
Distributed
 Computing

Robot Composer
Project Report

Roland Schmid

roschmi@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Manuel Eichelberger, Michael König

Prof. Dr. Roger Wattenhofer

March 22, 2017

Abstract

Automation is an omnipresent topic nowadays; hence, we ask why music com-
position has not been substituted yet. Therefore, we developed a tool, the
Robot Composer, that automatically generates jazz/blues music (or serves as
an automated backing group for play along) only based on music theory in-
stead of on machine learning. In this report, we present our selection of ap-
plied musical concepts, describe the challenges during the implementation and
inform the decisions regarding the music generation process. Finally, we con-
clude that the Robot Composer is capable of producing melodious pieces and,
consequently, that music theory seems to be a suitable foundation to build
music generation software.

i

Contents

Abstract i

1 Introduction 1

2 Background from music theory 2

2.1 Rhythm and percussion selection 2

2.2 The jazzblues patterns . 3

2.3 The minor blues scale . 4

3 Implementation 5

3.1 Technical framework . 5

3.1.1 Installation and usage of Sonic Pi 5

3.1.2 Setup a development environment 6

3.1.3 Finding suitable instrument samples 7

3.2 Musical concepts . 8

3.2.1 Rhythm group generation: play-along mode 8

3.2.2 Rhythm group generation: solo mode 10

3.2.3 Soloist generation . 10

3.2.4 Tweaking the sound . 11

3.3 Capabilities and limitations of the Robot Composer 11

4 Conclusion 13

Bibliography 14

A Appendix A-1

ii

Chapter 1

Introduction

Many tasks in our digital world have been automated and were assigned to
machines, but composers have not been replaced so far. What makes music
composition a hard task for computers? — In order to tackle this question
we have implemented the Robot Composer, a tool that automatically generates
jazz/blues music. Throughout this practically oriented case study, we intended
to use only the enormous stock of knowledge from music theory and no tools
from machine learning (ML).

One can easily find similar tools for music/melody generation (like [1, 2,
3, 4, 5, 6, 7]) but while, on the one hand, it seems to be rather easy to generate
music based on ML techniques and there are lots of well-functioning student
projects on the Internet, on the other hand, most of the non-ML tools are rather
sophisticated and have been developed over an extensive period of time. This
renders their comparison to the many ML student projects unfair.

With lots of existing comparable and efficient tools based on ML, we thus
aim to do the opposite: we impose restrictions on using any form of ML and
try to accomplish best possible music generation for the selected genre while
the comparison against ML techniques is not part of this project. Subordi-
nately, the Robot Composer is meant to evaluate the open-source tool Sonic Pi
and its capabilities regarding programmatic music generation in a close-to-
professional context.

Concerning the structure of this report: we will first introduce the un-
derlying music theory that was applied throughout this project, subsequently
present the main challenges and technical impediments during the implemen-
tation of the Robot Composer, discuss the informed decisions regarding the
music generation process and point out the weaknesses and features of this
project’s implementation. Finally, we draw the conclusions to this attempt and
try to briefly put the results into context.

1

Chapter 2

Background from music theory

With the choice of jazz/blues music, we both gained a wide range of existing
basic knowledge to start with, combined with a very liberate interpretation of
the question “What is jazz?”, but also have to contend within one of the most
creatively expressive styles of music out there. We therefore had to pick and
focus our work on certain well-known concepts:

2.1 Rhythm and percussion selection

According to several online tutorials [8, 9, 10, 11, 12], jazz drumming follows
along very similar lines in general. This led us to the conclusion that, instead
of reinventing the wheel at this point, we would merely implement a finite
selection of drum patterns with ongoing rhythmic and instrumental deviations
to simulate the spontaneous variations a human drummer would apply in
order to keep up the dynamics of a piece.

Figure 2.1: The music notation of the (inverse) swing rhythms

The general idea drawn from the aforementioned online tutorials is a sim-
ple (potentially inverse) swing rhythm on the ride cymbal to drive the piece, ac-
companied by suited comping patterns (from accompanying or complement [13])
using other percussive elements like the base and the snare drum. More specif-
ically, the ride cymbal swing rhythm denotes a repeated pattern which com-
prises of one quarter note and two eighth notes (see Figure 2.1) where swing
denotes an unequal partition of the ground beat (quarter notes) into roughly
72% of its duration to the first and 28% of its length to the second eighth note,
while the notation usually remains unchanged [14]. The inverse swing rhythm
denotes the shift of this pattern by one beat, i.e., commencing with the two

2

2. Background from music theory 3

eighth notes. In addition, we have decided to add some combinations of or
completely without the ride cymbal rhythms in order to avoid monotonicity.
The jazz comping serves to accentuate the swing-offbeats, that is, the second
eighth note in a swing partitioning of the ground beat, and therefore helps to
set the rhythmic frame of the piece.

