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Abstract

Recent developments in mixed-criticality systems have lead to the use of multi-
core platforms for cost and performance reasons. These multi-core platforms
bring a number of challenges into the mixed-criticality systems. One of these
challenges is thermal interference between tasks of different criticality levels. As
modern CPUs are thermally constrained, they have to be slowed- or shut-down
when they approach a critical temperature. If a low critical task causes the CPU
to slow down then timing guarantees for high critical tasks are difficult to main-
tain. Dr. Rehan Ahmed and Dr. Pengcheng Huang have developped a server
based scheduling scheme called “Thermal Isolation Server” [12] which is taking
these thermal interferences into account in its scheduling strategy. The concept
of the TI-Server has been proven theoretically. The goal of this thesis is to create
an implementation of the TI-Server and to evaluate the TI-Server scheme on a
4 core platform. The evaluation framework is based on an existing scheduler
that is running on top of a Linux kernel. This scheduler is called “Hierarchical
Scheduling Framework” [13]. The extensions done to implement the TI-Server
make use of existing HSF structures and add new functionalities that are com-
patible to the existing ones. In addition, several monitoring functions have been
added to HSF in order to evaluate the TI-Server. The monitoring functions
include thermal monitoring of the temperatures of all cores and the recording
of traces for schedulers and servers. These traces record the execution state of
the threads. Several measures are taken in order to give the testing platform
the best possible real-time capabilities. Verification tests have been performed
to ensure a correct implementation of the TI-Server. Thermal measurements
were performed on the test platform to calibrate the CPU thermal model. This
model is used in the TI-Server theory. Finally experiments were run to evaluate
the TI-Server on the 4 core platform. These experiments clearly demonstrated
the effectiveness of the TI-Server concept to provide thermal guarantees on the
mixed-criticality system.
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Chapter 1

Introduction

1.1 Motivation

In recent years the performance requirements of real-time applications, in do-
mains such as automotive or aerospace, have increased significantly. This has
lead to the transition from single core systems to multi-core systems. In mixed-
criticality systems, multi-core platforms bring advantages, but they also intro-
duce some challenges. The advantages of a multi-core system are performance
increase and cost, weight and energy consumption reduction. On the other hand
multi-core system challenges include the estimation of worst case execution time
(WCET) of individual tasks and thermal interferences between the different
cores. In this thesis the focus is on thermal interferences. Thermal interfer-
ences occur because modern CPUs are thermally constrained. This means that
if a core exceeds a maximum temperature it has to be slowed down in order to
lower its temperature. Furthermore, a task running on one core not only heats
up the core it is running on, but also all other cores. In mixed critical systems,
the heat-up caused by a low critical task could influence the performance of the
CPU cores running high critical task. In order to cope with these interferences
Dr.Ahmed and Dr.Huang have proposed a server based scheduling called Ther-
mal Isolation Server (TI-Server)[12]. The TI-server is given a thermal budget.
This budget upper-bounds the temperature increase caused by the server load,
i.e. all tasks executed by the server. In the scheduling scheme high critical and
low critical tasks are thermally isolated from each other. This means that the HI
and LO tasks have a thermal budget and within this budget they are isolated.
The budget of the high critical tasks is based on the maximum temperature. The
remaining budget is then left for the low critical tasks and is distributed onto
the TI-Servers.
In this thesis a implementation of TI-Servers is created. Also a evaluation plat-
form is created in order to perform evaluation tests on the TI-Server concept.
This evaluation platform consists of the implementation of the TI-Server itself
and includes several monitoring mechanisms that allow performance evaluation
of the TI-Server . In this thesis a 4 core test platform was used. It is a Lenovo
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1. Introduction 2

Thinkpad T440p consisting of a Intel i7-4700MQ CPU. The implementation
of the evaluation platform is realized through extensions of the “Hierarchical
Scheduling Framework” [13]. The main extensions are the implementation of
the TI-Server and a temperature measuring mechanism. For the evaluation tests
real-time capabilities are added to HSF and to the operating System.

1.2 Related Work

Previous to this thesis the “Hierarchical Scheduling Framework” has been created
as described in[13]. This is a scheduling layer that operates on top of the Linux
kernel, in the user space. HSF is divided into 3 parts:

• The parser reads all scheduler and task configurations. These configura-
tions are specified in a XML file.

• The main part is the Simulation part. It consists of dispatchers that spawn
new job events, of one or more schedulers and of workers that handle the
task executions. For the schedulers a number of different scheduling algo-
rithms are implemented. All these different elements are defined as separate
threads. The scheduling is then done by assigning priorities to the different
threads. In addition to the thread priorities the core on which a thread is
executed can be specified, making HSF multi-core compatible. The under-
lying operating system will schedule the threads of HSF according to their
assigned priorities

• The third part of HSF is the statistics part. In this part a number of
traces are recorded. From these traces metrics such as missed deadlines or
overheads are calculated.

1.3 Overview

The thesis is structured as follows: In chapter 2 the Thermal Isolation Server
is explained in further detail. Chapter 3 introduces the different parts of the
evaluation framework. Chapter 4 describes the implementation of these parts.
Chapter 5 describes the tests that are performed in order to verify the imple-
mentations described in chapter 3 and 4. Chapter 6 presents the evaluation
experiments of TI-Servers and their results run on the 4 core platform. Chapter
7 is a conclusion and short outlook. In appendix A a complete installation guide
of the framework is given. Appendix B gives a detailed description of the classes
that were added to HSF. Appendix C presents how to build a XML simulation
file for the extended HSF, in order to the perform TI-Server tests.



Chapter 2

Thermal Isolation Server

This chapter describes the concept of the TI-Server. The goal of TI-Servers and
their functionalities are explained in a first part. In the second part requirements
for an implementation and evaluation of a TI-Server are presented.

2.1 TI-Server

The Thermal Isolation Server is a server based scheduling scheme that limits
the thermal interferences of applications running on different cores. For this a
TI-Server Si is always executing on one fixed core j, its self core. The TI-Server
Si is then characterized by a thermal budget Λi. Λi is the upper bound system-
wide temperature increase caused by the tasks that are executed on the server Si.
Furthermore the TI-Server is scheduled by a fixed periodic schedule. The server
Si is then characterized by a period Pi and a utilization Ui. This means that the
server executes tasks for ta = Pi ∗Ui it then remains idle during tc = Pi(1−Ui).
During the active time ta of the server task are scheduled according to a Earliest
Deadline First policy. The ratio of Pi and Ui directly influence Λi (for a precise
description of this relation see [12]).

3



2. Thermal Isolation Server 4

Figure 2.1: TI-Server

2.2 Implementation and evaluation requirements

To realize TI-Server, a server has to be created that can be activated and de-
activated. During the active time the sever must be able to schedule its load
according to a EDF scheduler. During the deactivated or idle time tc the self
core has to be idle, meaning that no threads are executed. For proper function-
ing of the TI-Server the implementation must be able to spawn activation events
for the TI-Server at Pi intervals. It must also be able to spawn job events for
the tasks that are under the control of the server. These jobs are then sched-
uled using EDF when TI-Server is active. Furthermore the implementation must
include a mechanism that will deactivate the server after ta, or if there are no
threads left to schedule.

For the evaluation of the TI-Server some monitoring capabilities have to be
implemented. As Λ gives a thermal bound on the temperature increase, it is im-
portant to be able to monitor the temperature of all cores of the system. With
the temperature monitoring, it will be possible to verify whether temperature
increase exceeds Λ or not. In addition to the temperature measuring function, it
is necessary to record the execution traces of servers and tasks. This is needed
to confirm the timing guarantees that are given by the TI-Server. From the
traces should be calculated the server overhead as it influences the optimal Pi Ui

relation. The server overhead is the time that is needed by the server to process
the scheduling scheme.



