 (50.00 %) 2 2

Single Floodlight 423 10 5 (50.00 %) 0 (0.00 %) 2 (20.00 %) 7.5 9
POX EEL 583 11 9 (81.82 %) 0 (0.00 %) 2 (18.18 %) 4 8
POX EEL Fx 586 9 7 (77.78 %) 0 (0.00 %) 2 (22.22 %) 4.5 7

LearningSwitch BinTree Floodlight 6658 344 210 (61.05 %) 0 (0.00 %) 5 (1.45 %) 48 155
POX EEL 3408 66 61 (92.42 %) 0 (0.00 %) 2 (3.03 %) 33 46

Linear Floodlight 228 15 12 (80.00 %) 0 (0.00 %) 2 (13.33 %) 12 14
POX EEL 241 13 6 (46.15 %) 0 (0.00 %) 2 (15.38 %) 6.5 7

Single Floodlight 450 30 10 (33.33 %) 0 (0.00 %) 4 (13.33 %) 7 14
POX EEL 372 6 3 (50.00 %) 0 (0.00 %) 1 (16.67 %) 6 6

LoadBalancer BinTree Floodlight 17593 1910 272 (14.24 %) 0 (0.00 %) 5 (0.26 %) 204 1362
Floodlight Fx 7626 206 68 (33.01 %) 11 (7.48 %) 3 (1.46 %) 24 177

Linear Floodlight 2039 225 34 (15.11 %) 0 (0.00 %) 4 (1.78 %) 35 172
Floodlight Fx 1341 19 6 (31.58 %) 0 (0.00 %) 3 (15.79 %) 7 10

Single4 Floodlight 4034 1664 107 (6.43 %) 0 (0.00 %) 3 (0.18 %) 125 1529
Floodlight Fx 1385 13 2 (15.38 %) 0 (0.00 %) 2 (15.38 %) 7 8

Table 6: Output of SDNRacer and BigBug on 200 step traces of di�erent applications and
topologies (median of 15 repetitions).

30

6. Evaluation

can assume that even for traces with much more concurrency violations, the developer
will still only get confronted with a handful of representative violation graphs.
Figure 10 shows the CDF of the percentage of violations reduced by the clustering

initialization and after the agglomerative clustering, for all traces lengths, not only 200
steps. The isomorphic cluster initialization already reduces the number of reported vi-
olations by more than 63% in 50% of all experiments. Further, the complete clustering
process, the initialization followed by the feature-based agglomerative clustering, reduced
the number of reported violations by more than 95% in 50 % of all experiments, with
a maximum reduction of 99.98%. The fact that BigBug reports a maximum of 6 repre-
sentative graphs and the maximum number of violations in all experiments is more than
8000, highly supports the assumption, that the developer will only get confronted with
a few graphs, even for traces with thousands of violations.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

% of violations reduced

C
D

F

Final clustering
Isomorphic initialization

Figure 10: CDF of the % of violation reduction after the isomorphic initialization and
the �nal clustering.

The last two columns in table 6 show the median and maximum cluster sizes. We can
see, that the graphs are not uniformly distributed among the �nal clusters, indicating
that some bugs in the controller produce much more concurrency violations than others.
This can greatly help the developer, as it shows the quantitative impact of the underlying
bug.
The timeout implemented for the graph isomorphism check triggered in only a small

fraction of all experiments. Speci�cally, in the two POX EEL Forwarding modules (�xed2

and original) and the two Floodlight Load Balancing modules (�xed and original2) on
binary tree topology. This is due to the fact that the binary tree is by far the most
complex topology out of the tested ones and these modules produce the biggest viola-
tions graphs. The POX EEL Forwarding modules use �ooding, and therefore, generate
violation graphs that span big parts of the HB-graph, sometimes containing thousands
of events, which makes computations on them expensive. The original Floodlight Load
Balancer module has the underlying bug that causes the packet bouncing, which can also

2 In this modules, the timeout was only hit in traces longer than 200, and therefore it is not visible
in table 6

31

6. Evaluation

results in huge graphs. In the �xed version of the Load Balancer, we got rid of the packet
bouncing, but implemented synchronisation barriers. These barriers events can connect
big parts of the HB-graph and therefore sometimes result in complex violation graphs.
Even tough the timeout is hit in a few cases, the results do not indicate that this has an
in�uence on the �nal number of clusters.

6.3. Use case

Although the above results proof, that BigBug can greatly reduce the graphs shown to
the developer, they do not indicate if the few reported graphs are useful for the developer
and provide enough information to identify the bugs in the SDN application. Therefore,
we show the usability of BigBug in a real-world example: we used the representative
violation graphs reported by BigBug to �x the bugs in the Floodlight Load Balancer
application. Speci�cally, we did the following:

1. Run BigBug on a trace of the Floodlight Load Balancer module on single topology
with four hosts.

2. Use the representative graphs reported by BigBug to �gure out what bugs are
present in the application.

3. Fix the bugs

4. Repeat the experiment with the same con�guration but the �xed version of the
application.

BigBug reported three representative graphs for the Floodlight Load Balancer module.
The �rst two graphs were similar to the example graphs from the load-balancing example
(section 2.1), that showed an un�xable violation and a missing synchronization barrier.
The third one indicated, that there is no bu�ering in the application. Figure 11 illustrates
the third reported violation graph.

S1 Read(pkt2)

H1 Send(pkt2)

Ctrl PktIn(pkt2)

S1 FlowMod(H1->R2)

Violation

S1 Read(pkt1)

H1 Send(pkt1)

Ctrl PktIn(pkt1)

S1 FlowMod(H1->R1)

Figure 11: Illustration of one of the three representative graphs that BigBug reported for
the Floodlight Load Balancer module.

32

6. Evaluation

Assume a host sends two similar packets right after each other and they both get dis-
patched to the controller. The original application processes these packets as follows. The
controller �rst processes one packet, i.e. sends two FLOW_MOD and one PACKET_OUT
messages. After that, the controller processes the second packet which again results in
the same messages sent, but probably with a di�erent replica as destination as the load-
balancing application uses a round-robin fashion to assign the replicas. The graph in the
�gure provides enough information to �gure out that the controller does not use proper
bu�ering of packets, as it treats the second packet as if it is a new packet, unrelated to
the �rst one.
Apart from this violation, the two FLOW_MOD messages that add the forwarding rule

for the return path cause a violation as well. Further, the PACKET_OUT messages will
also cause a violation with the FLOW_MOD messages in the �gure. These violations are
either part of the cluster with the missing synchronization barrier as root cause, or the
one with the missing bu�ering.