2.2 The jazzblues patterns

Building on top of the selected drum pattern as its rhythmic frame, a piece of
music needs an underlying harmonic structure as its melodic frame. This will
be the main guideline for an improvising soloist and allow us to organize all
further melodic voices into an euphonious harmonic composition. In the blues
genre, the 12-bar blues schemes are such well-known underlying structures,
widely used by artists all over the world. As jazz standards and jam sessions
were emerging, the players reused and refined these blues schemes as a basic
harmonic structure to accompany their improvisations by adding in more and
more typical jazz cadences, e.g. II-V-I [15]. Some (very famous) exemplary
results of this process can be seen in Figure 2.2; these are precisely the 12-bar
patterns that will be used by the Robot Composer.

	: F7	Bb7	F7	Cm7 F7
Bb7	Bdim	F7	Am7 D7	
Gm7	C7	F7 D7	Gm7 C7alt :	

(a) standard jazzblues

	: Cm7	Fm7	Cm7	Gm7b5 C7alt
Fm7	Fm7	Cm7	Cm7	
Ab7b5	G7alt	Cm7	Dm7b5 G7alt :	

(b) minor jazzblues

	: Bb	Eb7	Bb	Bb7
Eb7	Eb7 Eo	Bb	G7	
Cm7	F7	Bb Eb7	Bb F7 :	

(c) Dixieland blues

Figure 2.2: Popular jazzblues patterns according to [16], based on [15]; vertical
lines denote separations of bars, two entries within one bar denote a changing
harmony after the first 2 beats

2. Background from music theory 4

2.3 The minor blues scale

In addition to the selected (or generated) harmonic structure of the composi-
tion, the Robot Composer should be able to produce a melodic leading voice
fitting into the given melodic frame. This corresponds closely to the decisions
made by an improvising soloist; hence, we found it natural to make use of the
tools that inexperienced players are taught in order to facilitate this task. For
improvisations to an accompanying blues scheme, a simple but already pow-
erful tool is to restrict one’s note selection to the blues scale (see Figure A.1).

Figure 2.3: The minor blues scale in d, the blue note is marked by its color

In practice, with only few exceptions, this restriction on the note selec-
tion ensures that the soloist is not conflicting with the accompanying rhythm
group. In this context, conflicting means to play dissonant notes that clearly
do not fit with the other voices. The major issues may arise when the so-called
blue note is played and not resolved immediately, that is, it builds up some
tension in the listeners’ minds through dissonance (see “tritone” [17] for de-
tails). Experienced soloists use this tension to attract the listeners’ attention
and transform the dissonant state into a harmonic sequence by moving on to
the fifth. When picking the notes from the blues scale at random, however, the
blue note may be followed by another dissonant interval like a diminished or
augmented quart (e.g. g# → d or g# → c).

Clearly, a melodious piece of music is not guaranteed through avoidance
of conflicts between the soloist and the rhythm group alone; an appealing
composition most certainly needs to avoid constantly performing arbitrarily
large jumps between successive notes and is required to exhibit some sense of
melody and rhythm. More on this issue can be found in Section 3.2.3.

Chapter 3

Implementation

3.1 Technical framework

After deciding to implement the Robot Composer based upon the open-source
project Sonic Pi, a potentially easy-to-use tool for programmatic music gener-
ation, we had to overcome lots of technical problems throughout this project.
These include a proper installation and setup of a suitable development envi-
ronment, as well as some technical limitations regarding the playback of the
composed piece.

3.1.1 Installation and usage of Sonic Pi

First of all, the recommended installation procedure using the pre-built pack-
age of Sonic Pi did not work smoothly. While all the dependencies and the
tool itself were installed successfully, it was not possible to launch Sonic Pi
straight away. JACK and PulseAudio, the two prevailing sound servers, can-
not be run in parallel. Hence, any user-friendly desktop environment us-
ing PulseAudio will cause a conflict here as Sonic Pi requires the use of the
JACK audio server. During the following research, we came across two possi-
ble solutions to this problem: either combine JACK with PulseAudio via the
pulseaudio-module-jack or using pasuspender. Either works fine, but the
pasuspender method seems to be more stable and preserve the better overall
desktop experience. More on this method can be found in the provided launch
script: ./bin/sonic-pi.sh.

