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Abstract

This paper investigates important issues specific to the usage of Solid-State
Drives (SSDs). It focuses on how to simultaneously optimize wear-leveling and
write amplification while considering the over-provisioning factors. Subsequently,
we propose a new approach for the computation of a score necessary for block re-
claims. Furthermore, we compare the results of Desnoyers (2012) [1] to real-life
data sets. This leads to our proposal for a new model of write traffic.
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Chapter 1

Problem Statement

1.1 Description

SSDs are becoming the go-to hardware for storage. Unlike Hard Disk Drives, they
raise particular issues due to the combination of their NAND flash architecture,
where writing is page-wise but deleting is block-wise, and the fact that writing
to SSD cells causes deterioration.

More specifically, an SSD is composed of m blocks, each one of them con-
sisting of n pages. The pages are the smallest unit of datum. A block usually
contains a mix of valid pages (relevant data) and invalid pages (redundant data).

When the SSD is full, meaning that no blocks have free pages available, it
is impossible to delete only the subset of invalid pages on a block. The block
needs to be deleted in its entirety, due to the architectural constraints of NAND
flash memory. The valid pages are copied to a buffer and then rewritten on the
SSD after the block has been wiped clean. The rewriting of valid pages increases
write amplification, which is the ratio of pages written on the SSD to the amount
of page writes issued by the operating system. Thus the total amount of writes
increases.

As writing on the SSD causes deterioration, the process of selecting a block
for reclaim is not a simple one. It is important not only to minimize the write
amplification, which means selecting the block with the smallest amount of valid
pages that will need to be rewritten, but also to optimize the wear-leveling,
which means using all m blocks as evenly as possible. For example, if block
m1 is systematically the block containing the smallest number of valid pages
compared to all the other blocks, for wear-leveling reasons, it still should not
necessarily be chosen systematically for reclaim.

Also, the over-provisioning factor from 7 to 10% incorporated by manufac-
tures leaves room to carry out diverse subdivision strategies. By over-provisioning,
the operating system is shown less space available than there physically is on the
SSD. The aim is to give more room to the SSD to manage the blocks in order to
obtain blocks as homogeneous as possible in terms of data temperature, with the
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1. Problem Statement 2

effect of minimizing the write amplification and optimizing wear-leveling when
reclaiming blocks.

Thus, the choice of the block to be reclaimed is crucial and difficult as it has
to optimize both wear-leveling and write amplification. A widespread practice
consists in assigning scores to the blocks, based on a variety of parameters.

In this paper, we will review various practices and existing scores for different
traces and how to improve the utilization of the over-provisioning factor. We will
also propose a new score and a new type of write traffic model.

1.2 Technical Terms

In order to avoid confusion and in effort to provide a consistent notation, the
most important terminology is listed below.

Page: A page is the smallest unit of a datum. In this work, it consists of 512
bytes.

Block : In an SSD, pages are written on bigger units, called blocks. The
amount of blocks in the SSD is denoted as m. The assumption is made that
a block consists of 512 pages [2], thus setting n = 512. Desnoyers uses the
notation Np for the amount of pages per block.

Reclaim: When the SSD is full, a block must be chosen to be reused. This
process is called a block reclaim and exists due to the fact that only block-wise
deletion is possible in NAND flash devices.

Write Amplification (denoted as A) happens when a block is reclaimed and
still has valid pages on it. In an SSD, these pages are copied to a buffer before
being rewritten on the SSD after the block has been wiped clean. Thus, a datum
which the Operating System required to save once can de facto be written several
times on the drive. The perfect algorithm would keep the write amplification as
close to 1 as possible, which is the main goal alongside wear-leveling.

Wear-Leveling is the other goal the perfect algorithm should achieve on an
SSD. It consists of using the drive evenly.

Over-Provisioning Factor is the ratio between how many pages fit on the
SSD and the biggest address the Operating System is allowed to write to. It is
denoted as α = m·n

q .



Chapter 2

Current Practice

Essentially, we can model an SSD as a non-linear function with the input as a
vector containing the write addresses and output being wear-leveling, inferred
from the variance of the number of reclaims of each block, and the write am-
plification generated, inferred from the total amount of reclaims. We want to
minimize both outputs and thus alter a process in the SSD: the score computa-
tion. Depending on the input vector, the manner of computing a certain score
can lead to the goal of minimizing wear-leveling and/or write amplification or
do the opposite; in heuristics, there is always a way to make a score perform
poorly or excellently by changing the input vector. Below follows a review of the
existing scores.

2.1 Scores

Once the SSD has been filled up, a method needs to be determined to choose
which block to reclaim. Apart from LRU, the common approach is to choose the
block with the highest score, delete all its content while copying the valid pages
to a buffer and then writing them back to the same block. Thus, new pages can
be written on the SSD until full and the process reiterates. This section discusses
several possible computations of scores.