Chapter 3

Structure of the TI-Server
evaluation framework

In this chapter the prototype of the TI-Server and the evaluation framework are
described. Figure 3.1 is an illustration of the different parts of the evaluation
framework. It consists of 4 components that are running on a test platform. The
main part, the “Scheduler” part, is a Scheduler framework that is running on
top of a Linux kernel. It is based on the “Hierarchical Scheduling Framework”
(HSF [13]). HSF is already multi-core capable, but for the multi-core use of the
TI-Servers a new configuration has to be created, see 4.5. The “LO Scheduler”
consists of the scheduling of the low critical tasks. These tasks are scheduled by
TI-Servers. The proposed design of the TI-Server is described in 3.1. The “HI
Scheduler” consists of all tasks that are classified as high priority tasks. These
tasks are not executed inside a TI-Server, they are executed on a separate core.
On this core an EDF scheduler will be running. This is already implemented in
HSF. The monitoring part is explained in 3.2.2. Temperatures of the cores and
state traces of the different threads are recorded for evaluation purposes. TI-
Servers are used in a real-time environment, therefore it is important to ensure
that the test platform is real-time capable. The measures that are taken to
ensure these capabilities are described in section 3.3.

5



3. Structure of the TI-Server evaluation framework 6

Figure 3.1: Evaluation framework

3.1 Thermal Isolation Server

As seen in chapter 2 the TI-Server S is characterized by a period P and a uti-
lization U. This means that in time P the server is active for a maximum of ta =
PxU per period P and is inactive for tc = Px(1-U) in which the core cools down.
During ta the server will schedule its load according to an EDF schedule. During
the cool-down time the core has to remain idle such that the temperature can
drop. The TI-Server is represented by a state machine that has two states (see
figure 3.3):

• active state: In this state the server schedules its load

• idle state: In this state the server remains inactive. No threads are executed
on the CPU core.

During ta the server has to be in active state and during tc it is in idle state. As
illustrated in 3.3 the server must be able to switch states in both directions.
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Figure 3.2: State description of TI-Server

In this thesis a TI-Server design consisting of 4 different thread types is
proposed. These threads handle the server and its state transitions. The threads
are described below and the procedure is illustrated in figure 3.3:

1. The TI-Server thread itself. This thread schedules the server load when ac-
tive. The thread is in active state when it is not blocked by any semaphores
and when it has active priority, see 3.2.1. For idle state the TI-server has to
be deactivated. This means that the thread itself is blocked by a semaphore
and all its load is deactivated.

2. EDF scheduler : The TI-Server can be interpreted as a hybrid between a
worker and scheduler. The TI-Server, similar to the worker, is activated by
new job events. During its active time the TI-Server acts like a scheduler
thread. A EDF scheduler is thus used for the activation of the TI-server
when a “new period” event arrives. The EDF scheduler also deactivates
the TI-Server, this is done at the moment a “finished period” event is
registered.

3. The Server-TTL is responsible for the transition form active sate to idle
state. At the beginning of the active time a count-down time, time-to-live
(TTL), is set for the Server-TTL by the TI-Server. This TTL corresponds
to ta. Once the TTL is, set the thread sleeps for TTL. When the thread
wakes it registers a “finished period” event at the EDF scheduler, which
will then deactivate the TI-server. After that the Server-TTL will block
itself with a semaphore. This semaphore is released at the same time the
TTL is set.

4. The TIS-Dispatcher : This thread is responsible for the transition from
idle state to active state. At the end of an active time a count-down time,
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cool-down time is set for the TIS-Dispatcher by the EDF scheduler. The
TIS-Dispatcher will then sleep for that time and when it wakes up a “new
period” event is registered at the EDF scheduler. As a consequence of
this the EDF will activate the TI-Server and the active state is reached.
After registering the “new Period” event the TIS-Dispatcher is blocked by
a semaphore. This semaphore will be released by the EDF scheduler at
the same time the TI-Server is deactivated.

In the description of the TI-Server thread it is mentioned that all load has to
be deactivated for idle time. In the original implementation of HSF a thread was
deactivated by setting its priority to inactive priority. If nothing else was running
an idle thread would prevent the inactive thread from executing, because the idle
priority is higher than the inactive priority. In the case of the TI-Server however,
the core has to remain idle during cool-down time. But if no idle thread is used
nothing is blocking the inactive threads from executing. All threads therefore
have to be blocked either by a sleep function or by a semaphore. In ?? the
implementation of this is described in detail.

For the TI-Server mechanism two special cases are possible. In the first case
the TI-Server thread has served all load and there is nothing left to schedule.
In this case the TI-Server will send a signal to the Server-TTL. This signal will
interrupt the sleep function and a “finished period” event will be registered early.
The second special case is if the idle time is up and the TI-Server is activated
even though no load is available. In this case the TI-Server waits on a task to
schedule. The TTL is started at the moment the first job arrives for the TI-
Server. By handling these two cases in this way we maximize the time the server
is able to schedule its load while at the same time still guaranteeing and idle
time of tc.

To complete the implementation necessary for evaluation, it must be possible
to run one TI-Server per core. This will be realized by using the multi-core
ability of HSF. One TI-Server is created per core during initialization see 4.5.
This means that in the 4 testing core platform a maximum 4 TI-Servers, one
for each core are running. In the evaluation experiments in 6 only 2 TI-Servers
are needed, one core is reserved for the HI-Scheduler and one core is used for
temperature measurement.
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3.2 HSF Extensions

In this sections the extensions to the “Hierarchical Scheduling Framework” are
described. First the thread priorities of all used threads are presented. Then the
new monitoring functionalities, temperature measurement, jitter measurement
as well as trace recording are described.

3.2.1 Thread priorities

HSF consists of a number of different threads. These threads receive different
priorities such that they are scheduled correctly by the operating system. To
prevent the operating system from preempting HSF these priorities have to be
as high as possible. The highest priority thread is set to priority 98, see table
4.4. The highest priority thread is the main thread, it initializes and terminates
the test-run. The next highest threads are the schedulers. HSF is built on a
hierarchy of schedulers and thus each hierarchy level has its own priority. Below
the scheduler levels are the dispatchers. The dispatchers are threads that create
new events that are then scheduled by schedulers or servers. Because of that,
dispatchers have to have a higher priority than workers. Active servers have the
priority level directly below that of the dispatchers. Servers are a combination of
workers and schedulers in the sense that they are activated through a dispatcher
and during their active time they act like a scheduler. Because they are activated
by dispatchers their priority has to be lower than that of the dispatchers. As
they schedule workers, their priority level has to be higher than that of the
workers. Next is the priority level of active workers. Below that remain the
priority of the idle thread and finally the priority of all deactivated threads, the
inactive priority. As a note, the idle thread cannot be used in the TI-Server
implementation as we need timeslots in which the CPU core is completely idle.
Thus the idle priority is not needed for the evaluation framework. In the original
HSF idle threads blocked the inactive threads from executing, in the TI-server
implementation this has been replaced by the use of semaphores and signals, see
4.6.

3.2.2 Temperature monitoring

Thermal Isolation Server try to give thermal guarantees on the system. To
evaluate its effectiveness it is essential to be able to monitor the temperature
of each individual core of the test platform. The temperatures are read out
from model specific registers (msr). The resolution of these values is of 1 degree
Celsius. The temperature monitoring data is also needed as calibration data for
thermal modelling of the test platform (see 6.1)
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Priority Level Thread Type

98 Highest Priority main thread

98-1-Level = Scheduler

98-1-maxLevel-1 = disp prio Dispatcher

disp prio -1 Server

disp prio -2 active worker

disp prio -3 idle thread

disp prio -4 inactive worker server or
scheduler

Table 3.1: Thread Priorities

3.2.3 Jitter measurement

In 3.3 the importance of small latencies in real-time applications is explained.
Furthermore the steps taken in order to decrease these latencies on the test
platform are described. To check the success of these measures a jitter measure-
ment system has been implemented. This system will measure the time between
the activation of a worker and the actual execution start of that worker.In our
implementation the jitter can be measured under certain settings (see 4.2).

3.2.4 Traces and overhead calculation

For the evaluation of the TI-Server it is important to verify the timing guarantees
that are given by the server. Therefore a number of traces have to be recorded.
Activity traces for schedulers, servers and workers have to be recorded. For all
three thread type, it is necessary to record the activation and deactivation time.
The execution-start and -end of the threads are also recorded. From these traces
scheduling overheads are calculated and timing constraints can be verified.

