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Abstract

In the Recommendation Problem items are recommended to users with the in-
tention to make good recommendations. Given an unknown binary preference
matrix, the goal is to discover a certain number of 1-entries with as few queries
as possible. We present different offline and online algorithms and compare them
on various types of matrices in order to study the differences between the algo-
rithms. We also evaluate the algorithms on two real-world datasets.
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Chapter 1

Introduction

Imagine you are the owner of a bookstore. You want to help your customers
in finding books they like. Naturally, better recommendations means better
business. A big factor that played a role in the rise of services like Amazon and
Netflix is their ability to make good product recommendations. Users are able
to rate products and receive recommendations based on their preferences. While
Amazon uses 1 to 5 star ratings, Netflix moved from stars to a rating system
where users rate products with thumbs up or thumbs down.

In contrast to Amazon and Netflix who have large amounts of data available,
we study settings where we start with zero knowledge, i.e., nothing is known
about the user-item preferences. At each timestep a user is chosen uniformly
at random and a query is made in the form of an item recommendation. We
immediately learn the value of the queried entry. The termination criterion of
the process is defined by the setting. We study two settings, which can be
described as follows with the bookstore example. In the first setting, the goal is
to make all customers happy. A customer becomes happy after a number of good
recommendations have been made. For example, one user may become happy
with three good recommendations and another user may already be happy after
being recommended one book she likes. In the second setting, the goal is to make
a certain total number of good recommendations. Imagine a greedy bookseller
with the goal of selling as many books as possible. In this case, not everybody
needs to be satisfied. In both settings we are interested in the total number of
recommendations until the process terminates.

We consider various offline and online algorithms. Since a pure offline algo-
rithm would be too strong with complete knowledge about the user-item pref-
erences, we provide less information and call such algorithms quasi-offline algo-
rithms. One quasi-offline algorithm is given for each item the number of users
who like the item. Another quasi-offline algorithm is given a probability distribu-
tion on the users’ preferences. The weakest online algorithm simply recommends
items uniformly at random. A more sophisticated online algorithm maintains
weights on the items and randomly samples items proportional to these weights.
The third online algorithm is tailored to perform well on clustered data.
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1. Introduction 2

A theoretical analysis of the algorithms proved to be difficult. We therefore
decided to do a comparison in practical simulations. A preference matrix is a two-
dimensional binary matrix where an entry tells us whether a user likes a certain
item or not. We evaluate the algorithms on different types of preference matrices.
The evaluation is done by comparing the total number of recommendations until
termination of the process. The preference matrices differ in their structure; in
one matrix, for example, there is a small subset of very popular items, while the
majority of items is unpopular. In another matrix all items are relatively equal
in their number of likes, but the matrix has a highly clustered structure. We also
compare the algorithms on two real-world datasets. The first dataset comprises
movie ratings, and in the second dataset users rated jokes.



Chapter 2

Related Work

The recommendation problem has been studied in many different settings. Alon
et al. [1] studied binary online settings where the goal was to approximate the
preference matrix as good as possible after a polylogarithmic number of rounds.
Real-world preference matrices can be highly clustered; for example, movies and
books can be categorized and users have an affinity for certain categories. Kumar
et al. [10] studied a model where user preferences correspond to clusters. They
proposed an algorithm which is designed to do well on preference matrices with
only two clusters and they start with two known ratings of each user. We use
their idea to derive an algorithm that performs well on clustered matrices. Uitto
and Wattenhofer [14] generalized the binary setting by making no assumptions
about the preference matrix. In their setting, one good item needs to be rec-
ommended to each user. They perform a competitive analysis and weaken the
offline algorithm. They reduce the problem to the Min-Sum Set Cover (MSSC)
problem and work with a greedy 4-approximation algorithm proposed by Bar-
Noy et al. [5] and also studied by Feige et al. [8]. They show that their proposed
online algorithm achieves a competitive ratio of O(

√
n log2 n). Further, they

prove that any online algorithm is at least a factor of O(
√
n) worse than the

weakened offline algorithm, hence their online algorithm is within an O(log2 n)
factor from the lower bound.