SDNRacer BigBug Clusters

App Controller Steps Events Violations Isomorphic Clusters Timeouts Final Clusters Median Max

LoadBalancer Floodlight 200 4034 1664 107 (6.43 %) 0 (0.00 %) 3 (0.18 %) 125 1529
400 11445 3281 253 (7.71 %) 0 (0.00 %) 3 (0.09 %) 228 3053
600 21465 3577 280 (7.83 %) 0 (0.00 %) 3 (0.08 %) 239 3328
800 23731 4161 281 (6.75 %) 0 (0.00 %) 3 (0.07 %) 253 3956
1000 28600 6196 358 (5.78 %) 0 (0.00 %) 3 (0.05 %) 339 5882

Floodlight Fx 200 1385 13 2 (15.38 %) 0 (0.00 %) 2 (15.38 %) 7 8
400 3731 13 2 (15.38 %) 0 (0.00 %) 2 (15.38 %) 7 8
600 6063 12 2 (16.67 %) 0 (0.00 %) 2 (16.67 %) 7 9
800 8591 12 2 (16.67 %) 0 (0.00 %) 2 (16.67 %) 7 9
1000 10475 14 2 (14.29 %) 0 (0.00 %) 2 (14.29 %) 7.5 9

Table 7: Comparison of original and �xed Floodlight Load Balancer module on single
topology with four hosts.

We used this information to �x the two bugs, the missing barrier synchronization and
the missing bu�ering, in the Load Balancer module. Table 7 shows the comparison
between the original and �xed load-balancing applications for single topology. One can
see, that the number of reported violations is reduced by two orders of magnitude for all
trace lengths. Further, more than 99.76 % disappeared in the �xed version on average
for the 1000 steps trace. Out of the three reported violations by BigBug in the original
version, only 2 are reported after we �xed the bugs. One of them obliviously represents
the same un�xable errors as in the original module. The additional cluster that BigBug
reports for the �xed version is because we did not consider the case that a replica sends
a packet to the host apart from responses to requests from the host. Thus, this reported
violation still contains a graph indicating a missing bu�ering, but only for this speci�c
case. The fact that the number of violations in the �xed module is about constant for
variable trace lengths, indicates that the few violations happen right at the beginning of
the trace and do not repeat themselves. This makes sense, as at some point, all possible
routes between the hosts and replicas are added to the switch �ow table. This was not
the case for the original modules, as there are still packets bouncing between controller
and switch even after a long time.

33

6. Evaluation

6.4. In�uence of trace length on BigBug

The time needed to run the SDNRacer and BigBug can be long for long traces containing
a lot of concurrency violations. Further, SDNRacer did not always successfully complete
for huge traces with thousands of violations, even on the server with a huge amount of
RAM and high computational power. Therefore, we examine the in�uence of the trace
length on the output of BigBug in this section.

SDNRacer BigBug

App Topology Controller Steps Events Violations Isomorphic Clusters Timeouts Final Clusters

CircuitPusher Linear Floodlight 200 248 42 6 (14.29 %) 0 (0.00 %) 2 (4.76 %)
400 602 118 6 (5.08 %) 0 (0.00 %) 2 (1.69 %)
600 947 179 6 (3.35 %) 0 (0.00 %) 2 (1.12 %)
800 1280 258 6 (2.33 %) 0 (0.00 %) 2 (0.78 %)
1000 1583 304 6 (1.97 %) 0 (0.00 %) 2 (0.66 %)

Forwarding BinTree POX EEL 200 5632 310 160 (51.61 %) 4 (2.08 %) 4 (1.29 %)
400 9398 359 204 (56.82 %) 4 (2.02 %) 4 (1.11 %)
600 12104 365 216 (59.18 %) 4 (2.05 %) 4 (1.10 %)
800 14431 395 248 (62.78 %) 2 (1.05 %) 4 (1.01 %)
1000 16860 402 234 (58.21 %) 2 (0.99 %) 4 (1.00 %)

LearningSwitch Single Floodlight 200 450 30 10 (33.33 %) 0 (0.00 %) 4 (13.33 %)
400 1016 73 19 (26.03 %) 0 (0.00 %) 4 (5.48 %)
600 1574 126 20 (15.87 %) 0 (0.00 %) 4 (3.17 %)
800 2185 158 25 (15.82 %) 0 (0.00 %) 4 (2.53 %)
1000 2733 208 28 (13.46 %) 0 (0.00 %) 4 (1.92 %)

Table 8: In�uence of trace length on the number of �nal clusters reported by BigBug for
di�erent applications and topologies.

Table 8 shows the results for di�erence trace lengths, applications, and topologies. The
results show that the number of �nal clusters is not a�ected by the trace length. Even if
we consider all 15 repetitions separately, and not only the median like in this table, we
never reported a di�erence of more than 1 cluster between the median and the extremas,
in all our experiments. The variance in the �nal number of clusters was the highest in the
experiments with less than 1000 events and much less than 100 concurrency violations in
the trace. That is to be expected as a very low number of events and violations indicate
a low network activity, and therefore, a low chance to trigger all bugs in the application.
While carrying out this part of the evaluation, we also discovered a �aw in SDNRacer.

Speci�cally, in one of the �lter functions that �lter out harmless concurrency violations
from the harmful: the time �lter. The idea behind the time �lter is that a potential
concurrency violation is considered not harmful, and thus, is not reported as a viola-
tion, if two events happen more than certain time after each other, i.e. the chance that
they are processed in the �wrong� order is close to 0. Even tough this is reasonable �lter
method, there is a discrepancy in the implementation. Although the trace is generated in
a discrete-event simulation, the �lter uses real-time time stamps of the violation events
to calculate the time di�erence between them. This leads to a problem, because the
processing time for a single simulation steps can greatly vary depending on how much
happens in that single step. In fact, in simulations with high network activity it happens
that two consecutive simulation steps are processed more than 2 seconds apart. Since
the default setting for the time �lter of SDNRacer, the setting we use in all experiments,
is to �lter out all violations in which the events are more than two seconds apart, SD-

34

6. Evaluation

NRacer will not report them even tough they happen right after each other in simulation
time. This problem causes the number of violations reported by SDNRacer to be highly
dependent on the computational power used for the simulation.
Because of this �aw in SDNRacer, we sometimes got unexpected results for the Load

Balancer module on binary tree topology. The number of reported violations for longer
traces was sometimes lower than for shorter traces. A constant number of violations for
di�erent trace length is explainable, as there exist bugs that only trigger at the beginning
of a simulation, but a decreasing number of violations indicates an issue within the
system. As we already see the number of reported violations in the output of SDNRacer,
this issue can not be located in BigBug, but has to be in SDNRacer. We believe that this
only a�ects the quantity of the reported violations and not the quality, as the reported
graphs still su�ce to �x bugs in the controller, as section 6.3 showed.