3.3 Enhancing real time capabilities

To ensure that the testing platform is real-time capable we have to ensure that
the jitter between the scheduled and actual start time is as small as possible. To
achieve this two main measures are taken:
The first measure is to install the Preempt rt patch for the Linux kernel (see
3.3.1).
The second measure is to implement memory page locking in HSF. (see 3.3.2)
In addition to these two measures, hyper-threading and power management are
disabled in the BIOS of the system. These two options may increase latencies
and are therefore unsuited for real time applications.
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3.3.1 Preempt rt

In real-time applications the latency between triggering an event and the actual
start time should be minimized. To enable this, a real-time operating system
(RTOS) is used. Such an operating system enables the calculation of latencies.
In general the Linux kernel is non-real-time. This implies that high priority
tasks can be delayed by an unknown amount of time due to preemptions. Such
behaviour is unsuitable for real-time systems.

In the Preempt rt patch several changes to the kernel are made in order to
minimize the latencies. Here are the main changes:

• The in-kernel locking primitives have been modified

• Critical sections are now preemptible

• A priority inversion for in-kernel semaphores and spinlocks is implemented

• All interrupt handlers are preemptible

For further information on the Preempt rt patch see [9]. The above mentioned
changes convert the kernel into a fully preemptible kernel. This enables us to
define high priority tasks which will not be preempted by the kernel and will
therefore have low latencies.

3.3.2 Page locking

Page faults come in two different forms: minor and major page faults. The mi-
nor page faults are pages that are already in RAM, but they are not marked by
the Memory Management Unit (MMU). The page fault handler of the operating
system only needs to make an entry for that page in the MMU, but it does not
need to load the page from external memory. This type of fault causes relatively
small latency increase. The second type of page faults, the major faults, are
more costly in terms of latency. In this case the page is not yet present in RAM
and needs to be loaded by the operating system first. This adds disk latency
and makes this type of fault is far more costly than the previous one.

In real-time applications page faults have to be avoided to minimize latencies.
Especially major faults have to be avoided. Locking of pages in RAM can be
done by using mlockall(MCL CURRENT — MCL FUTURE).
After issuing this command all future and current pages will be locked in RAM.
In our implementation this command is issued right at the start of the main
function. From this point on, all thread stacks are locked in RAM. The default
stack size for a thread is 8MB.



Chapter 4

Implementation

In this chapter the implementation of the different extensions to HSF are ex-
plained. At first the added monitoring functionalities are described in detail.These
are temperature and jitter measurement as well as page fault analysis. In a
second part the implementation of the TI-Server is presented. For guides on
installation and use of the HSF software please consult the appendix A.

4.1 Temperature measurement

Temperature measurement can be done with two methods, either through a
measurement task or through a inclass function . In both cases the temperature
is read from model specific registers (msr) using the rdmsr() system call. Each
temperature measurement records the temperatures of all cores by reading one
register per core. To be able to read these registers, the msr kernel module has
to be loaded before the test-run with the “sudo modprobe msr” command (see
[6]).

4.1.1 Temperature measuring task

The temperature measuring task measures the temperature of every core and
saves the results in the corresponding records (see 4.1.3). The temperature mea-
suring task is attached to a worker and can then be scheduled by servers or
schedulers. As the measurement is called by a worker, its period can be defined,
allowing us to set the measuring frequency.

4.1.2 Temperature measuring mechanism in Resource Allocator

The second temperature monitoring possibility is built into the ResourceAllo-
cator class. It consists of the getCoreTemperature() function. This function is
equivalent in functionality to the temperature measuring task.

13
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This function allows us to measure the temperature at every call of a scheduler or
Server. If lower sampling and inconsistent rates are sufficient, then this method
can be used. If desired both methods can be used in combination. In the current
implementation the temperature is not monitored by resource allocators, as the
temperature measurement task was sufficient.

4.1.3 Temperature records

For every temperature measurement a new entry to the corresponding core statis-
tics is created. This entry consists of the temperature measurement, time at
which the measurement occurred, and core the temperature is from. After the
scheduling run is complete, all temperature entries are saved into a csv file called
“simultaion name temperatures.csv”. In this file the entries are ordered by core
and time.

4.2 Jitter measurement

As described in 3.3 the jitter or latency between an event and the response to
this event is of great concern in real-time systems. For this reason a number of
steps have been taken as described in 3.3. As the jitter is not a direct part of
the TI-Server it has not been explained in that implementation. The only goal
of the jitter measurements is to show the impact of the different steps taken in
3.3. Due to time constraints the jitter measurement has only been implemented
between Event Based Schedulers and Workers. The result of the measurements
can be found in chapter 6. The following text gives a detailed description of the
measurement mechanism and storage of those measurements.

4.2.1 Activation time and firing time

To measure the latency between the activation (an event occurs) and the actual
execution of the task (response to the event) two time stamps are measured.
The first time stamp is the activation-time, it is taken at the instant at which a
worker is activated. The time stamp is then saved into a buffer. This is handled
by the save activation time() function from ResourceAllocator. The time stamp
is taken with getTime() function from TimeUtil. This function takes the time
from the operating system clock. On the other end the worker saves a time stamp
at the moment it starts executing, the firing-time. This time stamp is saved lo-
cally until the worker is deactivated by the scheduler. The jitter is calculated as
firing-time − activation-time. This final step is handled by the calculate jitter()
function from ResourceAllocator.
As every scheduler and server type has a different scheduling function, the place-
ment of the two jitter measurement specific functions save activation time() and
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calculate jitter() is different for each one. In this project it has only been included
into all Event Based Schedulers, see B.1.

4.2.2 Jitter records

For every jitter measurement an entry to a record file is saved. Every entry
consists of the worker, the activation and firing time and finally the jitter.
After the test-run all these entries are written into a csv file called “simula-
tion name jitter.csv”. From all the recorded jitter measurements, mean, maxi-
mum and minimum values are calculated and put into a csv file called “simula-
tion name jitter stats.csv”.

4.3 Page fault analysis

As described in 3.3.2 page locking is used in order to reduce the number of page
faults. In order to evaluate the success of page locking a page fault analysis
mechanism has been implemented.
The show new pagefault count() was introduced in Thread class, it counts the
number of page faults and prints the result out. The getrusage() function [3] is
used to count the minor and major page faults of the current thread. If the macro
PAGE FAULT CHECK is 1 the page fault check will be called in wrapper() once

at the creation of the thread and once after reading the whole stack. If the page
locking was successful, then page faults should only occur at the creation of the
thread. When reading the stack after creation, no page fault should occur.

4.4 Trace recording and overhead calculation

For the evaluation of the TI-Server, traces of the schedulers, servers and workers
are recorded. A trace is a suite of records that consists of a thread ID,action type
and the time-stamp of that action. For the different thread types the following
actions are recorded:

• For the worker the recording of traces was already implemented into HSF.
In this implementation the activation and deactivation times are recorded
as well as the start and end of the task. This means that a time-stamp
is recorded when the worker starts executing and when it has finished
executing its task. For workers in the TI-Server, this is not sufficient as
we need to know when the worker stops executing its task and when it
retakes the execution. For this, two new action types are introduced, the
execution start and the execution stop.
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• The TI-Server is activated and deactivated by a scheduler. Therefore, a
trace for each of these events has to be recorded. Furthermore a trace for
execution start and stop of the server are recorded. Finally a trace has to
be recorded when a new server period is spawned by the TISDispatcher.

• For the EDF scheduler the same traces as for the TI-Server are recorded.
As there is no dispatcher for schedulers no such trace is recorded.