Our first setting is a generalization of the setting in [14]. Instead of recom-
mending one good item to each user, we want to make a number of recommen-
dations to each user, which is dependent on the individual number of items a
user likes. Similarly to [14], we weaken the offline algorithm. One such offline
algorithm is an approximation to the Generalized Min-Sum Set Cover (GMSSC)
problem, which was introduced by Azar et al. [3]. GMSSC is a generalization
of MSSC and both problems are NP-hard. The input for the GMSSC problem
consists of a collection S of sets, each set containing a number of items. In addi-
tion, the input consists of a covering requirement for each s ∈ S. The output is
an ordering of the different items. The ordering minimizes the average number
of items from the ordering needed to meet the individual covering requirements.
The authors proposed an O(log r) approximation algorithm for GMSSC, where
r is a parameter that is dependent on the maximum covering requirement of any
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2. Related Work 4

set. An improved constant factor approximation algorithm has been proposed by
Bansal et al. [4]. They formulate a linear program and make use of randomized
rounding. Skutella and Williamson [13] improved the algorithm of Bansal et al.
to achieve a better constant-factor approximation.

We present a Multiplicative Weights online algorithm in section 4.2.2 whose
core idea comes from the Multiplicative Weights Update method. The Multi-
plicative Weights Update method is used in fields like Machine Learning, Opti-
mization, and Game Theory. The Multiplicative Weights Update method has to
repeatedly make a decision based on n experts’ opinions. Each decision yields
a payoff which may change from round to round. A round’s payoffs are learned
after the decision has been made. The Multiplicative Weights Update method
maintains weights on the experts’ opinions and makes a decision based on these
weights. Initially, all experts’ opinions have the same weight. After each round,
the weights are updated, depending on how each expert performed. The Multi-
plicative Weights Update method achieves a payoff which is comparable to the
highest payoff any expert achieved. Arora et al. [2] give a good overview over
the Multiplicative Weights Update method in their survey paper.



Chapter 3

Model

Our model consists of a set of n users U and a set of m items I. We assume that
m ∈ Θ(n). Otherwise, for example, if there are many items that nobody likes,
a quasi-offline algorithm has a big advantage since it can ignore these items. A
binary n ×m matrix M is given, where the entry Mi,j describes whether user
i likes item j or not (either a 1 or a 0). We refer to an item that a user u
likes as a good item for u and a recommendation of a good item is called a good
recommendation. An item’s popularity denotes the number of users who like
the item. At each timestep a user is selected uniformly at random to whom we
have to recommend an item. Immediate feedback is given, i.e., the entry Mi,j

is learned when item j has been recommended to user i. We introduce two set-
tings which are characterized by their termination criterion for the process. The
performance of a recommendation algorithm is measured by the total number
of recommendations until the process terminates; fewer recommendations are
better.

Definition 3.1. (Quasi-Competitiveness) An online algorithm A is α-quasi-
competitive if for all inputs I

c(A(I)) ≤ α · c(OPTq(I)) +O(1),

where OPTq is the optimal quasi-offline algorithm and c(·) is the cost function
of A and OPTq, respectively.

3.1 Setting 1: Satisfying each User

A user is defined to be satisfied once a certain number of good items have been
recommended. At each timestep a user is chosen uniformly at random from the
set of unsatisfied users. The process terminates once all users are satisfied. In our
more general setting we want to recommend to each user a fraction f (0 < f ≤ 1)
of her good items. In other words, a user u who likes lu items becomes satisfied
once df · lue good recommendations have been made. Setting f = 1/m will result
in a 1-item setting, which was studied in [14].

5
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Figure 3.1: A user-item matrix where each user likes exactly one item. One
popular item is liked by n−

√
n users. The remaining

√
n users like an item with

popularity 1.