Later, we discovered that it would be beneficial to make use of the new
functionality of Sonic Pi introduced in v2.11, like the addition of the minor
blues scale. When following the guideline for the Linux installation from
source, no further problems arose and the installation manual even describes
the pasuspender method mentioned above. However, the decision to use the
newer version of Sonic Pi caused problems on one of the originally targeted de-
ployment systems, the Raspberry Pi: the corresponding installation guidelines

5

3. Implementation 6

resulted in an infinite loop producing the same error output over and over. As
these issues could not be resolved easily, it seems that using the Robot Com-
poser on a Raspberry Pi requires the patience to wait for the pre-built package
of Sonic Pi v2.11.

Once the tool is successfully installed and running, it is easy to make the
first steps in Sonic Pi by following its included tutorial. Beyond that, there
are two less accessible facilities: there is an included API-documentation-style
reference of internal functions in the bottom left corner of the Sonic Pi interface
in the register tab “Lang” and an even more elaborate API documentation that
can be found online [18].

Finally, on a Raspberry Pi with rather limited resources, it may be desirable
to run the Sonic Pi server in headless mode, that is, with no Xserver running.
In principle, this is possible by manually executing the ruby script:

../sonic-pi/app/server/bin/sonic-pi-server.rb

and suppressing all error output that the server cannot connect to the GUI.
See ./bin/raspberry-pi.sh for details; please note that this requires package
x11-dbus to be installed.

3.1.2 Setup a development environment

In its original form, Sonic Pi does not allow to develop in a different IDE other
than the very simple provided interface intended to be suitable for beginners
in programming. This, however, is barely usable for professional development.
We therefore suggest to install the ruby gem sonic-pi-cli in order to send
code fragments to the sonic-pi-server directly via command line. For those
who favor the text editor vim, there is an included suggested setup documented
in the README.md. Notwithstanding the above, one may use:

./bin/send to sonic-pi.sh

to load all required functionality from multiple files and send it to Sonic Pi
accordingly. It provides the following directives:

• #set: CODE

Immediately send CODE to Sonic Pi for evaluation; may be used to set
global constants like:

#set: PROJECT_DIR = "/home/pi/robot/"

and will be evaluated just like any other ruby or Sonic Pi code.

3. Implementation 7

• #include: FILE

Directly include the contents of FILE at the position of the directive and
interpret all directives found in the FILE accordingly.

• #require: FILE

Recursively call ./bin/send to sonic-pi.sh with FILE as an argument.
This allows sending a file as a separate request to the sonic-pi-server.

This allows using a proper file structure instead of a single file that must con-
tain the complete program.

Aside from the improved readability and maintainability, the last step is
indeed mandatory due to Sonic Pi’s server implementation: in some cases it
only allows a limited number of lines of code to be processed at the same
time. In our case we could determine a limit of 528 lines per separate request
on a personal computer. This is a known bug [19] and apparently hard to
resolve. However, this problem can be worked around by sending function
definitions as separate requests as these will reside in a global scope within
Sonic Pi. Recall that this can be accomplished using the “#require: FILE”
directive described above.

3.1.3 Finding suitable instrument samples

Ultimately, the Robot Composer should be able to output the composition as
audio. Therefore, the typical jazz/blues instruments need to be made available
to Sonic Pi in the form of external samples. As a first step, all samples must be
converted into .wav, .aac or .flac.

When handling samples various problems may arise:

• the samples might contain variable-length silence in the beginning that
interfere with the precise timing,

• the samples might not be harmonically compatible to each other,

• a note’s length is restricted to the sample’s duration,

• the sample pack might not contain separate samples for every pitch and
thus require the rate to be adjusted,

• this might even restrict the maximal duration of a note further,

• samples at manipulated pitch do not exhibit all the natural sounds of the
instruments as usual.

Unfortunately, this is only the list of problems that occurred during the im-
plementation of the Robot Composer – there are potentially many more. In

3. Implementation 8

contrary, in the end we were fortunate enough to find a set of samples with
clear audio quality, long enough duration, very precise tunings and sufficiently
small, equal-length silence prepending the sound. Consequently, we only had
to deal with the adjustments of the pitch and tolerate the losses to the original-
ity of the instruments that come along with this process.