Even with this, the results in the table still show, that the output of BigBug is almost
una�ected by the trace length. Therefore, it is completely su�cient to run BigBug on
shorter traces, and only increase the simulation length if no bugs are found. In fact, a
trace length of only 200 steps was su�cient to �nd concurrency violations in all tested
applications.

6.5. Performance

As we just showed, the trace length has no signi�cant in�uence on the output of BigBug.
Thus, we concentrate to evaluate BigBugs performance for a constant trace length of 200
steps. Figure 12 depicts the CDF of the execution time for BigBug for all experiments
performed on 200 step traces. Even tough the worst case run time of roughly 20 minutes
is quite high, more than 80% of all experiments �nish in less than 10 seconds, which is
completely su�cient for BigBug to be of practical use.

0.01 1.00 100.00
0.0

0.2

0.4

0.6

0.8

1.0

Time in seconds

C
D

F

Figure 12: CDF of execution times for all simulation con�gurations with a trace lengths
of 200 steps.

35

6. Evaluation

SDNRacer BigBug Timing

App Topology Controller Events Violations Isomorphic Clusters Final Clusters Total SDNRacer BigBug

Forwarding BinTree Floodlight 3016 288 58 (20.14 %) 3 (1.04 %) 5.585 s 3.828 s 1.757 s
POX EEL 5632 310 160 (51.61 %) 4 (1.29 %) 187.159 s 18.740 s 168.419 s

LearningSwitch BinTree Floodlight 6658 344 210 (61.05 %) 5 (1.45 %) 19.075 s 13.753 s 5.323 s
POX EEL 3408 66 61 (92.42 %) 2 (3.03 %) 9.819 s 7.208 s 2.611 s

LoadBalancer BinTree Floodlight 17593 1910 272 (14.24 %) 5 (0.26 %) 326.107 s 116.644 s 209.463 s
Floodlight Fx 7626 206 68 (33.01 %) 3 (1.46 %) 168.426 s 16.569 s 151.857 s

Single4 Floodlight 4034 1664 107 (6.43 %) 3 (0.18 %) 146.332 s 29.504 s 116.828 s
Floodlight Fx 1385 13 2 (15.38 %) 2 (15.38 %) 1.391 s 1.334 s 0.057 s

Table 9: Execution times for BigBug and SDNRacer for 200 step traces for di�erent ap-
plications and topologies.

As it is necessary to �rst run SDNRacer before we can even use BigBug, table 9 shows
the execution times of SDNRacer and BigBug on 200 step traces for di�erent applications
and topologies. It sticks out, that there are sometimes big di�erences between the exe-
cution times of BigBug and SDNRacer, and that they have di�erent dependencies. In the
following, we examine the two tools separately.

SDNRacer The run time of SDNRacer is highly dependent on the number of events
in the trace, as for example the Load Balancer experiment on binary tree shows. This
experiment has by far the highest number of events and also the highest execution time.
Further, there is also a strong dependency on the number of violations in the trace, as the
comparison between the Floodlight Load Balancer on single topology and the Floodlight
Learning Switch on binary tree shows. Even tough the trace for the Learning Switch
has the higher number of events, SDNRacer still takes more time to �nish on the Load
Balancer trace, that has fewer events but about 5 times the number of violations.
These observations cover with our expectations, as SDNRacer �rst processes every

single event in the trace. Then, SDNRacer proceeds by evaluating each combination of
read and write events that have at least one write for potential violations.

BigBug The run time of BigBug on the other hand has di�erent dependencies. The
values in the table indicate a dependency on the number of violations in the trace, but not
only, as the comparison between POX EEL Forwarding on binary tree and Floodlight
Load Balancer on single topology show. Even tough the trace for the Load Balancer
contains much more violations, BigBug still has longer to �nish on the Forwarding trace.
Further, there also seems to be a relation between the execution time and the number
of events. This is only partly true, as only the HB-graph size is related to the number
of events, and only the pre-processing processes the whole graph. In the following we
examine the di�erent parts of the processing pipeline so as to �nd all dependencies
between the run time of BigBug and the trace size and composition.
The �rst step is the pre-processing of the HB-graph, i.e. the trimming of the HB-

graph and the extraction of per-violation graphs. The time it takes for the trimming is
dependent on the size of the HB-graph, i.e. the number of events, but also on the structure
and complexity of the graph. Even tough this indicates a dependency on the number
of events in the trace, an evaluation showed, that the trimming hardly ever contributes
more than 1% to the total run time of BigBug, and thus its contribution to the total run

36

6. Evaluation

time can be neglected. The extraction of the per-violation graphs on the other hand has
a strong dependency on the number of violations, as each of them is processed separately.
Additionally, the size of the di�erent violation graphs also contributes to the run time.
In contrast to the trimming, this part can make up a huge part (>90%) of the total
processing time in some experiments. Note, that we include the feature detection as part
of the extraction, as the features are separately calculated over each violation graph right
after the graphs were extracted.
In a closer examination of the clustering part, we discovered that only the isomorphic

cluster initialization contributes signi�cantly to the total run time of BigBug. Even
tough the number of executions of the distance calculation function is in the order of
O(n!) where n is the number of initialized clusters, the total timed needed to process all
this executions is insigni�cant, as it only consists of basic arithmetic operations. Once
the distance matrix is built, the agglomerative clustering �nishes in almost no time, and
therefore is negligible as well.
The isomorphic cluster initialization does perform a lot of isomorphism checks. These

checks are computationally expensive and can take a long time to �nish. The number of
checks is related to the number of violations in the graph, and even tough we pre-sort
the violation graphs based on their size and only check the graphs for isomorphism if
the have the same size, there are still a lot of isomorphism checks involved for traces
with a high number of violations. Further, the time needed for the isomorphism check is
dependent on the size and complexity of the two graphs which have to be compared.
The ranking function is only called once for each �nal cluster, thus less than 7 times in

all experiments. Further, there are no complex calculations to be made in this function.
Thus, the time needed for this part is insigni�cant.
In summary, the execution time of BigBug is mostly dependent on the number of viola-

tions and their respective violation graph complexity. Even tough there are dependencies
on the number of events, the number of isomorphic clusters, and the complexity of the
HB-graph, these do not signi�cantly contribute to the total processing time of BigBug.