It was proved in [14] that in the 1-item setting, the quasi-competitive ratio
is Ω(

√
n). The same example can be applied to Setting 1. Figure 3.1 illustrates

a preference matrix where all users like exactly one item. There is one item with
popularity n −

√
n and

√
n items with popularity 1. A quasi-offline algorithm

which knows the popular item has a runtime of O(n), since the algorithm knows
the items with popularity 1 and therefore satisfying the

√
n users liking an item

of popularity 1 takes O(n) time. An online algorithm also cannot do better
than sampling items for these

√
n users. The difference to an offline algorithm,

though, is that an online algorithm does not know which items have popularity 1;
it has to sample from all m items. Since m ∈ Θ(n), satisfying these

√
n users will

require Ω(n3/2) recommendations. In other words, a quasi-offline algorithm can
find the 1-entries of the diagonal efficiently in contrast to an online algorithm.
The quasi-competitive ratio in Setting 1 therefore is Ω(

√
n).

3.2 Setting 2: Recommending a Number of Items

In Setting 1 there may be entries that are hard to find. For example, a user may
like only 1 item, which is liked by no other user. The best any online algorithm
can do to find this item is sampling. For this reason we want to weaken the
requirement to satisfy each user. In this setting the process terminates once a
number of k good recommendations in total have been made. In Setting 1 a user
that becomes satisfied may still have items that she would like, but have not
been recommended. In Setting 2, such a user would still remain in U until the
process terminates. A user will only leave, if every item has been recommended
to her before the process terminates.

We could show that in Setting 1 the quasi-competitive ratio is at least
√
n.

Unfortunately, using the same example with the matrix in figure 3.1 will not
yield a reasonable lower bound on the quasi-competitive ratio for Setting 2.



Chapter 4

Algorithms

In this chapter, we present quasi-offline and online algorithms which are evalu-
ated on different input matrices. All algorithms are presented in a generic way.
This way the algorithms apply to both Setting 1 and Setting 2. The done() and
update() functions are used in all algorithms. In Setting 1, the done() function
evaluates to True when all users are satisfied, i.e., when U is empty. The up-
date() function removes users who become satisfied from U . In Setting 2, the
algorithm terminates once k good recommendations have been made in total.
The algorithm keeps track of the number of good recommendations and updates
it in the update() function.

4.1 Quasi-Offline Algorithms

An offline algorithm which is given complete knowledge about the preference
matrix is too strong; this algorithm would make only good recommendations.
Therefore we work with quasi-offline algorithms, i.e., algorithms which are given
varying degrees of information about the preference matrix.

4.1.1 Harmonic Weights Algorithm

In the 1-item setting from [14] the preference matrix M was created by selecting
n vectors according to a probability distribution defined over the users’ prefer-
ence vectors. Their quasi-offline algorithm receives this probability distribution.
An algorithm that minimizes the expected number of total recommendations is
optimal in this case. As already mentioned, the problem for the 1-item setting
is known as the Min-Sum Set Cover problem. For our more general Setting 1
the problem is known as the Generalized Min-Sum Set Cover problem.

The Harmonic Weights (HW) quasi-offline algorithm is an algorithm which
was proposed in [3]. It is an O(log r) approximation, where r is the maximum
number of items we have to recommend to any user in Setting 1. The input
to the algorithm consists of the users’ preference vectors and the number of

7



4. Algorithms 8

items that need to be recommended to each user. The output is an ordering
of the different items, which minimizes the average number of recommendations
for a user if recommendations are made in this order. The Harmonic Weights
algorithm works in rounds and appends in each round one item to the ordering.
The algorithm defines weights for users and items. A user’s weight depends on the
number of items that need to be recommended to the user minus the good items
already present in the ordering. Users who need fewer items until they become
satisfied are assigned a higher weight. An item’s weight is the sum of weights of
users who like the item. In each round the item with highest weight is selected
and appended to the ordering. The ordering does not necessarily need to contain
every item, since all users may become satisfied with a subset of items. The
ordering is computed before any recommendation is made. Recommendations
are made from the ordering. Apart from removing satisfied users from U , the
update() function also increases the indu variable, which keeps track of the next
item to recommend to user u.