After the test-run all recorded traces are saved into csv files. For each recorded
thread type a corresponding file is created. One file containing all traces is also
created. For each Server period the start and endpoint are calculated as well
as the overall period duration. In a period, the server execution time and the
worker execution time are calculated. All these values are saved in a csv file
named “simulation name serverOverhead.csv”
A list of all the different recorded events and their assigned action value are listed
in the following table.

action type value

job arrival 0

activation 1

deactivation 2

task start (for worker) scheduling start (for scheduler and server) 3

task end (for worker) scheduling end (for scheduler and server) 4

deadline met (worker) 5

deadline missed (worker) 6

worker execution start 10

worker execution stop 11

Table 4.1: Trace action types

4.5 Pre-partitioned EDF

In the evaluation framework, multiple TI-Servers have to run in parallel on dif-
ferent cores. Pre-partitioned EDF is a new scheduling class that has the goal to
create an EDF scheduler on every core. Those EDF schedulers will then schedule
the TI-Servers. The Pre-partitioned EDF gets a set of workers and servers from
the parser. To each worker and server a core has been assigned in the definition
of the test-run (in the XML file). The workers and servers are then assigned to
the corresponding scheduler on the respective core. The pre-partitioned EDF
has to be used as level 0 scheduler and is only used to activate and to deactivate
the underlying EDFs.
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4.6 TI server

In the following the implementation of the design presented in 3.1 is explained.
For this the TI-Server implementation is first described step by step in 4.6.1
with the help of figure 4.1. In this project signals have been introduced into the
implementation of HSF. These are needed to ensure an idle core during tc. A
detailed description of the use of these signals is given in ??

4.6.1 Implementation

The implementation of the TI-Server is described with the help of figure 4.1 that
can be found below. In this figure the various steps of the TI-Server mechanism
are numbered. The implementation of each step is then explained in the enumer-
ation. For this reference is made to 3 classes and their functions that have been
added to HSF. These classes are the TIS -class for the implementation of the TI-
Server, the TISDispatcher -class for the implementation of TIS-Dispatcher and
the Server-TTL-class for the Server-TTL implementation. A detailed description
of all 3 classes can be found in appendix B.

At the start-point the TI-Server is in deactivated state. This means that
it is blocked from execution by a “activation” semaphore from class TIS. The
Server-TTL is also blocked by a semaphore, the “activation” semaphore from
the Server-TTL class. The EDF scheduler is blocked by its “event” semaphore.
This means that the EDF will wake up as soon as an event is registered. The
TIS-Dispatcher is executing on the core at the start point:

1. The TIS-Dispatcher registers a “new job” at the EDF scheduler regarding
the TI-Server. This is done by calling the the newPeriod() function of
the TI-Server class. This call also releases the “event” semaphore [EDF-
class] of the EDF scheduler. The TIS-Dispatcher has now run through
its execution loop and it then loops back. There it falls onto a blocked
“activation” semaphore [TIS-Dispatcher-class] .

2. As an event has been registered and the “event” semaphore [EDF-class]
is released the EDF scheduler starts executing. As the TI-Server is the
only registered thread it is immediately activated. For this the activate()
function of the TIS-class is called. Here the priority of the TI-Server will be
changed to the Server-Priority and the TI-Servers “activation” semaphore
is released.

3. This step is the initiation of the Server-TTL count-down. For this the
activation() function of the Server-TTL class is called. This function sets
the TTL and releases the “activation” semaphore [Server-TTL-class] of
the Server-TTL. If the TI-Server has a task that is to be scheduled, the
activation of the Server-TTL is done at the same time as the activation of
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the TI-Server. However if the Server has no load at the beginning of its
active time , the Server-TTL will only be activated once the first job for the
TI-Server arrives. The Server-TTL has a dispatcher priority. It therefore
has the highest priority of all non blocked threads, and starts executing.
It then immediately enters a sleep function for TTL, during this time it is
suspended from execution.

4. After being activated by the EDF scheduler the TI-Server starts schedul-
ing its Server load. Inside the the server, an EDF scheduler, the “server
EDF” is scheduling the workers that have registered jobs. These jobs are
registered by the corresponding dispatcher of the worker. A worker is schd-
uled by activating it. For this the activation function of the worker class is
called in which the “activation” semaphore [Worker-class] is released and
the priority of the worker is changed to active. Before a worker is activated,
the currently active worker has to be deactivated. This is done by calling
the deactivation function of the worker. This function will set the priority
of the worker to “inactive” and it will block the “activation” semaphore
[Worker-class]. During the active time context switches between workers
will be done because of their assigned priority as in original HSF. The “ac-
tivation” semaphore [Worker-class] is of no importance during this time,
as the worker does not wait for on it during executing its task. This has
to be changed for idle time, see point 5 and

5. The Server-TTL wakes-up after TTL. It then calls the finishedPeriod()
function of the TIS-class. This function registers a “finished job” and
releases the EDF’s “event” semaphore [EDF-class]. By this, the Server-
TTL initiates the deactivation of the TI-Server. As mentioned previously,
the Server-TTL will wake up after TTL is over. If the TI-Server has no load
left while the TTL has not yet passed, the TI-Server will send a POSIX
signal to the Server-TTL. This causes the sleep function to be terminated
early and the TI-Server is deactivated early. A second purpose that the
finishedPeriod() call is serving is to send a POSIX signal([10],[7],[8]) to all
workers that have been used during the active time of the server. After
receiving a signal the worker, will call its signal handler. This signal handler
will acquire the “activation” semaphore [Worker class]. This will block the
execution of the worker until the semaphore is released in the next active
time of the server. For more details on how a idle time is guaranteed see

6. Again an event is registered for the EDF scheduler. It is immediately
handled. This time the event is a “finished job” event for the TI-Server.
The EDF scheduler therefore calls the deactivate() function of the TIS-class
in order to deactivate the TI-Server.

7. In the call of the deactivate() function from TIS-class, the TIS-Dispatcher
is activated. For this the activate function of the “TISDispatcher” class
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is called. This releases the “activation” semaphore of the TIS-Dispatcher.
Similar to the Server-TTL, the TIS-Dispatcher will then start execution.
Its first instruction is a sleep function that will suspend the thread for the
idle time.

8. After the idle time the TIS-Dispatcher will wake up by returning from the
sleep function. The procedure will start all over again.
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Figure 4.1: Illustration of the TI-Server mechanism
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4.7 Modifications to the HSF parser

In HSF, a test-run is created by the creation of a XML file. This XML file is
then parsed by HSF and all threads and their configurations are determined. In
this project a number of new thread types and their configurations have been
added. XML files are still used as set-up medium for test-runs. Therefore all
new configurations have been added into the parser. A detailed description on
how to create a TI-Server test-run XML is given in Appendix C.



Chapter 5

Verification of the
implementation

This chapter describes all tests that were performed to ensure the correct func-
tionality of all implementations. The first tests are jitter measurements that
verify the effectiveness of the Preempt rt patch, see 3.3.1. The second set of
tests are tests that are performed in order to verify the implementation of the
TI-Server

5.1 Jitter measurement

In this section we test the effectiveness of the measures from 3.3. On each core
a busy wait task is executed periodically every 5 ms with WCET of 4ms. These
tasks are scheduled by an EDF scheduler on their respective core. The test run
has a duration of 60 seconds.
The first set of tests is done in the non-patched Linux kernel. The maximum
measured jitter when the test run is executed at a low priority is about 40us.
When the priority is set to max (e.g 98 for the main thread) the maximum mea-
sured jitter is around 20us.
In the second test set we use the rt-patched kernel. Here the maximum latency
measured for low priority is still 40us however for maximum priority the max
latency drops now below 10us.

We can thus see that the priority has a direct impact on the max latency in
both cases. This is due to the fact that while running on low priority the threads
of HSF can be preempted by everything that has higher priority. This holds true
for both kernels. When running with high priority the rt-patch does affect the
maximum latency.

22
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5.2 TI-Server implementation verification

Before evaluating TI-Servers performance it is necessary to make sure that the
implementation is working correctly. For this a number of different TI-Server
configurations are tested. The first setup aims to verify the EDF scheduling
of the server. The second series of tests verifies the parallel execution several
servers. At the same time the server behaviour can be verified under certain
marginal conditions: How the server behaves if the load is smaller than ta and
how it behaves if the load is not empty at the end of active time. This test also
illustrates what happens when the server is activated but there is no load.

Verification of EDF in TI-Server:

Test setup:

• 1 core used : core 0

• 1 TI-Server, S0, with ta = length of test run and tc = 0

• workers as load of TI-Server S0:

– worker 1 : task “busy wait” , Period P = 10ms, WCET = 5ms

– worker 2 : task “busy wait” , Period P = 20ms, WCET = 5ms

Expected behaviour:
According to the EDF schedule worker 1 will always execute before worker 2.