Out of this close examination of the two systems we state that primarily the number
of events (SDNRacer) and the number and structure of the violation graphs (SDNRacer
and BigBug) in�uence the run time. We believe, that with an appropriate simulations
length, BigBug is fast enough for practical use. Further, once bugs in an application are
�xed, there are less violations and therefore, the time needed to run BigBug is reduced,
like the comparison between the �xed and original Load Balancer module show.

The evaluation in this chapter showed, that BigBug successfully reduces the number of
reported violations to a handful of representative ones that hold enough information
to identify and �x bugs in real-world applications. Further, short traces of 200 steps
where su�cient to �nd violations in all tested applications and BigBug �nished within
a few seconds on the vast majority of these traces. Still, there is, as always, room for
improvement, thus, we continue with suggestions for future work in the next chapter.

37

7. Outlook

7. Outlook

The evaluation showed that BigBug is already of great use for a SDN developer, but there
is still potential to improve it. In this chapter, we provide suggestions and approaches
for future work on BigBug.
Although SDNRacer is not part of this work and only used as a tool to get the HB-

graph and concurrency violations, we strongly recommend �rst �xing the issue with the
time �lter, as it leads to inconsistent results. To do so, we suggest to replace the real-
time time stamp on the recorded events with a time stamp in simulation time, i.e. the
simulation step in which the event was processed. After that, it is necessary to �nd an
appropriate value for the number of steps between any events for the time �lter to �lter
out violations, as it greatly impacts the number of reported violations.
The evaluation showed, that BigBug reports representative violations that can actu-

ally be used to �x bugs in real-world applications. Still, the number of controllers and
applications we tested is limited. Even though we believe that our solution works for
di�erent controllers and applications as well, it is possible that one needs to add further
features, or even add di�erent cluster comparison methods, to successfully distinguish
between di�erent root causes of concurrency violations. In the following, we present a
few ideas to further compare graphs:

Feature set comparison Consider the bug in the Load Balancer module of Floodlight
with the missing synchronization barrier. A single host send that result in a PACKET_IN
PACKET_OUT bounce between controller and switch already cause multiple concurrency
violations as each bounce results in multiple messages send by the controller. These
graphs are not isomorphic, but share some exactly same events, at very least the host
send event, as well as the �rst PACKET_IN message sent to the controller. The idea of the
feature set comparison is to check if the set of unique event IDs in two violation graphs
are similar to each other, or one is even a subset of the other. With this, it would be
possible to relate violation graph that origin from exactly the same events.

Exactly same root events Similar to the feature set comparison above, it could already
be helpful to check whether two violation graphs origin from the exactly same events,
not only the number of root events as we do in BigBug. This could also be applied for
the Reply packet feature we use. Speci�cally, if two host handle events in two graphs are
exactly the same.

BigBug already greatly reduces the number of graphs a developer has to examine, as
the evaluation showed. However, it still can be hard to �gure out the root cause of a
violation graph, as they sometimes still contain many events. We believe that it is possible
to further reduce the e�ort needed by the developer by simplifying the reported graphs.
For example the substitution of multiple PACKET_IN / PACKET_OUT bounces between

38

7. Outlook

a controller and a switch trough a single node in the graph, or the replacement of a long
data plane traversal of a packet without any controller interaction, could easily reduce the
size of the graphs and improve the readability, without reducing its information content.
Additionally, BigBug could also be extended to provide suggestions on what root cause

lays behind a concurrency violation. For example, if a PACKET_IN message that was
sent to the controller is followed by a PACKET_OUT and a FLOW_MOD message without
a synchronization barrier between them, the output of BigBug could be modi�ed to
suggest this missing synchronization barrier to the developer as possible root cause of
the violation.

39

8. Conclusion

8. Conclusion

In this work, we introduced BigBug, a generic framework to automatically narrow down
the most representative concurrency violations, i.e. the ones that best illustrate the
likely root cause of an actual bug. To do so, BigBug processes the violations reported by
concurrency analyzers in three steps:

1. The pre-processing trimms the HB-graph and generates per-violation graphs as to
examine them individually.

2. The clustering �rst initializes clusters with isomorphic violation graphs and then
uses a distance metric, based on domain-speci�c features, for the agglomerative
clustering that further narrows down the number of clusters.

3. The ranking selects the most representative graph of each �nal cluster and reports
it to the developer.

We implemented BigBug and showed its usability in roughly 2000 experiments. In all of
them, BigBug reduced the reported violations by orders of magnitude to 6 or less, which
equals a median reduction of more than 95%, compared to state-of-the-art concurrency
analyzers. Further, we used the output of BigBug to �x the bugs in the Floodlight Load
Balancer module to show a real-world use case. The evaluation of the �xed applica-
tion showed the vast majority (> 99%) of all concurrency violations disappeared, which
demonstrates the usability of BigBug even more. Our evaluation also showed that the
trace length does not impact the output of BigBug, making long simulations and calcu-
lations on huge traces needles. In fact, short traces completely su�ced to �nd violations
in all tested applications. The time needed to execute BigBug is rather short for the vast
majority of all experiments, making it practical for real-world use.
We believe that BigBug is of great use to a developer and greatly reduces the e�ort

needed to �nd concurrency violations in an SDN application, even though there is still
room for improvement as the outlook showed.

40

Bibliography

Bibliography

[1] Open Networking Foundation. Software-de�ned networking: The new norm for
networks. ONF White Paper, 2012.

[2] OpenFlow Switch Speci�cation. Version 1.0.0. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.0.0.pdf.

[3] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin
Vechev. SDNRacer: Concurrency Analysis for Software-de�ned Networks. PLDI
'16, 2016.

[4] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin
Vechev. SDNRacer: Detecting Concurrency Violations in Software-de�ned Net-
works. In Proceedings of the 1st ACM SIGCOMM Symposium on Software De�ned
Networking Research, in ACM SOSR '15.

[5] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Je�erson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, H.B.
Acharya, Kyriakos Zari�s, and Scott Shenker. Troubleshooting blackbox sdn con-
trol software with minimal causal sequences. SIGCOMM Comput. Commun. Rev.,
44(4):395�406, August 2014.

[6] Floodlight Open SDN Controller. http://projectfloodlight.org/floodlight.