The pitch of a note can be manipulated by playing it at a modified rate: the
new frequency is simply calculated from the original frequency by multiplying
it with the rate. Therefore, a rate of r = 0.5 decreases the note by an octave and
a rate of r = 2 increases it by an octave. As an octave consists of 12 logarithmi-
cally equidistant semitones, the rate to increase a pitch by k semitones is thus
given by the formula [20]:

r(k) = 12
√

2
k
,

more easily given by the frequency quotient of two adjacent notes a1, a#1 [20]:

r(k) =
(

466.164 Hz
440.000 Hz

)k

.

The latter of these formulas makes it evident that it also holds for negative
values of k in order to decrease the pitch as it simply inverts the quotient
within the parentheses.

3.2 Musical concepts

In this part, we will present how the musical concepts from Chapter 2 have
been applied during the implementation of the Robot Composer – not by dis-
cussing code fragments here, but on a more abstract layer.

3.2.1 Rhythm group generation: play-along mode

First, as indicated in the beginning of Section 2.1, the Robot Composer chooses
one of the swing rhythms and an according comping pattern at random from
a set of given patterns. These patterns are subsequently tweaked by adding
in, exchanging, or leaving out percussive elements depending on a probability
distribution to achieve the desired simulation of spontaneous variations.

In this section, we consider the Robot Composer in play-along mode as
an automated backing group for improvisation. The Robot Composer selects
one of the jazzblues patterns from Section 2.2 and generates a rhythm. Again,
there are two cases: either it chooses to play a straight blues using equal-length
quarter notes, or it uses the set of predefined rhythm patterns from Figure 3.1
with a high preference on the standard swing beat (four eighth notes) to ensure

3. Implementation 9

Figure 3.1: All predefined rhythm patterns on two beats

a resulting swing rhythm. Otherwise, it picks one of the patterns uniformly at
random.

Rhythm is mainly determined by two elements: notes and rests. Hence,
the next step is to assign breaks to the selected rhythm pattern by replacing
units of the chosen rhythm pattern. We do so independently for each note
with probability either 25% or 40%, depending on the selected rhythm pattern.
If the standard swing beat is chosen, the probability to replace a note with a
rest is set to be as high as 40%. However, in order to emphasize the rhythmic
variation in the output for rhythm patterns chosen at random, notes are only
replaced at probability 25% in this case. This latter case is also illustrated in
Figure 3.2.

−→

Figure 3.2: An exemplary assignment of rests to the selected rhythm pattern
(left) that occurs with a probability of p = 0.75 · 0.25 · 0.75 · 0.25 · 0.75.

Ultimately, playing the picked jazzblues is very simple as Sonic Pi knows
the structure of musical chords. For harmonic stability, we keep the base note
at one instrument while interchanging the other instruments at random so that
each instrument plays a different melody with the same rhythm using the notes
of the jazzblues chord. Finally, after every iteration of the 12-bar blues pattern,
up to two instruments from the rhythm section are exchanged at random in
order to alter the musical setting slightly over time.

3. Implementation 10

3.2.2 Rhythm group generation: solo mode

In solo mode, the drum pattern is selected equivalently to the play-along mode
as described in the beginning of Section 3.2.1. With lots of similarities to the
previous section, we will explain the following ideas for the solo mode in
comparison to the play-along mode.

Instead of choosing among the predefined jazzblues patterns, however, in
solo mode the Robot Composer generates its own blues harmonics. In play-
along mode this was not done because, unlike a computer generated soloist,
a human player cannot instantly react to changing harmonics. Therefore, the
Robot Composer uses a so-called hidden Markov model [21], that is, a Markov
chain whose current state is not known at all times (hidden). In practice,
this corresponds to the application of a stochastic transition matrix contain-
ing probabilities. As we do not intend to apply any tools concerning ML,
we build up such a static Markov model from a (changing) selection of the
three jazzblues patterns seen in Figure 2.2. We thereby encode the typical jazz
cadences found in these 12-bar blues patterns into our decision matrix. Subse-
quently, the next chord is chosen based on the previous two chords in corre-
lation to the frequency of appearance of this chord sequence in the jazzblues
patterns. The only manual adaption here was to limit the probability of re-
playing the same chord over and over again, that is, after it was selected twice
in a row already.