Results:
In figure 5.1 the results are illustrated. Task 1 is always prioritized over task
2. Task 2 is not able to finish executing in one instance because of the over-
head caused by the server. This was to be expected. The results show that the
TI-Server is indeed scheduling the server load according to an EDF schedule.
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Figure 5.1: EDF verification test for TI-Server

Multiple TI-Servers test:

Test setup:

• 4 cores are used

• HI-Scheduler is an EDF scheduler that is running on core 0 ,worker 1 and
worker 2 are scheduled by the HI-scheduler

• LO-Scheduler consists of 3 TI-Servers:

– S1 running on core 1, with ta = 5ms and tc = 5ms

– S2 running on core 2, with ta = 7ms and tc = 3ms

– S3 running on core 3, with ta = 4ms and tc = 6ms

• 5 workers:

– worker 1 :

∗ running on core 0 under HI-Scheduler

∗ “temperature measurement” task

∗ Period = 1ms

– worker 2 :

∗ running on core 0 under HI-Scheduler

∗ “busy wait” task



5. Verification of the implementation 25

∗ Period = 10ms and WCET = 5ms

– worker 3 :

∗ running on core 1 under S1

∗ “busy wait” task

∗ Period = 25ms and WCET = 10ms

– worker 4 :

∗ running on core 2 under S2

∗ “busy wait” task

∗ Period = 10ms and WCET = 6ms

– worker 5 :

∗ running on core 3 under S3

∗ “busy wait” task

∗ Period = 20ms and WCET = 5ms

Expected behaviour:

• core 0 : worker 1 and worker 2 should be scheduled according to an EDF
schedule.

• core 1 : As the period of worker 3 is double ta of S1 it will take at least
2 ∗ ta to finish the job of worker 3

• core 2 : The period of worker 4 is smaller than ta of S2. One ta should be
sufficient to finish the execution of worker 4, the execution should not be
interrupted.

• core 3 : In this case the period of worker 5 is larger than ta of S3 but it
is smaller than 2 ∗ ta. The execution of task 5 will thus take two active
times of the TI-Server. The second active time should be smaller than ta
because the server will run out of load before ta has expired.

Results:

In figure 5.2 the results are displayed. In table 5.2, 5.2 and 5.2 statistics of
the first 6 periods of the 3 TI-Servers are listed. From this figure and tables it
can be seen that:

• On core 0: the HI-Scheduler is executing task 1 and 2 according to an
EDF schedule. Task 1 has a smaller period an is thus preempting task 2.
The HI-Scheduler is working correctly.
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• On core 1: The worker 3 takes 3 active times of S1. The first 2 active
times have a duration of ta and the third active time is very short. This
can be observed in 5.2. As WCET of the “busy wait” task of worker 3 is
exactly double ta of S1 and because of server overhead, the execution of
worker 3 is not finished after P + ta. This behaviour is unavoidable as
there is always some overhead.

• On core 2: worker 4 has a smaller WCET as the ta of S2. It therefore
finishes executing in one active time of S2. In Figure 5.2 it can be observed
that the core 2 is some times idle for more than tc, for example after the
second iteration of worker 4. In Table 5.2 the time between the end of
period 2 and start of period 3 is approx tc however. In this case the active
time of the server begins, but there is no load for the server to schedule. In
this case the server waits in active mode until an event happens without
consuming ttl. This “wait time” is shown in the last column of table 5.2.

• On core 3: As worker 5 has ta < WCET < 2∗ ta, every second active time
of the server is smaller than ta. Same as for S2, S3 is some times activated
without load. Again the server waits in active mode.

In table 5.2, 5.2 and 5.2 it can be observed that the first period of each server
starts witch a delay of 1ms. This delay is due to initialization and should
not influence the evaluation process. In this test we have shown that the TI-
Server implementation is able to work on the multi-core platform. Activation
and deactivation of the server also work as expected.
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Figure 5.2: TI-Server test on multi-core
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Server active
time
Start
(us)

active
time
End
(us)

active
time(us)

worker
time
(us)

active
wait
time
(us)

Overhead
(us)

S1 1202 6502 5300 5290 0 18

S1 11534 16560 5026 5005 0 20

S1 21596 21639 43 2 0 40

S1 26677 31694 5016 5003 0 13

S1 36734 41750 5015 5004 0 11

S1 46789 46814 25 1 0 24

Table 5.1: First 6 server active times for server on core 1

Server active
time
Start
(us)

active
time
End
(us)

active
time(us)

worker
time
(us)

active
wait
time
(us)

Overhead
(us)

S2 1058 7252 6194 6059 0 134

S2 10269 16377 6107 6060 0 47

S2 19417 26143 6725 6069 601 53

S2 29159 36093 6934 6059 843 30

S2 39108 46111 7003 6062 911 29

S2 49129 56117 6988 6059 892 35

Table 5.2: First 6 server active times for server on core 2

Server active
time
Start
(us)

active
time
End
(us)

active
time(us)

worker
time
(us)

active
wait
time
(us)

Overhead
(us)

S3 1105 5134 4029 4007 0 21

S3 11155 12214 1053 1012 0 45

S3 18236 24065 5828 4000 1788 40

S3 30079 31120 1040 1011 0 29

S3 37134 44039 6905 4004 2885 14

S3 50054 51100 1045 1011 0 34

Table 5.3: First 6 server active times for server on core 3



Chapter 6

TI-Server evaluation
experiments

In this chapter the different experiments are described, that were performed to
evaluate TI-Servers. The first set of experiments are thermal calibration ex-
periments. These experiments are necessary to calibrate the thermal model of
the testing platform. The second set of experiments are the evaluation experi-
ments of the TI-Server. These experiments aim to experimentally validate the
TI-Server theory.

6.1 Thermal modelling

TI-Servers are created in respect to the thermal model of the CPU they are
running on. It is thus imperative to determine the thermal model of the platform
before being able to test TI-Servers on that platform. The thermal modelling
itself is not part of this project and it is done by the supervisor Dr. Ahmed. In
the following the different tests needed for thermal modelling are described and
the results are presented.
First we need to make sure that all tests are done under the same thermal
environmental conditions. Two measures are taken:

• The fan speed is set to a fixed frequency. The fan speed can be set with
the thinkfan tool [11],[4], as the test platform is a Lenovo Thinkpad. The
thinkfan tool allows 7 different fan speed levels. For all experiments level
7 is used.

• The CPU frequency has to be the same for all experiments. The CPU
frequency is fixed by setting the “performance” CPU governor for all cores.
This is done with the help of the “cpuset-freq” tool [2],[5].

In total 22 different tests are executed. After each test a cool-down of at least
5s is respected. In each test a thermal monitoring task is running on core 0. All

29
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dispatchers and schedulers are running on core 0 as well. On the other cores
“busywait” tasks are executed if the core is active. The tests can be divided into
8 subsets:

Set nbr of active
cores

active
time

idle time temperature
measurement
period

1 1 0.5 ms 5 s 100 us

2 1 10 ms 5 s 100 us

3 1 100 ms 5 s 1 ms

4 1 5 s 5 s 1 ms

5 2 10 ms 5 s 100 us

6 1 5 min 5 min 500 ms

7 2 5 min 5 min 500 ms

8 3 5 min 5 min 500 ms

Table 6.1: Thermal Calibration experiments

For the thermal modelling it is preferable that during idle time no tasks are
executed. But we cannot guarantee that the operating system will not execute
tasks outside of the evaluation framework during these idle times. For this reason
tests from sets 1-5 are repeated multiple times in order to get one instance where
the operating system does not interfere.
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6.2 Thermal isolation server experiments