[7] Big Switch Networks, Inc. Floodlight Load-Balancer Application. https:

//github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/

floodlightcontroller/loadbalancer, 2013.

[8] David Gugelmann, Fabian Gasser, Bernhard Ager, and Vincent Lenders. Hviz:
HTTP(S) tra�c aggregation and visualization for network forensics. Digital Inves-
tigation, 12, Supplement 1:S1 � S11, 2015. {DFRWS} 2015 EuropeProceedings of
the Second Annual {DFRWS} Europe.

[9] Tukaram Muske and Alexander Serebrenik. Survey of Approaches for Handling
Static Analysis Alarms. In Proceedings of 16th International Working Conference
on Source Code Analysis and Manipulation, New York, NY, USA, 2016. IEEE.

[10] Pavol Bielik, Veselin Raychev, and Martin Vechev. Scalable race detection for an-
droid applications. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 332�348, New York, NY, USA, 2015. ACM.

[11] Cormac Flanagan and Stephen N. Freund. FastTrack: E�cient and Precise Dynamic
Race Detection. In ACM PLDI '09.

41

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://projectfloodlight.org/floodlight
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer

Bibliography

[12] Woosuk Lee, Wonchan Lee, and Kwangkeun Yi. Sound non-statistical clustering of
static analysis alarms. In International Workshop on Veri�cation, Model Checking,
and Abstract Interpretation, pages 299�314. Springer, 2012.

[13] Wei Le and Mary Lou So�a. Path-based fault correlations. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE '10, pages 307�316, New York, NY, USA, 2010. ACM.

[14] T. B. Muske, A. Baid, and T. Sanas. Review e�orts reduction by partitioning of
static analysis warnings. In Source Code Analysis and Manipulation (SCAM), 2013
IEEE 13th International Working Conference on, pages 106�115, Sept 2013.

[15] T. Muske. Improving review of clustered-code analysis warnings. In Software Main-
tenance and Evolution (ICSME), 2014 IEEE International Conference on, pages
569�572, Sept 2014.

[16] Baris Kasikci, Cristian Zam�r, and George Candea. Data races vs. data race bugs:
Telling the di�erence with portend. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVII, pages 185�198, New York, NY, USA, 2012. ACM.

[17] László Babai. Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547,
2015.

[18] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[19] SciPy Hierarchical Clustering. https://docs.scipy.org/doc/scipy-0.18.1/

reference/cluster.hierarchy.html.

[20] Leonard Kaufman and Peter J. Rousseeuw. Clustering by means of medoids. In
Statistical Data Analysis Based on the L1�Norm and Related Methods, pages 405�
416, 1987.

[21] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226�231, 1996.

[22] Alan Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.

[23] James Mccauley. POX: A Python-based OpenFlow Controller. https://github.

com/noxrepo/pox.

[24] Big Switch Networks, Inc. Floodlight Firewall. https://github.com/floodlight/
floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall,
2013.

[25] Big Switch Networks, Inc. Floodlight Circuit Pusher Application. https://github.
com/floodlight/floodlight/tree/v0.91/apps/circuitpusher, 2013.

42

https://docs.scipy.org/doc/scipy-0.18.1/reference/cluster.hierarchy.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/cluster.hierarchy.html
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher

Bibliography

[26] Big Switch Networks, Inc. Floodlight Forwarding Application. https:

//github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/

floodlightcontroller/forwarding/Forwarding.java, 2013.

[27] James McCauley. POX EEL L2 Learning Switch. https://github.com/noxrepo/
pox/blob/eel/pox/forwarding/l2_learning.py, 2015.

[28] Big Switch Networks, Inc. Floodlight Learning Switch. https:

//github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/

floodlightcontroller/learningswitch, 2013.

[29] James McCauley. POX EEL Forwarding Application. https://github.com/

noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py, 2015.

43

https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py

SDNRacer BigBug Clusters Timing

App Topology Controller Steps Events Violations Isomorphic Clusters Timeouts Final Clusters Median Max Total SDNRacer BigBug

Adm. Ctrl. BinTree Floodlight 200 908 81 26 (32.10 %) 0 (0.00 %) 3 (3.70 %) 24 33 0.810 s 0.427 s 0.383 s
400 1663 97 37 (38.14 %) 0 (0.00 %) 3 (3.09 %) 24.5 45 5.520 s 4.191 s 1.329 s
600 2088 94 32 (34.04 %) 0 (0.00 %) 3 (3.19 %) 24 46 5.977 s 5.044 s 0.933 s
800 2369 102 33 (32.35 %) 0 (0.00 %) 3 (2.94 %) 24 57 6.347 s 5.069 s 1.278 s

1000 2861 103 37 (35.92 %) 0 (0.00 %) 3 (2.91 %) 24 48 6.043 s 5.303 s 0.740 s

Linear Floodlight 200 287 17 11 (64.71 %) 0 (0.00 %) 3 (17.65 %) 5 8 0.154 s 0.123 s 0.030 s
400 559 18 12 (66.67 %) 0 (0.00 %) 3 (16.67 %) 4 7 2.327 s 2.157 s 0.170 s
600 889 16 10 (62.50 %) 0 (0.00 %) 3 (18.75 %) 4 7 3.697 s 3.599 s 0.098 s
800 1098 18 10 (55.56 %) 0 (0.00 %) 3 (16.67 %) 4 8 3.804 s 3.539 s 0.265 s

1000 1466 20 13 (65.00 %) 0 (0.00 %) 3 (15.00 %) 6 10 4.695 s 4.547 s 0.149 s

Single Floodlight 200 160 11 3 (27.27 %) 0 (0.00 %) 1 (9.09 %) 7 10 0.109 s 0.085 s 0.024 s
400 282 11 4 (36.36 %) 0 (0.00 %) 2 (18.18 %) 6 9 2.486 s 2.344 s 0.142 s
600 447 13 4 (30.77 %) 0 (0.00 %) 2 (15.38 %) 9 12 3.209 s 3.049 s 0.160 s
800 513 9 3 (33.33 %) 0 (0.00 %) 1 (11.11 %) 8 8 3.519 s 3.424 s 0.094 s

1000 628 12 4 (33.33 %) 0 (0.00 %) 1 (8.33 %) 8.5 11 3.670 s 3.520 s 0.150 s

CircuitPusher BinTree Floodlight 200 1017 39 6 (15.38 %) 0 (0.00 %) 2 (5.13 %) 19.5 32 0.606 s 0.567 s 0.039 s
400 2471 125 13 (10.40 %) 0 (0.00 %) 2 (1.60 %) 62.5 67 8.588 s 7.441 s 1.147 s
600 4742 229 16 (6.99 %) 0 (0.00 %) 2 (0.87 %) 114.5 124 21.921 s 18.571 s 3.350 s
800 7290 411 16 (3.89 %) 0 (0.00 %) 2 (0.49 %) 205.5 225 44.790 s 38.171 s 6.619 s