At this point, the only other difference regarding the rhythm section be-
tween the two modes is that solo mode (without the option --experimental)
only plays the straight blues in order to obtain better rhythmic compatibility
with a generated soloist (see Section 3.2.3). This helps to avoid rhythmic chaos
that may arise due to the current lack of a direct link between the generated
rhythms.

3.2.3 Soloist generation

On top of the generated rhythm group, the Robot Composer has to produce a
melodic leading voice that harmonizes with the backing group. Therefore, it
picks a soloist among the more dominant instruments (e.g. excluding muted
trumpet) and generates a melodic phrase using the minor blues scale. We have
discussed in Section 2.3 that it is suited for this purpose and it is available in
Sonic Pi starting from version 2.11.

To avoid disharmonies, we start and end the generated phrase with the
ground note and the fifth, respectively. In between, the notes are mostly chosen
at random from the blues scale with some minor limitations: during each half
bar (2 beats), the selected notes are restricted to be within a fifth of the last
played note before this half bar. This still leaves more than an octave of range,

3. Implementation 11

whereas in practice, it seems to be enough to enforce a melodic output to be
generated. We assume that this comes from the fact that the intersection of the
blues scale with this interval is only a low number of notes between 7 and 9.
Other than that, only the blue note receives special treatment so that it always
gets resolved in the next note, hence, avoiding disharmonies as illustrated in
Section 2.3.

For the rhythm of the soloist we reuse the exact same idea as above: we
select the standard swing beat with higher preference than all other rhythm
patterns from Figure 3.1 and replace some of the notes with rests. Last, similar
as for the rhythm group, the soloist is exchanged at random every 12 bars;
again chosen from the set of more dominantly sounding instruments.

3.2.4 Tweaking the sound

In order to tweak the resulting sound further, we have explored and partly
incorporated several ideas. First, we introduced small breaks of 0.25 beats in
between any two consecutive notes of the soloist as any human player could
not produce arbitrarily small gaps in practice. This yields a more natural feel-
ing when listening to the Robot Composer. For the same purpose, we slightly
randomized the times when unisonous accompanying players hit their notes,
so that chords sound less mechanical. Lastly, adding some dynamics by means
of changing sound volumes based on randomization completes the current set
of articulation features. While these ideas only seem to impose minor changes
to the program, some of these were already harder to implement than ex-
pected, for example, conflicting with Sonic Pi’s internal thread timing protec-
tion. However, the resulting musical effects are significantly enhanced which
makes it well worth experimenting with these attributes.

Naturally, not all of our ideas allowed to produce desirable results. For
example, generating fill-in patterns for the rhythm group using the pentatonic
scale (= blues scale without the blue note) led to rather uncoordinated and
chaotic pieces being produced. Similarly, adding randomized halftone modu-
lations for the chord-based fill-ins, which can frequently be found in common
jazz literature, seems to require a thoughtful underlying structure in order to
yield pleasant harmonics. Altogether, tweaking the sound appears to mainly
involve balancing randomization and control with regard to a (preferably in-
formed) selection of musical parameters.

3.3 Capabilities and limitations of the Robot Composer

With all its features presented above, the Robot Composer manages to produce
countless pieces of music, each of which creates its unique feeling through the

3. Implementation 12

combination of the drum pattern, tempo, rhythms and harmonies. While it is
already capable of producing pieces that can wholeheartedly be called music,
it still comes with a few issues.

First, all of its created pieces lack the articulation performed by musicians
on every single note and, in particular, the sound when initiating a new note
on an actual instrument due to technical limitations arising from the use of
recorded sound samples. To us, this seems to be one of the major problems
regarding the produced musical quality. Having said that, we cannot specify
clear opportunities for improvement here while one may, however, observe that
these features are not so widely present for some instruments or in some types
of music other than jazz. This could render the problem at hand obsolete for
other use cases (consider the example from [22]).

Furthermore, the Robot Composer currently uses a selection of three jazz-
blues patterns. While this allows beginners to quickly adapt to the easily
distinguishable harmonies, it also provides very limited input for the hidden
Markov model that is used to produce the backing harmonies in solo mode. In
addition, experienced soloists might prefer a greater variety of jazzblues pat-
terns for play along. From a technical point of view, adding further jazzblues
patterns is a simple task, while musically, we cannot predetermine the result-
ing behavior of the Robot Composer so easily.