For the evaluation of the TI-Server a flight management system (FMS) is sim-
ulated. In this system a number of tasks are executed, see list 6.2. These tasks
are divided into 2 criticality levels. Tasks having criticality 1 are scheduled by
the “HI-Scheduler” and tasks with criticality level 2 are scheduled by the “LO-
scheduler”. In the following experiments, all tasks that are executed are not the
actual FMS tasks, but they are “busy-wait” tasks that have corresponding pe-
riods and WCETs. We set a maximum system temperature of 70 degrees. This
temperature should not be surpassed by any core during the experiments. Two
different experiments (each having a duration of 1h to reach steady state tem-
peratures) are executed in order to evaluate the performance of the TI-Server.
The first experiment partitions the LO critical task according to first-fit on core
2 and 3. The tasks are then scheduled by a plain EDF scheduler. In the second
experiment the LO critical tasks are partitioned and scheduled according to the
TI-Server theory:
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Purpose Task CL Period (ms) Exec.Time (ms)

Sensor data acquisition

τ1 2 200 10
τ2 2 200 10
τ3 2 200 10
τ4 2 200 10
τ5 2 200 10

Localization

τ6 2 200 10
τ7 2 1000 50
τ8 2 5000 50
τ9 2 1000 50
τ10 2 200 10
τ11 2 1000 50
τ12 2 200 10

Flightplan management

τ13 2 1000 50
τ14 1 1000 50
τ15 2 1000 50
τ16 1 1000 50
τ17 2 1000 50
τ18 2 1000 50
τ19 1 1000 50
τ20 1 1000 50

Flightplan computation

τ21 2 1000 50
τ21 2 1000 50
τ23 2 5000 750
τ23a 2 5000 180
τ23b 2 5000 150
τ23c 2 5000 90
τ23d 2 5000 75

Guidance
τ24 2 200 10
τ25 2 200 10

Nearest Airport τ26 1 1000 50

Table 6.2: FMS Parameters

First-Fit
Test setup:

• core 0 : Temperature measurement

• core 1 : EDF with HI tasks

• core 2 and 3: First Fit partitioning of low critical tasks. The low critical
tasks are scheduled with EDF on their respective core

Results:
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Figure 6.1: Temperature trace for the last 60 s of the first fit experiment
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Figure 6.2: Temperature trace for the last 60 s of the first fit experiment of core
1,2 and 3 separately. The “constraint” line denotes the maximum temperature
that should not be surpassed.
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TI-Server

Test setup:

• core 0 : Temperature measurement

• core 1 : EDF with HI tasks

• core 2 : TI-Server with TTL = 7300us and cool-down = 2700us

• core 3 : TI-Server with TTL = 5 ms and cool-down = 5 ms

• the low critical tasks are partitioned on core 2 and 3 according to the
thermal model of the testing platform. They are then schduled by the
respective TI-Server

Results:
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Figure 6.3: Temperature trace for the last 60 s of the experiment using TI-Servers
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Figure 6.4: Temperature trace for the last 60 s of the experiment using TI-Servers
of core 1,2 and 3 separately. The “max temp” line denotes the upper bound
given by the theoretical model. The “constraint” line denotes the maximum
temperature that should not be surpassed.
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In both tests the same tasks are executed. In the experiment that is using TI-
Servers the maximum temperature of the CPU cores is about 6 degrees cooler
than the temperatures in the experiment without TI-Servers. An immediate
effect on the temperature trace can also be observed in the trace of core 3. In
the first experiment the temperature of core 3 has large periodic fluctuations.
These are due to the EDF scheduler which is executing tasks as soon as they are
available. In the second experiment the temperature fluctuations are significantly
reduced for core 3. This is because the TI-Server distributes the execution times
more evenly. We could also show that the maximum temperature that was given
by the theoretical model (the “max temp” line in figure 6.4) was not surpassed
by using TI-Servers. We also show that in the first experiment the core 1 and
3 surpass the temperature constraint of 70 degrees. In the second experiment,
however, the temperature stays well below this threshold. We thus show that
the temperature guarantees of the TI-Server model are met. As no deadlines
are missed and all tasks are scheduled correctly we can also say that all timing
guarantees of the TI-Server are met.



Chapter 7

Conclusion and outlook

7.1 Conclusion

In this thesis, the TI-Server scheduling scheme was implemented on a 4 core
platform. The implementation was integrated into the ”Hierarchical Schedul-
ing Framework”. The implementation of the TI-Server was done in 3 main
parts, the TI-Server itself, the TIS-Dispatcher and the Server-TTL. The server
itself, schedules its tasks according to an EDF schedule. The dispatcher en-
sures that after each active time a minimum idle time is respected on the core.
The Sever TTL ensures that the server is deactivated after a maximum active
time. For a complete implementation of the TI-Server scheme a configuration
was created, that can run one TI-Server per available core. Here the multi-core
capability of HSF was used. In order to show the correctness and completeness
of the TI-Server implementation, verification tests were performed. In addi-
tion to the implementation, the TI-Server was evaluated for thermal and timing
guarantees. For this purpose HSF was extended by a thermal monitoring mech-
anisms. This mechanisms measure the temperature of each core in configurable
intervals. Furthermore trace recording of the state of schedulers, servers and
workers were added. The evaluation platform is made real-time capable through
the preempt-RT patch for Linux and through memory page locking in HSF. Fi-
nally the TI-Server has then been evaluated. During these experiments the core
temperatures stayed well below the theoretically calculated upper bound and
therefore also under the critical CPU temperature. In comparison a first-fit par-
titioning and EDF schedule could not meet these constraints. This has shown
the effectiveness of the TI-Server concept.

7.2 Outlook

The effectiveness of the TI-Server has only been shown for a set of tasks where
all tasks are executing the same code, a busy wait loop. Further testing could

37
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be done to analyse the effect of different task sets. The next step would be to
test the TI-Server on a real mixed-criticality system.



Appendix A

Installation guide

Below find an installation guide for HSF

Listing A.1: InstallHSF

Hi e r a r c h i c a l Schedul ing Framework {#mainpage}
=================================
Recommendations
−−−−−−−−−−−−−−−

To ensure r e a l time compateb i l i ty :
∗ i n s t a l l a preemt rt patched l i nux ke rne l .

This patch w i l l make the ke rne l f u l l y preemtable and i t w i l l
minimize l a t e n c i e s .

For more in fo rmat ion :
https : // r t . wik i . k e rne l . org / index . php/Main Page
For quick i n s t a l l a t i o n guide : preemt rt−patch−i n s t a l l a t i o n −

guide . txt
∗ In the BIOS d i s ab l e the POWER MENAGEMENT and d i s ab l e

Hyperthreading

Requirements
−−−−−−−−−−−−

HSF r e qu i r e s a ∗NIX ke rne l with standard l i b r a r i e s . To compi le
a l l sources ,

the se packages are needed :

∗ g++ (>= 4 . 7 )
∗ make
∗ octave
∗ php

I f you want to use the i n i t i a l support f o r the hwloc l i b r a r y f o r
s e t t i n g the

p ro c e s s o r a f f i n i t i e s o f the threads , the hwloc t o o l s and l i b r a r y
are a l s o needed :

∗ hwloc

1
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You can a l s o d i r e c t l y l i n k the sourc e s without compi l ing and
i n s t a l l i n g them . For

more d e t a i l s s e e : <http ://www. open−mpi . org / p r o j e c t s /hwloc/>\n
To compile h s f without hwloc support , check that ‘

USE LINUX AFFINITY ‘ i s s e t to
‘1 ‘ in ‘ s r c /pthread/Thread . cpp ‘ and uncomment ‘HSFLIBS += −lhwloc

‘ in the Make f i l e .

For gene ra t ing the output f i g u r e s with the ‘ s imf ig ‘ t o o l you need
the f o l l ow i ng

add i t i o na l l i b r a r i e s :

∗ l ibmgl−dev (>= 2 . 0 )
∗ l ibX11−dev

Mathgl l i b r a r y should be compiled , and l ibmgl . so . 7 . 0 . 0 should be
placed in

‘/ usr / l o c a l / l i b ‘ ( o the rw i s e the MATHGL va r i ab l e in the make f i l e
should be changed to the appropr ia t e l o c a t i o n ) . I f you f o l l ow the

compi le
i n s t r u c t i o n s o f Mathgl t h i s should happen automat i ca l l y . For more

in fo rmat ion
on Mathgl , p l e a s e v i s i t : <http :// mathgl . s ou r c e f o r g e . net/>

For bu i l d i ng the documentation o f the H i e r a r c h i c a l Schedul ing
Framework you w i l l

a l s o need a recent ve r s i on o f doxygen :

∗ doxygen (>= 1 . 8 )

To bu i ld the documentation simply run ‘make doc ‘ in the HSF
d i r e c t o r y . The

documentation w i l l then be generated in the ‘ doc ‘ d i r e c t o r y .