Algorithm 1 Harmonic Weights Quasi-Offline Algorithm - Precompute

L← ∅ . ordered list of items
while U not empty do

for u ∈ {u ∈ U | |{i ∈ L|u likes i}| < lu} do
wu ← 1/(lu − |{i ∈ L|u likes i}|)

end for
for i ∈ I do

wi ←
∑

u∈U
u likes i

wu

end for
i← arg maxi∈I wi

I ← I \ {i}
remove all users from U who are satisfied with items from L

end while
return L

Algorithm 2 Harmonic Weights Quasi-Offline Algorithm

L← precompute with Algorithm 1
indu ← 0 for each u ∈ U
while not done() do

choose u uniformly at random from U
choose item L[indu]
update(u, i)

end while

The Harmonic Weights algorithm does not have any connection to Setting
2; since not every user needs to become satisfied, it cannot be described by the
GMSSC problem. An ordering that is optimal in Setting 1 is not necessarily
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optimal in Setting 2.

4.1.2 Best Remaining Item Algorithm

This quasi-offline algorithm is given the column sums of the preference matrix,
i.e., the algorithm learns each item’s popularity. Additionally, in Setting 1 the
algorithm learns a user’s whole preference vector once the user becomes satisfied.
We present an algorithm which recommends to each user the item with the
highest fraction of remaining 1-entries, which has not been recommended yet
to this user. The item with the highest fraction of remaining likes has the
highest probability for success, since the users are selected uniformly at random.
We name this algorithm the Best Remaining Item (BRI) algorithm. The BRI
algorithm can be used in both settings. Apart from its basic functionality, the
update() function manages the bookkeeping needed to compute the fraction of
remaining 1-entries ri for each item i. When a user becomes satisfied in Setting
1, additional updates are made since the whole preference vector of that user is
learned.

Algorithm 3 Best Remaining Item Quasi-Offline Algorithm

while not done() do
choose u uniformly at random from U
choose i not yet recommended to u with highest fraction ri
update(u, i)

end while

4.2 Online Algorithms

While quasi-offline algorithms are given information about the users’ preferences,
online algorithms start with zero knowledge about the preference matrix.

4.2.1 Uniformly at Random Algorithm

We present a simple online algorithm which recommends to each user items
uniformly at random, without replacement. We call this algorithm the Uniformly
At Random (UAR) online algorithm.

Lemma 4.1. In setting 1, the runtime of the UAR algorithm is in O(fn2).

Proof. By linearity of expectation, the expected value of total recommendations
can be written as the sum of the expected values of the users. The expected
value for a single user depends only on the user; it is the expected number of
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recommendations until having discovered df · lue 1-entries from a set of lu 1-
entries and m − lu 0-entries. This expected number of recommendations of a
user u is (m+ 1) · df · lue/(lu + 1).

E[Total recommendations] =
∑
u∈U

E[Recommendations for u]

=
∑
u∈U

(m+ 1) · df · lue
lu + 1

Since |U | = n and m ∈ Θ(n), the UAR algorithm’s expected number of recom-
mendations is in O(fn2).

Algorithm 4 UAR Online Algorithm

while not done() do
choose u uniformly at random from U
choose i uniformly at random from I, without replacement
update(u, i)

end while

4.2.2 Multiplicative Weights Algorithm

The online algorithm in [14] works in two phases; the algorithm discovers popu-
lar items in a sampling phase and recommends these popular items in a greedy
phase. The algorithm switches between these two phases until all users are sat-
isfied. The main idea of the Multiplicative Weights (MW) algorithm is to make
the sampling adaptive; instead of alternating between a sampling phase and a
greedy phase the algorithm maintains a weight for each item and samples ac-
cording to these weights. The higher an item’s weight is compared to the other
weights, the higher is its probability to be sampled. After each recommenda-
tion, the item’s weight is updated; a good recommendation increases the weight
and a bad recommendation decreases it. Popular items are expected to have a
higher weight than unpopular items, i.e., eventually these popular items will be
recommended with higher probabilities. This core idea of sampling is known as
the Multiplicative Weights Update method and it is applied in multiple areas
like Machine Learning, Optimization, and Game Theory.