Regarding the melody generation of the soloist we have achieved surpris-
ingly good results based on random note selection with only few imposed se-
lection rules (refer to Section 3.2.3). A potentially efficient step of improvement
might consider using another hidden Markov model to generate the melody
which seems to be the standard approach for melody generation [23, 21]. This
Markov model may be constructed either by using ML or, somewhat more
complex than before, by hand.

Finally, by default, the Robot Composer is limited to an accompanying
straight blues in solo mode (see Section 3.2.2). However, this is not true with
the --experimental option, but the rhythms of the soloist and the backing
group might not fit well together because they are currently selected indepen-
dently. In order to improve this combination, one might attempt to choose a
global rhythm for each (half) bar or find some other suitable direct link be-
tween these rhythms. Technically, this global rhythm could be implemented in
the form of a singleton object that is accessible from all threads at any time.

Chapter 4

Conclusion

Is the Robot Composer usable as an automatic backing group for play along?
— Yes it is! While the generated soloist still requires some refinements to
compete with international artists, we have succeeded to create an easy-to-
use tool that allows to practice for jam sessions without the need for other
players to accompany the soloist. Evidently, two soloists could also share the
joy and perform together using a “call and response” scheme. Hence, despite all
problems during the implementation and with limited time and resources, the
outcome of this project suggests that music theory is an efficient and suitable
starting point to build up music generation software.

Unlike ML techniques, the Robot Composer not only rearranges/reuses
learned patterns, but may actually produce completely new musical ideas.
Furthermore, ML does not allow to deduce general musical ideas that easily,
while non-ML software could clearly exhibit what restrictions/rules do yield
melodious outcomes. However, considering the high amount of randomiza-
tion used throughout the music generation process, we may doubt that there
is a high probability of generating a true musical masterpiece. Also, without
performing an in-depth comparison study, the directly comparable ML tools
appear to produce more appealing results for now.

Ultimately, concerning Sonic Pi, Section 3.1 allows us to conclude that it
may be an appropriate interface for children to learn programming in a play-
ful way, but should currently not be relied on in a professional context: at times
it feels inflexible to work with, does not come with a suited development envi-
ronment and fundamental bugs do not necessarily get resolved in acceptable
time even after discovery.

13

Bibliography

[1] Kathiresan, T.: Automatic Melody Generation. Master’s thesis, KTH Royal
Institute of Technology Stockholm (2015)

[2] Povel, D.J., et al.: Melody generator: A device for algorithmic music con-
struction. Journal of Software Engineering and Applications 3(07) (2010)

[3] Website: Henon Map Melody Generator.
http://henon.sapp.org/

Accessed: 22.09.2016.

[4] Keller, B.: Impro-Visor.
https://www.cs.hmc.edu/~keller/jazz/improvisor/

Accessed: 22.09.2016.

[5] Rinchiera, S., Nagler, D., Davison, J., Karunaratne, C.: Youtube: Intelligent
Jazz Improvisation Generation using Markov Chains.
https://www.youtube.com/watch?v=zploY043Gx8

Accessed: 23.09.2016.

[6] Youtube: Computer-Generated Jazz Improvisation.
https://www.youtube.com/watch?v=Cbb08ifTzUk

Accessed: 23.09.2016.

[7] Temperley, D., Sleator, D.: Melisma Stochastic Melody Generator.
http://www.link.cs.cmu.edu/melody-generator/

Accessed: 23.09.2016.

[8] Beland, M.: Youtube: Drum Lesson: Jazz Drumming.
https://www.youtube.com/watch?v=0f0xIjvML_Q

Accessed: 23.09.2016.

[9] Xepoleas, J.: Youtube: Jazz Snare Drum Comping Patterns #1 - Online
Jazz Drum Lesson with John X.
https://www.youtube.com/watch?v=Yet9KPR7wfw

Accessed: 23.09.2016.

[10] Thomas, P.: Taming the Saxophone: Arranging for Rhythm Section.
https://tamingthesaxophone.com/jazz-piano-guitar

Accessed: 24.09.2016.

14

http://henon.sapp.org/
https://www.cs.hmc.edu/~keller/jazz/improvisor/
https://www.youtube.com/watch?v=zploY043Gx8
https://www.youtube.com/watch?v=Cbb08ifTzUk
http://www.link.cs.cmu.edu/melody-generator/
https://www.youtube.com/watch?v=0f0xIjvML_Q
https://www.youtube.com/watch?v=Yet9KPR7wfw
https://tamingthesaxophone.com/jazz-piano-guitar

Bibliography 15

[11] Michalkow, M.: FreeDrumLessons: Basic Jazz Drum Pattern.
http://www.freedrumlessons.com/drum-lessons/

basic-jazz-pattern.php

Accessed: 26.09.2016.