2.1.1 LRU

One intuitive way to choose a block is to do it Round-Robin-style, meaning that
for the l-th reclaim, block l mod m is chosen (m is the amount of blocks on
the SSD). LRU, which stands for Least Recently Used, does exactly that. It is
easy to implement and good for wear-leveling, but can perform poorly for write
amplification.

3



2. Current Practice 4

2.1.2 GreedyVariance

Similar to LRU, this score minimizes the wear-leveling without taking write
amplification into account. One main difference is its flexibility as there is no
strict Round Robin:

score =
1

lifecycles
(2.1)

lifecycles stands for how many times a block has been reclaimed.

2.1.3 GreedyReclaim

In order to minimize write amplification, the intuitive answer is to choose the
block with as many invalid pages on it as possible. The score may perform badly
for wear-leveling.

score = invalid (2.2)

invalid denotes the amount of invalid pages on a block; valid is the amount of
valid pages on a block.

2.1.4 CAT

A famous score that minimizes both wear-leveling and write amplification is
the Cost-Age-Times score computation proposed by Chiang [3]. Viewed as the
state-of-the-art score, it is computed in the following manner:

score =
invalid · log2(age)

valid · lifecycles
(2.3)

Every time a block is reclaimed, a global reclaim counter is incremented and its
value is marked on the reclaimed block. This means essentially that every block
has a time stamp. The difference between this value and the current reclaim
counter is the age of the block.

2.1.5 CICL

The idea in CICL [4] is to have a function determining if the policy should focus
more on wear-leveling or write amplification depending on the current state of
the flash device. The function is computed as follows

λ =
maxerasures − minerasures

maxerasures
(2.4)

Therefore, 0 ≤ λ ≤ 1. It is important to remember that λ is a function of
the whole SSD, opposed to the score which is assigned to individual blocks.
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maxerasures is the highest lifecycles value found on the entire SSD, minerasures
the lowest. Then the score is computed by setting

score = (1 − λ) · valid

valid + invalid
+ λ · lifecycles

1 + maxerasures
(2.5)

Caveat: Computed this way, the block with the lowest score is eligible for reclaim,
as opposed to the other scores.

2.2 Over-Provisioning Factors

Apart from the scores, it is crucial to consider the traffic of address writes on
an SSD. In real-life data sets, addresses written in the SSD have different prob-
abilities and distributions. One common approach to categorize these writes is
to subdivide them by their overall occurrences. If a page is written only once on
the SSD, it is said to be static.

Then there is cold and hot data, which are subdivided arbitrarily. For this
work, the assumption is made that there is a threshold t for every data set. If
the address occurs less than t and more than once in the set, it is cold; else it is
hot. t is computed by taking the square root of the arithmetic mean of the top
1% highest occurring address counts.

A sensible idea is then to subdivide the SSD as well and adapt the relative
over-provisioning factors of the static, cold and hot pool denoted as αs, αc and
αh respectively. αs should be set to 1 as static data can be stored on minimal
space. Dealing with the other two factors, however, is not trivial. One possible
way is to assume uniform distribution in the respective hot and cold pools, like
Desnoyers did.

2.2.1 Desnoyers (2012)

In his paper [1], Desnoyers derives the mathematical tool based on simplifica-
tions (uniform write distribution using GreedyReclaim) to find the ideal over-
provisioning factors for hot and cold data pools. Defining X0 as the lowest
amount of valid pages on blocks eligible for reclaim and Np the amount of pages
on a block, write amplification should be

A =
Np

Np − (X0 − 1)
(2.6)

with

X0 =
1

2
− 2Np

α
W

(
−1(1 +

1

2Np
)αe

−
(
1+ 1

2Np

)
α
)

(2.7)
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where W (x) is the Lambert function. Now setting f as the fraction of the
address space occupied by hot pages and r as the fraction of the rate of hot pages
occurring, a fraction p (0 ≤ p ≤ 1) can be found numerically by minimizing

Atotal = r ·A(αh) + (1 − r) ·A(αc) (2.8)

with

αh =
p(α− 1) + f

f
(2.9)

αc =
(1 − p)(α− 1) + (1 − f)

(1 − f)
(2.10)



Chapter 3

Implementation

3.1 SSD

In order to visualize and analyze the specificity of an SSD, a Matlab model has
been developed and implemented. As standards in the industry are kept secret, it
is difficult to evaluate the accuracy of the model in comparison with cutting edge
technology, but fundamentally the model simulates a fully functioning NAND
flash device where a state expressing the validity of the hypothetical datum is
kept instead of the datum itself.