The Multiplicative Weights online algorithm works as follows. Each item is
assigned a weight, initially all set to 1. Whenever a user arrives, an item is chosen
proportional to the weights of the items which have not yet been recommended
to the user. The reason for sampling without replacement is that we do not want
to recommend an item twice to the same user. Depending on whether the user
liked the item or not, the item’s weight is increased or decreased by multiplying
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with some constant factor. Eventually the weights of relatively popular items
become exponentially bigger than the weights of less popular items.

Comparing with the description of the Multiplicative Weights Update method
given in chapter 2, we do not learn the payoff of all decisions in hindsight. This
would be equivalent to learning a user’s whole preference vector, but we only
learn whether the user liked the recommended item or not. The strength of
the Multiplicative Weights Update method is that it achieves a payoff that is
comparable with the best payoff achieved by any fixed decision. Such a statement
does not make any sense in our settings, since a fixed decision corresponds to
recommending always the same item.

Algorithm 5 Multiplicative Weights Online Algorithm

α← increase-parameter
β ← decrease-parameter
wi ← 1 for each item i
while not done() do

choose u uniformly at random from U
choose i randomly proportional to the weights wi, without replacement
if u likes i then

wi ← wi · (1 + α)
else

wi ← wi · (1− β)
end if
update(u, i)

end while

As we will see in chapter 5, the BRI and MW algorithms perform well on
preference matrices where some items are more popular than others. The al-
gorithms will detect popular items and recommend them to the users. Since
these items are liked by relatively many users, the success rate is higher than
recommending items uniformly at random.

4.2.3 Block Algorithm

There exist preference matrices where all items are equally popular even though
the matrix contains structure. Such preference matrices are often encountered in
the real-world, for example in movie rating systems. Movies can be categorized
into genres and users may have an affinity for certain genres and dislike movies
of other genres.

We propose a simple algorithm that is tailored for such structured data. The
algorithm takes a user-based approach, i.e., it makes recommendations based on
the preferences of users that like similar items. The Block algorithm finds for
a given user u1 a user u2 that is closest to u1 in terms of the number of items
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that both users liked in previous recommendations. Then it recommends an item
which u2 liked, but has not been recommended to u1. If no such item exists, the
algorithm finds the next closest user until a recommendation is made or no more
users remain who have liked at least one item which u1 also liked. In the case
where the algorithm could not make a recommendation that way, it recommends
an item chosen uniformly at random from the set of items which have not yet
been recommended to u1.

Algorithm 6 Block Online Algorithm

while not done() do
choose u uniformly at random
i← null
S ← {u}
while S 6= U do

u′ ← argmaxu′′∈U\Sshared likes(u, u
′′)

if shared likes(u, u′) = 0 then
break

end if
if u′ likes an item that has not been recommended to u then

i← choose item u′ liked, but has not been recommended to u
break

end if
S ← S ∪ u′

end while
if i = null then

choose i uniformly at random from I, without replacement
end if
update(u, i)

end while



Chapter 5

Evaluation

We implemented the algorithms from chapter 4 and compared their performances
on different types of preference matrices. In all cases the preference matrix
consists of n = 800 users and m = 3000 items. The performances are averaged
over 20 runs. The Harmonic Weights quasi-offline algorithm is an approximation
algorithm for Setting 1. Since the algorithm has no relation to Setting 2, we
excluded it in the evaluation for this setting. In all simulation runs we worked
with f = 0.5 for Setting 1 and k = (

∑
u∈U lu)/2 for Setting 2. With these

parameters the same number of good recommendations needs to be made in
both settings, namely half the number of all 1-entries in the preference matrix.