[12] Musicradar: How to program a jazz drum beat in MIDI.
http://www.musicradar.com/tuition/tech/

how-to-program-a-jazz-drum-beat-in-midi-582172

Accessed: 26.09.2016.

[13] Wikipedia entry: Comping.
https://en.wikipedia.org/wiki/Comping

Accessed: 20.02.2017.

[14] Marchand, U., Peeters, G.: Swing Ratio Estimation. In: Proceedings of
the 18th International Conference on Digital Audio Effects. (2015) pages
423 – 428

[15] Weitzmann, B.: Per Anhalter durch das Real Book - Part II.
http://www.justchords.de/bass/bwfiles/jazzblues.html

Accessed: 11.01.2017.

[16] Wikipedia entry: Jazzblues.
https://de.wikipedia.org/wiki/Jazzblues

Accessed: 11.01.2017.

[17] Wikipedia entry: Tritone.
https://en.wikipedia.org/wiki/Tritone

Accessed: 03.03.2017.

[18] Sam Aaron: Sonic Pi – The Live Coding Synth for Everyone.
http://www.rubydoc.info/github/samaaron/sonic-pi/

Accessed: 11.11.2016.

[19] Joseph Wilk: [Bug] Maximum limit on file size.
https://github.com/samaaron/sonic-pi/issues/146

Accessed: 18.01.2017.

[20] Wikipedia entry: Frequenzen der gleichstufigen Stimmung.
https://de.wikipedia.org/wiki/Frequenzen_der_gleichstufigen_

Stimmung

Accessed: 12.01.2017.

[21] Victor, J.: Jazz Melody Generation and Recognition. (2012)

[22] Newman, R.: Adding a new sample based flute voice for Sonic Pi.
https://rbnrpi.wordpress.com/project-list/

adding-a-new-sample-based-flute-voice-for-sonic-pi/

Accessed: 25.10.2016.

http://www.freedrumlessons.com/drum-lessons/basic-jazz-pattern.php
http://www.freedrumlessons.com/drum-lessons/basic-jazz-pattern.php
http://www.musicradar.com/tuition/tech/how-to-program-a-jazz-drum-beat-in-midi-582172
http://www.musicradar.com/tuition/tech/how-to-program-a-jazz-drum-beat-in-midi-582172
https://en.wikipedia.org/wiki/Comping
http://www.justchords.de/bass/bwfiles/jazzblues.html
https://de.wikipedia.org/wiki/Jazzblues
https://en.wikipedia.org/wiki/Tritone
http://www.rubydoc.info/github/samaaron/sonic-pi/
https://github.com/samaaron/sonic-pi/issues/146
https://de.wikipedia.org/wiki/Frequenzen_der_gleichstufigen_Stimmung
https://de.wikipedia.org/wiki/Frequenzen_der_gleichstufigen_Stimmung
https://rbnrpi.wordpress.com/project-list/adding-a-new-sample-based-flute-voice-for-sonic-pi/
https://rbnrpi.wordpress.com/project-list/adding-a-new-sample-based-flute-voice-for-sonic-pi/

Bibliography 16

[23] Wikipedia entry: Pop music automation.
https://en.wikipedia.org/wiki/Pop_music_automation

Accessed: 23.02.2017.

https://en.wikipedia.org/wiki/Pop_music_automation

Appendix A

Appendix

Figure A.1: The --help output of the robot-composer invocation script

A-1

	Abstract
	1 Introduction
	2 Background from music theory
	2.1 Rhythm and percussion selection
	2.2 The jazzblues patterns
	2.3 The minor blues scale

	3 Implementation
	3.1 Technical framework
	3.1.1 Installation and usage of Sonic Pi
	3.1.2 Setup a development environment
	3.1.3 Finding suitable instrument samples

	3.2 Musical concepts
	3.2.1 Rhythm group generation: play-along mode
	3.2.2 Rhythm group generation: solo mode
	3.2.3 Soloist generation
	3.2.4 Tweaking the sound

	3.3 Capabilities and limitations of the Robot Composer

	4 Conclusion
	Bibliography
	A Appendix