1000 9399 492 16 (3.25 %) 0 (0.00 %) 2 (0.41 %) 246 281 65.710 s 54.666 s 11.044 s

Linear Floodlight 200 248 42 6 (14.29 %) 0 (0.00 %) 2 (4.76 %) 24 39 0.212 s 0.163 s 0.049 s
400 602 118 6 (5.08 %) 0 (0.00 %) 2 (1.69 %) 66.5 114 4.685 s 4.070 s 0.615 s
600 947 179 6 (3.35 %) 0 (0.00 %) 2 (1.12 %) 90.5 174 6.675 s 5.639 s 1.035 s
800 1280 258 6 (2.33 %) 0 (0.00 %) 2 (0.78 %) 134 253 9.265 s 7.996 s 1.269 s

1000 1583 304 6 (1.97 %) 0 (0.00 %) 2 (0.66 %) 156 300 11.647 s 10.012 s 1.635 s

Single Floodlight 200 363 47 3 (6.38 %) 0 (0.00 %) 2 (4.26 %) 23.5 29 0.417 s 0.387 s 0.030 s
400 783 93 3 (3.23 %) 0 (0.00 %) 2 (2.15 %) 46.5 57 5.909 s 5.416 s 0.493 s
600 1180 102 3 (2.94 %) 0 (0.00 %) 2 (1.96 %) 51 71 7.657 s 6.849 s 0.807 s
800 1595 169 3 (1.78 %) 0 (0.00 %) 2 (1.18 %) 84.5 121 10.420 s 9.420 s 1.000 s

1000 2062 231 3 (1.30 %) 0 (0.00 %) 2 (0.87 %) 115.5 158 13.816 s 12.424 s 1.393 s

Forwarding BinTree Floodlight 200 3016 288 58 (20.14 %) 0 (0.00 %) 3 (1.04 %) 31 215 5.585 s 3.828 s 1.757 s
400 6565 669 92 (13.75 %) 0 (0.00 %) 3 (0.45 %) 36 597 37.135 s 21.619 s 15.516 s
600 10074 1006 98 (9.74 %) 0 (0.00 %) 3 (0.30 %) 33 970 68.634 s 43.453 s 25.181 s
800 13444 1385 101 (7.29 %) 0 (0.00 %) 3 (0.22 %) 27.5 1292 105.409 s 72.112 s 33.297 s

1000 16769 1706 109 (6.39 %) 0 (0.00 %) 3 (0.18 %) 31 1633 155.824 s 115.223 s 40.602 s

POX EEL 200 5632 310 160 (51.61 %) 4 (2.08 %) 4 (1.29 %) 64.5 143 187.159 s 18.740 s 168.419 s
400 9398 359 204 (56.82 %) 4 (2.02 %) 4 (1.11 %) 73.5 199 909.363 s 57.606 s 851.757 s
600 12104 365 216 (59.18 %) 4 (2.05 %) 4 (1.10 %) 74 198 1086.691 s 91.750 s 994.941 s
800 14431 395 248 (62.78 %) 2 (1.05 %) 4 (1.01 %) 68 223 1201.879 s 113.654 s 1088.225 s
1000 16860 402 234 (58.21 %) 2 (0.99 %) 4 (1.00 %) 70 241 1248.684 s 140.393 s 1108.290 s

POX EEL Fx 200 5419 52 48 (92.31 %) 0 (0.00 %) 4 (7.69 %) 7.5 32 238.242 s 30.598 s 207.645 s
400 8803 76 68 (89.47 %) 0 (0.00 %) 4 (5.26 %) 8 47 841.106 s 76.081 s 765.025 s
600 12112 77 72 (93.51 %) 1 (14.29 %) 4 (5.19 %) 10 54 1108.713 s 124.025 s 984.688 s
800 14227 93 87 (93.55 %) 1 (14.29 %) 4 (4.30 %) 10.5 65 1334.358 s 154.012 s 1180.346 s
1000 16796 95 89 (93.68 %) 2 (25.00 %) 4 (4.21 %) 11 69 1587.661 s 196.097 s 1391.564 s

Linear Floodlight 200 273 18 11 (61.11 %) 0 (0.00 %) 3 (16.67 %) 4 8 0.154 s 0.118 s 0.036 s
400 585 14 9 (64.29 %) 0 (0.00 %) 3 (21.43 %) 4 6 3.536 s 3.408 s 0.128 s
600 880 14 10 (71.43 %) 0 (0.00 %) 3 (21.43 %) 4 6 3.695 s 3.523 s 0.173 s
800 1161 22 13 (59.09 %) 0 (0.00 %) 3 (13.64 %) 5 10 4.273 s 4.069 s 0.204 s

1000 1439 20 12 (60.00 %) 0 (0.00 %) 3 (15.00 %) 5 10 4.514 s 4.366 s 0.148 s

POX EEL 200 389 13 12 (92.31 %) 0 (0.00 %) 3 (23.08 %) 4 7 0.336 s 0.264 s 0.072 s
400 643 15 13 (86.67 %) 0 (0.00 %) 3 (20.00 %) 4 8 4.501 s 4.136 s 0.364 s
600 978 13 13 (100.00 %) 0 (0.00 %) 3 (23.08 %) 4 7 4.665 s 4.493 s 0.172 s
800 1315 16 15 (93.75 %) 0 (0.00 %) 3 (18.75 %) 4 8 4.827 s 4.484 s 0.343 s

1000 1698 15 13 (86.67 %) 0 (0.00 %) 3 (20.00 %) 4 9 5.423 s 4.981 s 0.441 s

POX EEL Fx 200 347 6 6 (100.00 %) 0 (0.00 %) 3 (50.00 %) 2 2 0.317 s 0.233 s 0.084 s
400 695 6 6 (100.00 %) 0 (0.00 %) 3 (50.00 %) 2 2 4.268 s 3.882 s 0.386 s
600 1015 7 6 (85.71 %) 0 (0.00 %) 3 (42.86 %) 2 3 4.965 s 4.532 s 0.433 s
800 1320 7 6 (85.71 %) 0 (0.00 %) 3 (42.86 %) 2 3 4.924 s 4.569 s 0.354 s