We searched for good parameters for the Multiplicative Weights algorithm.
There was no big difference between different α parameters, although α values
like 0.3 performed a bit better than α = 0. For the β parameter a value between
0.3 and 0.6 performed best. Smaller values like 0.1 led to a noticeably worse
performance. We chose α = 0.3 and β = 0.3 for the Multiplicative Weights
algorithm in all subsequent comparisons.

5.1 Theoretical Preference Matrices

Theoretical preference matrices are constructed with a generative model. In the
simplest case, each user likes an item with a certain probability. Other matrices
are created by modifying the probability distribution on the items’ popularities.
We also present a highly clustered matrix where the preferences are modeled
with clusters.

13
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5.1.1 Random Matrix
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Figure 5.1: Random matrix

On the random preference matrix (Figure 5.1) every item has the same popu-
larity in expectation. A probability p defines the probability that a user likes
a single item. An entry of the preference matrix is 1 with probability p and 0
with probability 1 − p, respectively. Thus, an item has an expected number of
p · n likes. Figure 5.2 shows the performances on a random matrix with p = 0.3.
All algorithms’ performances are comparable with the UAR algorithm’s perfor-
mance. The two quasi-offline algorithms have slightly better performances since
they can easily detect items with a popularity above average.
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Figure 5.2: Algorithm performances on the random matrix.
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5.1.2 Exponential Matrix
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Figure 5.3: Exponential matrix

We have seen in the previous section that on random matrices all algorithms
are comparable with the UAR algorithm since there is not much to exploit. On
exponential matrices (Figure 5.3), the distribution on the items’ number of likes
follows an exponential distribution; a small set of popular items is liked by a
majority of users, while most items are liked by relatively few users. The UAR
algorithm performs badly, as expected. In general, an algorithm that succeeds in
detecting popular items is expected to perform well. We can see in figure 5.4 that
all algorithms have a much better performance than the UAR algorithm. The
MW algorithm’s performance is close to that of the two quasi-offline algorithms,
even though it starts with zero knowledge.
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Figure 5.4: Algorithm performances on the exponential matrix.
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5.1.3 High-low Matrix
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Figure 5.5: High-low matrix

The high-low matrix (Figure 5.5) consists of two types of items. Items of different
types differ by their popularity. Items of the first type are liked by dp0 · ne
users and items of the second type are liked by dp1 · ne users, p0 and p1 in
[0, 1]. The column-vector corresponding to an item with popularity l is chosen
randomly from the set of binary length-n permutations with exactly l 1-entries.
The interesting case is where items of one type are fairly popular, while items
of the other type are not. The faster an algorithm detects items of the more
popular type and recommends these items, the better its performance. Figure
5.6 shows the performances on a high-low matrix where 15% of items belong to
the first type with p0 = 0.8 and p1 = 0.3. We observe that the performance
graph of better performing algorithms consists of two lines. In the first, steeper
line many recommendations were items of the better type, until there were no
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Figure 5.6: Algorithm performances on the high-low matrix.
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more items left of this type. The performance then dropped, since the remaining
items belong to the inferior type. The performance depends on the number of
1-entries belonging to items of the superior type compared to the total number
of recommendations the algorithm has to make. The performance gap is highest
at the point where no more good-type items are remaining for the stronger
algorithms.

5.1.4 Linear descending Matrix

Items

U
se

rs

(a) Preference matrix

Items

P
o
p
u
la

ri
ty

(b) Likes distribution

Figure 5.7: Linear descending matrix

In a linear descending matrix (Figure 5.7), the items’ popularities drop linearly
from item to item. Given p0 and p1, p0 ≥ p1, and parameter q, all in [0, 1]. The
first dq ·me items have a linear number of likes, from p0 ·n linearly descending to
p1 ·n. The remaining items are liked by no user. The column vectors are chosen
from the set of permutations, like in the previous matrix. The performance
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Figure 5.8: Algorithm performances on the linear descending matrix.
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plots in figure 5.8 show that the MW algorithm performs almost as good as
the quasi-offline algorithms, while the block algorithm places between the strong
quasi-offline algorithms and the UAR algorithm. We chose p0 = 0.9, p1 = 0 and
q = 0.65 in this case.