I n s t a l l a t i o n and Conf igurat ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 . I f your HSF f o l d e r i s not l o ca t ed in ‘˜/ g i t ‘ , then p l e a s e
change l i n e 3 o f

‘ h s f pa th s . sh ‘ to the path o f your HSF f o l d e r .
2 . In the terminal , type :

source h s f pa th s . sh

This w i l l s e t a new ‘$HSF ‘ var i ab l e , and add i t to your ‘$PATH‘
va r i ab l e . You can

a l s o add i t to your ‘ ˜ / . bashrc ‘ f i l e , to have i t load
automat i ca l l y

3 . P r i v i l e g e s f o r execut ing with rea l−time p r i o r i t i e s
To execute h s f the user needs to have the p r i v i l e g e s to switch

the app l i c a t i o n s
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s chedu l ing po l i c y to r ea l−time p r i o r i t y based schedu l ing and
execute i t a with

rea l−time p r i o r i t y . You can do t h i s in two d i f f e r e n t ways :

1 . (RECOMMENDED) Allow the user to execute app l i c a t i o n s with
rea l−time p r i o r i t y
us ing the l im i t s . conf c on f i gu r a t i on f i l e . To a l low the user

with name ’ user ’
to execute i t s a pp l i c a t i o n s with rea l−time p r i o r i t y , s imply

add the f i l e
‘/ e t c / s e c u r i t y / l im i t s . d/50− r t p r i o . conf ‘ with the f o l l ow i n g

two l i n e s ( r ep l a c e
’ user ’ with your username ) :

user − r t p r i o un l imi ted
user − n i c e −20

To apply these changes a reboot o f your machine i s r equ i r ed .
P lease note that t h i s user can execute any app l i c a t i o n with

rea l−time p r i o r i t y .
More d e t a i l s about t h i s can be found in the manpage o f l im i t s

. conf
2 . ( NOT RECOMMENDED) To execute h s f with rea l−time p r i o r i t y

the command could
simply executed with root p r i v i l e g e s f o r example be us ing ‘

sudo ‘ . However we
do not recommend execut ing the framework as root .
I f you s t i l l want to use the sudo approach p l e a s e note the

f o l l ow i n g : On some
o lde r systems , you might have to add the f o l l ow i ng l i n e to

your bash p r o f i l e
in order to i n h e r i t you PATH va r i ab l e when us ing ’ sudo ’ :

a l i a s sudo=’sudo env PATH=$PATH $@’
4 . Then type :

. / i n s t a l l . sh
5 . run ”sudo modprobe msr” be f o r e running hs f ( i s needed f o r

temperature measurements )

6 . Run HSF!
You can now type in you termina l the f o l l ow i ng commands :

h s f [ f i l ename ( . xml ) ]
s imulate [ f i l ename ( . xml ) ]
c a l c u l a t e [ metr ic ] [ f i l ename ]
show [ metr ic ] [ f i l ename ]
s im f i g [ f i l ename ]
pub l i sh [ f i l ename ]

[ metr ic ] can be one ( or more ) o f the f o l l ow i n g :

∗ exe | exec −> Execution Times
∗ re sp −> Response Times
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∗ throughput −> Throughput
∗ u t i l −> Ut i l i z a t i o n
∗ a l l o c −> Resource a l l o c a t i o n c o s t s
∗ sys −> System a l l o c a t i o n c o s t s
∗ worker −> Worker c o s t s
∗ missed −> Missed dead l i n e s

S imulat ions on Xeon Phi ( and Other Systems With Network F i l e
Systems )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

When s imu la t ing on Xeon Phi , p l e a s e no t i c e that the under lay ing
network f i l e system

i s l i k e l y to be blocked by the HSF framework , because the
framework runs at h igher

p r i o r i t y than the f i l e system daemon . This w i l l cause undef ined
behavior and b lock ing

o f the framework , when i t reads and/ or wr i t e s to f i l e s .

To avoid these block ing , you need to copy a l l f i l e s needed f o r
s imu la t i on s to a

l o c a l subd i r e c to ry in ‘/tmp/ ‘ and s t a r t s imu la t i on in that
d i r e c t o r y .

This setup i s r equ i r ed i f one o f the f o l l ow i ng c r i t e r i a i s met (
know ca s e s ) :

− S ima la t ions us ing the pa r t i t i o n ed EDF−VD schedu l e r (
PartitionedEDF VD )

− Simulat ions with f l i g h t management system tasks ( FlyanceTask )

Below find an installation guide for the preempt-RT kernel patch

Listing A.2: InstallRT

I n s t a l l a t i o n guide f o r the preempt rt l i nux patch .

This guide f o l l ow s the i n s t r u c t i o n s f o r
https : // ubuntuforums . org / showthread . php? t=2273355

1) c r e a t e a working d i r e c t o r y where the patched ke rne l w i l l be
bu i ld and compiled :

mkdir ˜/ ke rne l && cd ˜/ ke rne l

2)Download the patch and the cor re spond ing l i nux ke rne l : ( at the
moment o f my p ro j e c t 4 . 6 . 7 was the newest r t patch ve r s i on )

#Download the RT patch
wget https : //www. ke rne l . org /pub/ l i nux / ke rne l / p r o j e c t s / r t /4 .6/

patch−4.6.7− r t14 . patch . gz
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#Download ke rne l
wget https : //www. ke rne l . org /pub/ l i nux / ke rne l /v4 . x/ l inux −4 . 6 . 7 .

ta r . gz

3)Unzip the ke rne l :

#x − ex t r a c t
#z − pipe through gunzip
#v − verbose ( t ext output )
#f − from f i l e
ta r −xzvf l inux −3 .18 .11 . ta r . gz

4) Patching the ke rne l

#Move to ke rne l source d i r e c t o r y
cd l inux −3.18.11

#c − pipe f i l e contents to stdout
#d − decompress
gz ip −cd . . / patch−3.18.11− r t6 . patch . gz | patch −p1 −−verbose

5) c r e a t e c on f i g f i l e f o r the new ke rne l :

sudo apt−get i n s t a l l l i bn cu r s e s−dev

make menuconfig

the prev ious cmd w i l l open a g raph i c a l i n t e r f a c e : s e l e c t the
f o l l ow i n g opt ions :

Proces sor type and f e a t u r e s −−−> Preemption Model −−−>Ful ly
Preemptible Kernel (RT) [ Enter ] #Se l e c t

Kernel hacking −−−> Memory Debugging −−−> Check f o r s tack
ove r f l ows #Already de s e l e c t ed − do not s e l e c t

a f t e r that save and ex i t

6) compl ie the ke rne l ( be advised that t h i s s tep w i l l take some
time )

make

7)make modules and i n s t a l l

sudo make modu l e s i n s t a l l
sudo make i n s t a l l

8) v e r i f y and update

Ver i fy that i n i t r d . img−4.6.7− rt14 , vmlinuz−4.6.7− rt14 , and con f ig
−4.6.7− r t14 e x i s t . They should have been created in the
prev ious s tep .

cd /boot
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l s

Enable the obt ion to s e l e c t the new ke rne l whi l e reboot

sudo update−grub

9) reboot and check
sudo reboot

a f t e r r eboot ing check the ke rne l
uname −a

i t should g ive : Linux nb−10460 4.6.7− r t14 #1 SMP PREEMPT RT Wed
Oct 5 15 : 18 : 10 CEST 2016 x86 64 x86 64 x86 64 GNU/Linux



Appendix B

Class descriptions

Here the classes that have been added to HSF are described.