The actual SSD is a matrix of m rows and n columns, where m equals the
amount of blocks and n the amount of pages per block. On initialization, all
entries are set to 0, standing for free. The SSD is filled block-wise with incoming
pages. To keep track of the location of these pages, a mapping matrix of q rows
and 2 columns is initialized, where q is the highest address made available to the
Operating System. Setting the address as the index, the first column denotes
the block and the second column the page on which the data of the address has
been written. At every incoming write a 1 standing for valid is set on a formerly
free entry of the SSD matrix. It is checked through the mapping matrix if the
address has already been written on the SSD. If yes, the relevant entry on the
SSD is invalidated by setting it to −1 before updating the address in the mapping
matrix.

Once the SSD is full (no entries are 0), a score vector of the size m is generated
in order to assign a score to each block. On the next incoming address, the model
chooses the block with the highest score which is not full with valid pages only. It
proceeds to set all invalid entries in the SSD matrix to free. It then increments
the respective entry in a life cycle vector, which also has the size m as only
block-wise deleting is possible. It updates the block’s score and fills it up with
new incoming pages. This procedure allows not having to update the mapping
matrix. The program then reiterates until all the write instructions have been
executed. Introducing metric vectors of the size m like the life cycle vector is
necessary to compute the scores.

7



3. Implementation 8

3.2 Traces

In this work, two type of traces are examined.

On the one hand, traces from a Microsoft data center [5] are treated to fit
the format read by the SSD model. The raw data has the form

[Time Stamp, Host Name, Disk Number, Type, Offset, Size, Response Time]

and is saved in a Comma Separated Value file. Every entry is filtered accord-
ing to its respective disk; stripped off its time stamp, host name and response
time; offset and size which were given in bytes are converted to pages consisting of
512 bytes. Then the individual page write is generated by adding as many pages
to the offset as there are available in size. Eventually, a mapping takes place in
order to minimize the address span, due to the fact that it is not contiguous.

On the other hand, for research purposes, we also generated synthetic traces.
Two particular examples are uniform writes, used in literature, and linearly
slanted writes, subsequently discussed.



Chapter 4

Experimental Results

4.1 SSD Subdivision

The over-provisioning factors computed for the CAMRESHMSA01-lvm1 (short: 011)
Microsoft Data set using Desnoyers’ findings and running the SSD model leads
to a very good result. Not only are the over-provisioning factors close to the
actual optimum for GreedyReclaim, they also coincide for all other scores. In
order to find the best subdivision, a brute force algorithm has simulated all
possible subdivisions. Its result can be seen in figure 4.1. Table 4.1 also
shows that, in case of GreedyReclaim, the Desnoyers subdivision generates only
2864 + 1302 = 4166 total reclaims against 2584 + 5206 = 7790 for standard
subdivision and 5680 for no subdivision. Noteworthy: In this case, no subdivision
is better than a standard subdivision.

However, for the Data set CAMRESHMSA03-lvm1.csv (short: 031) the results
are less than optimal. Interestingly, the graph generated by the algorithm is
quite different. For this data set, in the case of α = 1.07, Desnoyers tells us
to choose 354 hot blocks. Also, no subdivision leads to 14232 reclaims in total,
compared to Desnoyers’ 29581+99 = 29680 as seen in Table 4.1 and the optimal
15683 found by brute force in figure 4.2, meaning that no subdivision is the best
option to minimize reclaims.

This counter-intuitive result can be interpreted as a poor choice for our as-
sumption of hot and cold subdivision regarding the second data set. The point
is that the hot and cold dichotomy is arbitrary. Depending on the data set, it
will be necessary to create several temperature pools to approximate uniformity
in the respective traffic pool.

4.1.1 Linslant: A new approach

In uniform traffic, it is assumed that each of i pages is written j times. In order
to approximate real-life data, the common approach is to do a superposition of
uniform traffic, usually with just two pools (hot and cold).

9
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Figure 4.1: Subdivisions with GreedyReclaim for CAMRESHMSA01-lvm1. On the
x-axis, the number of blocks conceded to the hot pool is displayed; on the y-axis,
the amount of total reclaims is shown. Desnoyers’ subdivision works well as he
tells to assign 20 blocks to the hot pool, thus minimizing the total amount of
reclaims.

A quite intuitive opposition to uniform traffic can be the following: assume
traffic, where address a occurs ja times, ja being unique to the address. This
means that the uniform model would need as many temperature pools as occur-
ring addresses. To generalize, think of equally big pools of addresses occurring
jp times, meaning we have uniform traffic in each pool. Now let the the amount
of pools go to infinity. This model has been engineered during this work and
called linearly slanted or short: Linslant traffic.

In order to visualize the nature of the data sets, a Matlab script called Spec-
tralAnalysis has been developed and implemented. It generates a plot where
the x axis represents the number of times an address has been found in a data
set, and the y axis denotes the amount of addresses written the same number
of times. In this representation, uniform traffic is a spike, and Linslant traffic a
constant.