1000 1679 5 5 (100.00 %) 0 (0.00 %) 3 (60.00 %) 2 2 5.336 s 4.975 s 0.362 s

Single Floodlight 200 423 10 5 (50.00 %) 0 (0.00 %) 2 (20.00 %) 7.5 9 0.272 s 0.254 s 0.018 s
400 882 26 7 (26.92 %) 0 (0.00 %) 2 (7.69 %) 14.5 19 4.285 s 4.080 s 0.205 s
600 1352 35 7 (20.00 %) 0 (0.00 %) 2 (5.71 %) 23.5 34 5.037 s 4.644 s 0.394 s
800 1841 46 7 (15.22 %) 0 (0.00 %) 1 (2.17 %) 36 46 6.535 s 5.975 s 0.560 s

1000 2284 57 7 (12.28 %) 0 (0.00 %) 1 (1.75 %) 46 57 7.059 s 6.577 s 0.482 s

POX EEL 200 583 11 9 (81.82 %) 0 (0.00 %) 2 (18.18 %) 4 8 0.755 s 0.583 s 0.172 s
400 983 12 10 (83.33 %) 0 (0.00 %) 2 (16.67 %) 7.5 10 6.003 s 4.555 s 1.448 s
600 1342 10 7 (70.00 %) 0 (0.00 %) 2 (20.00 %) 4.5 8 6.515 s 5.685 s 0.830 s
800 1738 12 11 (91.67 %) 0 (0.00 %) 3 (25.00 %) 6 7 6.850 s 6.169 s 0.681 s

1000 2122 11 9 (81.82 %) 0 (0.00 %) 3 (27.27 %) 5 9 8.092 s 6.801 s 1.291 s

POX EEL Fx 200 586 9 7 (77.78 %) 0 (0.00 %) 2 (22.22 %) 4.5 7 0.707 s 0.563 s 0.144 s
400 973 12 10 (83.33 %) 0 (0.00 %) 2 (16.67 %) 4 10 6.113 s 4.887 s 1.226 s
600 1323 9 7 (77.78 %) 0 (0.00 %) 3 (33.33 %) 3 6 6.537 s 5.547 s 0.990 s
800 1734 12 9 (75.00 %) 0 (0.00 %) 2 (16.67 %) 6 9 7.195 s 5.996 s 1.199 s

1000 2154 13 11 (84.62 %) 0 (0.00 %) 2 (15.38 %) 5 10 7.789 s 6.920 s 0.869 s

A. Complete evaluation table

A. Complete evaluation table

44

SDNRacer BigBug Clusters Timing

App Topology Controller Steps Events Violations Isomorphic Clusters Timeouts Final Clusters Median Max Total SDNRacer BigBug

LearningSwitch BinTree Floodlight 200 6658 344 210 (61.05 %) 0 (0.00 %) 5 (1.45 %) 48 155 19.075 s 13.753 s 5.323 s
400 16744 897 450 (50.17 %) 0 (0.00 %) 5 (0.56 %) 108 359 135.686 s 96.995 s 38.691 s
600 25960 1341 623 (46.46 %) 0 (0.00 %) 5 (0.37 %) 175 535 355.050 s 286.455 s 68.595 s
800 34236 1874 740 (39.49 %) 0 (0.00 %) 5 (0.27 %) 244 748 591.360 s 488.984 s 102.377 s
1000 42976 2470 957 (38.74 %) 0 (0.00 %) 5 (0.20 %) 307 961 1303.925 s 1126.017 s 177.908 s

POX EEL 200 3408 66 61 (92.42 %) 0 (0.00 %) 2 (3.03 %) 33 46 9.819 s 7.208 s 2.611 s
400 7396 137 103 (75.18 %) 0 (0.00 %) 2 (1.46 %) 50.5 88 45.896 s 28.689 s 17.207 s
600 11285 175 137 (78.29 %) 0 (0.00 %) 2 (1.14 %) 78.5 135 78.074 s 60.054 s 18.019 s
800 14625 235 178 (75.74 %) 0 (0.00 %) 2 (0.85 %) 108 186 128.402 s 94.802 s 33.601 s
1000 17883 260 184 (70.77 %) 0 (0.00 %) 2 (0.77 %) 118.5 195 179.758 s 150.449 s 29.309 s

Linear Floodlight 200 228 15 12 (80.00 %) 0 (0.00 %) 2 (13.33 %) 12 14 0.190 s 0.119 s 0.072 s
400 452 15 10 (66.67 %) 0 (0.00 %) 1 (6.67 %) 8.5 12 3.880 s 3.546 s 0.334 s
600 717 18 10 (55.56 %) 0 (0.00 %) 2 (11.11 %) 8 13 3.947 s 3.752 s 0.195 s
800 984 27 17 (62.96 %) 0 (0.00 %) 2 (7.41 %) 13 17 4.357 s 4.032 s 0.324 s
1000 1248 47 29 (61.70 %) 0 (0.00 %) 3 (6.38 %) 10 21 5.815 s 5.554 s 0.261 s

POX EEL 200 241 13 6 (46.15 %) 0 (0.00 %) 2 (15.38 %) 6.5 7 0.187 s 0.140 s 0.047 s
400 490 17 7 (41.18 %) 0 (0.00 %) 2 (11.76 %) 9 14 3.832 s 3.620 s 0.213 s
600 758 16 7 (43.75 %) 0 (0.00 %) 2 (12.50 %) 13 16 3.989 s 3.896 s 0.093 s
800 1057 32 12 (37.50 %) 0 (0.00 %) 2 (6.25 %) 20 29 5.421 s 4.845 s 0.576 s
1000 1287 33 13 (39.39 %) 0 (0.00 %) 2 (6.06 %) 18 31 5.830 s 5.302 s 0.528 s

Single Floodlight 200 450 30 10 (33.33 %) 0 (0.00 %) 4 (13.33 %) 7 14 0.402 s 0.334 s 0.069 s
400 1016 73 19 (26.03 %) 0 (0.00 %) 4 (5.48 %) 18.5 28 5.730 s 4.806 s 0.924 s
600 1574 126 20 (15.87 %) 0 (0.00 %) 4 (3.17 %) 28.5 41 7.535 s 6.340 s 1.195 s
800 2185 158 25 (15.82 %) 0 (0.00 %) 4 (2.53 %) 37.5 48 10.347 s 8.721 s 1.626 s
1000 2733 208 28 (13.46 %) 0 (0.00 %) 4 (1.92 %) 55 72 15.214 s 13.479 s 1.735 s