5.1.5 Block Matrix
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Figure 5.9: Block matrix

On the previous matrices the algorithms’ performances roughly followed the
same pattern; the two quasi-offline algorithms performed best, closely followed
by the MW algorithm. The Block algorithm’s performance varied, but it usually
was somewhere between the UAR algorithm and the other algorithms. Block
matrices are a type of preference matrices where all algorithms except the Block
and HW algorithms perform poorly, i.e., their performance is comparable with
the UAR algorithm. The Block algorithm is tailored to perform well on these
types of matrices.

The BRI and MW algorithms are good at finding items which are relatively
popular. The algorithms are not expected to perform better than the UAR algo-
rithm on matrices where all items are equally popular. Such matrices may still
contain a clear structure which can be exploited by algorithms that are designed
for these types of data. In fact, similar preference matrices are encountered in
real-world. For example, a preference matrix for movies shows a clustered struc-
ture since movies can be categorized and users have an affinity for some genres
and a dislike for others.

In the extreme case, each user and each item is assigned to exactly one cluster.
In other words, a user likes only items from her cluster and an item is only liked
by users of its cluster. In addition, we want to make these clusters equally big.
A visual representation of such a matrix with 5 clusters is given in figure 5.9.
We measured the algorithms’ performances on a matrix with 10 blocks. We can
see in figure 5.10 that the block algorithm performs significantly better than all
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other algorithms. Interestingly, the Harmonic Weights algorithm outperforms
the BRI algorithm. The reason can be described as follows. Since all users like
equally many items, the weights are the same at the beginning of the Harmonic
Weights algorithm. After the first item has been added to the ordering, users
of the corresponding cluster have a higher weight, i.e., the Harmonic Weights
algorithm appends items of the same cluster to the ordering until all users of the
cluster would become satisfied. In the end, the ordering consists of length df · le
sequences where each sequence consists of items of the same block. l denotes the
total number of 1-entries in a user’s preference vector, which is the width of a
block in the preference matrix.
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Figure 5.10: Algorithm performances on the block matrix.

5.2 Real-world Preference Matrices

In this section we compare the algorithms on real-world datasets. The biggest
issue with real-world data is that the resulting preference matrices are usually
sparse. Another issue is that many of these real-world datasets do not use binary
ratings. We describe how we create the preference matrices in the corresponding
sections.

5.2.1 MovieLens

The MovieLens dataset [9] is a movie dataset made available by GroupLens
Research. The dataset consists of 24 million ratings from 260’000 users and
40’000 movies. Although 24 million ratings seems large, the preference matrix
is sparse. In fact, 24 million is less than 0.25% of all possible ratings. Matrix
completion is an active area of study and there exist many algorithms that try
to approximate a matrix as good as possible, i.e., fill the missing values. We
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focus only on a subset consisting of the 3000 most popular movies and 800 users
who have rated the most movies. This sub-matrix has still missing entries, but
it is not that sparse anymore. We apply two methods to create the preference
matrix. Once the preference matrix is filled, a last modification needs to be
made. Since we work with binary matrices and the ratings of the MovieLens
dataset range from 1 to 5, we specify a threshold; ratings below the threshold
value are translated to 0, in the other case we write a 1. In both cases we work
with a threshold of 3.5. We observe that the resulting preference matrices do
not have a cluster-like structure. The main reason for this is that we work only
on a small subset of the data.

MovieLens: mean-rating
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Figure 5.11: MovieLens matrix, mean-rating filled with threshold 3.5.