A possible interpretation is to say that perfectly uniform traffic is a scaled
Gaussian distribution with mean j and variance 0. But when the variance in
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Figure 4.2: Subdivisions with GreedyReclaim for CAMRESHMSA03-lvm1. The x
and y-axis are the same as in figure 4.1. However, Desnoyers tells us to assign
354 blocks to the hot pool, which is not the best subdivision, as deductible from
this figure. More importantly: No subdivision yields a smaller amount of total
reclaims.

real-life data sets exceeds a certain value, it may be a better idea to approximate
it with a scaled Gaussian distribution with infinite variance, which would be
Linslant.

4.2 Score Evaluation

4.2.1 Dynamically Operating Greedy

A new score has been engineered in the scope of this work. The insight relies on
the fact that initially, wear-leveling should not matter as the flash device is in
the early stage of its life and thus should not fail. However, as blocks approach
the end of their lifetime due to reclaims, wear-leveling becomes more and more
important. First a coefficient is computed in order to determine the relative age
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of the block

δ =
lifecycles

lifeexp
(4.1)

And then the score is computed as

score =
(1 − δ) · invalid

δ · lifecycles
(4.2)

which is the combination of GreedyVariance and Greedyreclaim weighted with
δ. Hence the name, Dynamically Operating Greedy, or short: DOG.
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Figure 4.3: The SpectralAnalysis plot for synthetically generated uniform traffic.
It indicates how many addresses (y-axis) have been written how many times (x-
axis). In the Gaussian interpretation: the smaller the variance, the more ideal
the uniformity.

4.3 Overview of simulation runs

Table 4.1 contains the findings for all the simulations. For each score it shows
the results under various conditions.

The new DOG score and the state-of-the art CAT score perform equally
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Figure 4.4: The SpectralAnalysis plot for synthetically generated Linslant traffic.
Thes axis denote the same as in figure 4.3. In the Gaussian interpretation: the
bigger the variance, the more ideal the Linslant.

well for uniform traffic. For Linslant, however, DOG dominates both in terms
of variance and reclaims. Considering the Microsoft data sets, the weakness of
CAT shows through: it performs very poorly under mixed traffic conditions.
By contrast, DOG is very efficient, sometimes even dominating GreedyReclaim.
CICL is a worthy opponent of DOG, usually having a lower variance. However,
this could change for bigger data sets where DOG would be change to a more
variance-reducing behavior as the SSD would be more worn out. GreedyVariance
does a very good job for wear-leveling, however, its total amount of reclaims is
far from what is achievable with DOG or GreedyReclaim.
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In order to analyze which is the best score in all the conditions, table 4.1
has been summarized in table 4.2.The column shows how many times a specific
score is dominated by each of the other scores. The rows show how many times a
specific score dominates the other scores. A score dominates another score when
both of its results (total number of reclaims and variance of lifecycles of the
blocks) are lower than the results of the other score. We can see three important
results:

1. The worst score is the CAT score as it is dominated in 51 instances by the
other scores and dominates only in one instance another score.

2. CICL and GreedyReclaim dominate roughly as much as they are domi-
nated.

3. GreedyVariance and DOG are never or very rarely dominated. However,
DOG outperforms GreedyVariance as it dominates the scores in 29 cases
against only 18 cases for GreedyVariance, roughly 40% more.

This illustrates again the outstanding performance of the DOG score.

CAT DOG CICL GRec GVar Overall dominating

CAT - 0 1 0 0 1
DOG 16 - 3 10 0 29
CICL 15 1 - 2 0 18
GreedyReclaim 11 0 2 - 0 13
GreedyVariance 9 1 7 1 - 18

Overall dominated 51 2 13 13 0

Table 4.2: Summary of scores



Chapter 5

Conclusion

The simple fact that writing is page-wise, but deleting block-wise, generates
a very complex problem. In an attempt to minimize both variance and total
number of reclaims, or in other words to wear out the SSD evenly while keeping
write amplification low, several simplifying assumptions have been made in the
literature (uniform hot and cold traffic).

We show that contrasting uniform traffic with Linslant traffic can yield in-
teresting insights; we also propose DOG, a dynamic score computation.

Two essential findings have been made, both based on heuristics:

1. Dividing an SSD into a static and dynamic part can yield a better re-
sult than any possible subdivision using static, cold and hot. This is due
to the fact that Linslant traffic can outweigh the hot-cold uniform traffic
approach;

2. Under dynamic real-life conditions, our new DOG score outperforms both
CICL and CAT scores.

Based on this paper, future research could investigate the nature of Linslant
traffic in an attempt to analytically derive its characteristics like Desnoyers did
with uniform traffic. Also, the process on how to incorporate Linslant data
alongside hot and cold data could be explored. Investigating DOG under different
models would yield better insights into its suitability for different access patterns.
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