POX EEL 200 372 6 3 (50.00 %) 0 (0.00 %) 1 (16.67 %) 6 6 0.371 s 0.355 s 0.016 s
400 776 16 3 (18.75 %) 0 (0.00 %) 1 (6.25 %) 16 16 4.896 s 4.577 s 0.319 s
600 1210 16 4 (25.00 %) 0 (0.00 %) 1 (6.25 %) 16 16 5.453 s 5.228 s 0.224 s
800 1620 28 5 (17.86 %) 0 (0.00 %) 1 (3.57 %) 28 28 7.512 s 7.127 s 0.385 s
1000 2008 34 5 (14.71 %) 0 (0.00 %) 1 (2.94 %) 34 34 7.621 s 6.988 s 0.633 s

LoadBalancer BinTree Floodlight 200 17593 1910 272 (14.24 %) 0 (0.00 %) 5 (0.26 %) 204 1362 326.107 s 116.644 s 209.463 s
400 49486 5474 662 (12.09 %) 73 (0.81 %) 5 (0.09 %) 245 4199 4246.278 s 781.849 s 3464.429 s
600 48895 3611 480 (13.29 %) 9 (0.17 %) 4 (0.11 %) 294 2550 1867.922 s 717.664 s 1150.258 s
800 45394 2591 419 (16.17 %) 11 (0.34 %) 4 (0.15 %) 371 1649 909.077 s 424.274 s 484.804 s
1000 68817 5477 608 (11.10 %) 40 (0.48 %) 5 (0.09 %) 311 4089 4911.909 s 1356.859 s 3555.050 s

Floodlight Fx 200 7626 206 68 (33.01 %) 11 (7.48 %) 3 (1.46 %) 24 177 168.426 s 16.569 s 151.857 s
400 10863 206 70 (33.98 %) 12 (7.89 %) 3 (1.46 %) 24 179 229.735 s 31.611 s 198.124 s
600 14845 205 71 (34.63 %) 17 (11.56 %) 3 (1.46 %) 24 175 312.969 s 52.922 s 260.047 s
800 17905 200 62 (31.00 %) 12 (7.79 %) 3 (1.50 %) 31 169 269.124 s 70.056 s 199.068 s
1000 21060 205 67 (32.68 %) 12 (7.89 %) 2 (0.98 %) 85.5 184 255.034 s 89.061 s 165.973 s

Linear Floodlight 200 2039 225 34 (15.11 %) 0 (0.00 %) 4 (1.78 %) 35 172 6.053 s 4.169 s 1.884 s
400 5932 861 60 (6.97 %) 0 (0.00 %) 4 (0.46 %) 72 735 76.724 s 36.901 s 39.824 s
600 9323 1283 74 (5.77 %) 0 (0.00 %) 4 (0.31 %) 116.5 1061 180.790 s 87.350 s 93.440 s
800 13692 1828 77 (4.21 %) 0 (0.00 %) 4 (0.22 %) 144 1448 280.655 s 173.331 s 107.324 s
1000 16837 2252 80 (3.55 %) 0 (0.00 %) 4 (0.18 %) 178.5 1908 386.232 s 251.562 s 134.670 s

Floodlight Fx 200 1341 19 6 (31.58 %) 0 (0.00 %) 3 (15.79 %) 7 10 1.019 s 0.839 s 0.180 s
400 3387 14 4 (28.57 %) 0 (0.00 %) 2 (14.29 %) 7 10 7.262 s 6.616 s 0.646 s
600 5262 24 7 (29.79 %) 0 (0.00 %) 3 (12.77 %) 7 11 10.202 s 9.364 s 0.839 s
800 7197 23 8 (34.78 %) 0 (0.00 %) 3 (13.04 %) 7 12 13.404 s 12.863 s 0.540 s
1000 9290 23 8 (34.78 %) 0 (0.00 %) 3 (13.04 %) 7 12 17.326 s 16.504 s 0.822 s

Single Floodlight 200 4034 1664 107 (6.43 %) 0 (0.00 %) 3 (0.18 %) 125 1529 146.332 s 29.504 s 116.828 s
400 11445 3281 253 (7.71 %) 0 (0.00 %) 3 (0.09 %) 228 3053 550.670 s 226.691 s 323.978 s
600 21465 3577 280 (7.83 %) 0 (0.00 %) 3 (0.08 %) 239 3328 1042.517 s 634.503 s 408.013 s
800 23731 4161 281 (6.75 %) 0 (0.00 %) 3 (0.07 %) 253 3956 1162.911 s 754.363 s 408.548 s
1000 28600 6196 358 (5.78 %) 0 (0.00 %) 3 (0.05 %) 339 5882 1895.051 s 1148.232 s 746.819 s

Floodlight Fx 200 1385 13 2 (15.38 %) 0 (0.00 %) 2 (15.38 %) 7 8 1.391 s 1.334 s 0.057 s
400 3731 13 2 (15.38 %) 0 (0.00 %) 2 (15.38 %) 7 8 9.510 s 9.197 s 0.314 s
600 6063 12 2 (16.67 %) 0 (0.00 %) 2 (16.67 %) 7 9 15.172 s 14.748 s 0.424 s
800 8591 12 2 (16.67 %) 0 (0.00 %) 2 (16.67 %) 7 9 22.420 s 21.831 s 0.589 s
1000 10475 14 2 (14.29 %) 0 (0.00 %) 2 (14.29 %) 7.5 9 28.946 s 28.354 s 0.592 s

A. Complete evaluation table

45

	1 Introduction
	1.1 Motivation
	1.2 Challenges and contributions
	1.3 Related work
	1.4 Thesis structure

	2 Overview
	2.1 Motivating example
	2.2 BigBug

	3 Pre-processing
	3.1 Trimming SDNRacer HB-graph
	3.2 Extracting per-violation graphs

	4 Clustering
	4.1 Cluster initialization
	4.2 Identifying related violations through SDN-specific features
	4.3 Distance calculation
	4.4 Clustering algorithm
	4.5 Discarded approaches
	4.5.1 Discarded clustering algorithms
	4.5.2 Discarded distance metrics

	5 Ranking
	6 Evaluation
	6.1 Experimental setup
	6.2 Usability
	6.3 Use case
	6.4 Influence of trace length on BigBug
	6.5 Performance

	7 Outlook
	8 Conclusion
	Bibliography
	Appendix A Complete evaluation table
	Appendix B Declaration of originality