A very simple approach to fill the missing entries is the average rating of an item.
We chose a threshold value of 3.5. The resulting preference matrix is depicted
in figure 5.11. The matrix looks similar to a high-low matrix, i.e., there are two
types of items that differ by their popularity. Within each type, we see a linearly
descending pattern, similar to linear descending matrices. The performance plots
in figure 5.12 show that all algorithms except UAR perform well.
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Figure 5.12: Algorithm performances on a subset of the MovieLens dataset,
missing values filled with mean-ratings.

One disadvantage of filling with mean-ratings is that items are either fairly
popular or unpopular. For example, consider a movie with some good ratings,
some bad ones, and a majority of users who have not rated the movie. We fill
all missing entries of that movie with the same value. The movie becomes either
extremely popular or unpopular, depending on what the mean-rating was.

MovieLens: SVD
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Figure 5.13: MovieLens matrix, mean-rating pre-filled, SVD filled with threshold
3.5.

The Singular Value Decomposition (SVD) is a well known method for matrix
dimensionality reduction and reconstruction [12, 7, 11]. SVD is a factorization
of a matrix, and a low-rank approximation of the matrix is obtained by selecting
the most relevant dimensions. SVD requires the matrix to be filled, and filling
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with mean-ratings has proved to be reasonable. Since our matrix is relatively
dense, we expect a good approximation for the missing values. We still need to
translate this matrix to a binary matrix, but since we do not use the same value
for all missing entries of a single movie anymore, we do not get this strong divide
into popular and unpopular movies, as depicted in figure 5.13. The preference
matrix as well as the performance plots in figure 5.14 look similar to those of the
linear descending matrix.
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Figure 5.14: Algorithm performances on a subset of the MovieLens dataset. The
matrix is an approximation through Singular Value Decomposition on a matrix
where missing values were filled with mean-ratings.

5.2.2 Jester
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Figure 5.15: Jester preference matrix, 3000 users rated 100 jokes.

Jester is a joke recommendation system developed at UC Berkeley [6]. In the
Jester dataset we worked with, 100 jokes were rated with real values ranging
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from -10 to 10. Fortunately, there are many users who have rated all jokes; we
randomly selected 3000 users who have rated all jokes for the preference matrix.
Ratings from 0 to 10 are translated to a 1-entry in the preference matrix, and
ratings below 0 to a 0-entry. Since there are only 100 items, figure 5.15a is
scaled accordingly. We see in figure 5.16 that the quasi-offline algorithms and
the Multiplicative Weights algorithm perform better than the UAR and Block
algorithms. Surprisingly, the Block algorithm’s performance comparable with
the UAR algorithm. We assume that a user-based approach may perform better
with more items.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Recommendations 1e5

0%

20%

40%

60%

80%

100%

P
ro

g
re

ss

UAR

MW

Block

BRI

HW

(a) Setting 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Recommendations 1e5

0%

20%

40%

60%

80%

100%

P
ro

g
re

ss

UAR

MW

Block

BRI

(b) Setting 2

Figure 5.16: Algorithm performances on a subset of the Jester dataset.



Chapter 6

Summary

We have introduced two settings for the recommendation problem. We presented
several algorithms; two quasi-offline algorithms with different information about
the preference matrix, an online algorithm which recommends items through
sampling, the Multiplicative Weights algorithm which maintains weights on the
items and samples items according to these weights, and a third online algorithm
which performs well on clustered data. The comparison was made on different
types of preference matrices. We observed that the strength of the Multiplicative
Weights algorithm lies in detecting items which are more popular than other
items. We presented a matrix where the clustering algorithm outperformed all
other algorithms; on this matrix, the Multiplicative Weights algorithm performed
as bad as the UAR algorithm. Interestingly, the HW quasi-offline algorithm
outperformed the BRI quasi-offline algorithm on this matrix. We did not notice
any difference in the algorithms’ performances on the different settings, where
the same total number of recommendations had to be made.
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