B.1 Code structure

In this section the code structure of HSF after the implementation of all exten-
sions is shown. In the figure below B.1, a new class has a green box. In the class
boxes the section before the dashed line are the variables. The section after the
dashed line are the functions. Private or protected functions and variables are
proceeded by a #. Public functions and variables are proceeded by a +. If a
function or variable has been added to HSF during this project it is followed by
a +.

7



B. Class descriptions 8

Figure B.1: The thread hierarchy after extensions to HSF
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B.2 Pre-partitioned EDF

The functions of the PrePartitionedEDF class are:

• constructor : the constructor of the class takes 4 parameters. The first is
the ID of the thread inside the test run. The second is the scheduler level,
see 3.2.1. This level has to be 0, if not the constructor will return a warning.
The third parameter is the number of used cores in the test run. For each
used core (starting from core 0) an EDF scheduler will be created. The
forth parameter is a boolean, ”thermal calib”. If it is set all schedulers will
run on core 0 else they will run on their respective core. This mechanism
is used during the thermal calibration tests of the platform, see 6.1.

• activate(): This function sets the activation state variable to ”activated”
and it activates all EDF schedulers. If the EDF schedulers have not been
initialized it will first initialize the EDF schedulers by calling the member
function initialize().

• deactivate(): This function sets the activation state variable to ”deacti-
vated” and all EDF schedulers are deactivated.

• finishedJob(): This function prints an error message as this function (which
originates from the scheduler class) should never be called.

• join(): All EDF schedulers are joined, then the thread itself is joined.

• newJob(): This function prints an error message as this function (which
originates from the scheduler class) should never be called.

• partitionTasks(): This function takes a list of runnables (servers and work-
ers) and partitions them to the different EDF schedulers according to the
core on which they should run on.

• schedule(): This function is the thread itself. It is an empty function and
will terminate immediately after test run start. The PrePartitionedEDF
scheduler is only used for initializing the test run, no scheduling is done by
the thread itself.

• updateRunnable(): This function prints an error message as this function
(which originates from the scheduler class) should never be called.

• initialize(): This function starts the threads of all the EDF schedulers.

B.3 TI server

As described in 3.1 the implementation consists of 4 components. 3 of these
components are new extensions to HSF. In the following the 3 new thread types
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are described in detail. The TI-Server thread is implemented in a class called
TIS, see B.3.1. The TIS-dispatcher has been implemented is the TISDispatcher
class, see B.3.3. The third component, the Server-TTL is implemented in the
class described in B.3.2.

B.3.1 The TIS class

The TIS class is the principle component of the TI-server implementation. It
implements the TI-Server thread and it defines all functions that are needed for
interaction with the TI-Server thread. In the following find a description of all
the functions defined in this class:

• activate(): This function sets the priority of the server to its active priority
(server priority see 3.2.1 and starts the TTL countdown (see B.3.2). In
addition to that, the function activates the last worker if this one did not
finish its job in the previous active period. Finally the activation function
also frees the activation and event semaphore that are needed by the server
in order to be able to serve the load.

• deactivate(): This function is the opposite of the previous function. It
first deactivates the server-ttl (see B.3.2). It then deactivates the current
worker if this one has not been deactivated previously. This is the case if
the server is deactivated while the worker has not finished its job yet. After
deactivating all load the TIS-dispatcher is activated(see B.3.3) in order to
initiate the TI-Server cool-down period. Finally the priority of the server
thread is lowered to the inactive priority.

• join(): This function first joins the parent scheduler of the server. It then
joins the the server-ttl thread. After joining the two threads, that are
directly linked to the server, the function frees all semaphores and then
joins the server thread.

• new job(): This function has exactly the same functionality as the new job()
function of the EventBased class. Its purpose is to register a new job into
the job queue (‘”active queue ”). In this queue the load of the server is
defined. It also frees the event semaphore in order to register an event for
the server thread itself, which will then handle that event if active. The
function is called by the worker assigned to the server.

• finished job: This function is the same as the equivalent EventBased func-
tion and it registers if a worker has finished its task. The event semaphore
is freed in order to regiseter an event for the server thread. The function
is called by the worker assigned to the server.

• overrunJob(): This function is the same as the equivalent EventBased
function and it registers if a worker has overrun. Same as before the event
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semaphore is freed. The function is called by the worker assigned to the
server.

• updateRunnable(): This function again has an equivalent in the EventBased
class and its purpose is to update the active queue if a worker changes its
criteria. The function is again called by the worker that is assigned to the
server and it too frees the event semaphore.

• serve(): This function is the function that is executed by the server thread
itself. Its purpose is to handle incoming events and to activate and deacti-
vate workers. The serve function is very similar to the schedule() function
in the EventBased class. The server function consists of a while loop that
checks if the test run is still active. Inside the loop the function first waits
for the activation and the event semaphore. After that the respective events
are handled same as in schedule. If the server has no events left and the
server is still active, meaning that there is some time of the TTL left, then
the server sends a signal to the server-ttl thread in order to terminate early.
In consequence the server thread is deactivated.

• setCooldown(): This function sets the cool-down time tc of the server and
is called by the parse class.

• setTTL(): This function sets the active time ta of the server and is called
during the initialization of the test run by the parse class.

• handleUpdate(): Is equivalent to the handleUpdate function of the Event-
Based class. It erases the old entry of the updated runnable in the active
Queue and inserts the new entry.

• handleOverrun(): Same as in EventBased.

• handleFinish(): This function is equivalent to the handleFinish() function
of EventBased. It deletes the finished runnable from the active queue and
updated the current runnable.

• newPeriod(): This function is called by the TIS dispatcher (see B.3.3) after
a cool-down period. It registers a new job at the EDF scheduler. The EDF
scheduler then in turn will activate the TI-server.

• finishedPeriod(): This function is called by the server-ttl thread (see B.3.2).
All worker that have been activated during the previous period are send a
Signal that will block them from execution.(for more details see ??). After
that the finishedJob function of the EDF is called in order to register a
finished job. The EDF will deactivate the server as a consequence.
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B.3.2 The Server-TTL

The Server-TTL class is the implementation of the Server-TTL thread. The
TTL sleep time of the thread is done with clocknanosleep()[1]. When the thread
wakes up it calls the finishedPeriod() function of the TIS class in order to register
a ”finished Period” event at the EDF scheduler.
If the TI-server is active but has no load left, it will send a signal to its server-ttl.
This will cause the clocknanosleep to interrupt and the finishedPeriod() call will
be made early. Below is a list of all the functions defined in the Server TTL
class:

• activate(): this function sets the priority of the thread to the dispatcher
priority (see 3.2.1. It also frees the active semaphore and sets the state
variable to “activated”.

• deactivate(): This function sets the priority of the thread to inactive pri-
ority 3.2.1. It sets the state variable to “deactivated”.

• join(): This function will set the state variable to “activated”, it will free
the active semaphore and it will then join the thread.

• getTTL(): This function returns the TTL.

• getRemain(): This function returns the remaining time of TTL if the clock-
nanosleep() is interrupted.

• setTTL(): This function sets the TTL.

• signalHandler(): This function causes the clocknanosleep() to interrupt but
it does nothing else.

• wrapper(): This function executes the server-TTL activity described above
in a while loop that checks if the test run is still active. It is executed by
the server-TTL thread.

B.3.3 The TISDispatcher

The TISDidpatcher is class that defines the TIS-dispatcher thread. For sleeping
the clocknanosleep() function is again used, same as in the implementation of the
Server-TTL. After wake-up the newPeriod() function of the TIS class is called
and a ”new period” event is registered at the EDF scheduler.
Below find a list of all the functions defined in the TISDispatcher class:

• activate(): This function activates the dispatcher by freeing the active
semaphore and by setting the priority of the dispatcher to the dispatcher
priority (see 3.2.1).
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• join(): This function will first join the corresponding TI- server. Then the
active semaphore is freed and the dispatcher thread is joined.

• dispatch(): This function is the function that is executed by the dispatcher
thread itself. It executes the above described behaviour in a while loop
that is checking if the test run is still active

• getCooldown(): This function returns the cool-down time.

• setCooldown(): This function enables to set the cool-down time and is
called during initialization by the parser.

• setTIS(): This function sets the links the TI-server with the TISDispatcher.
This function is called during initialization by the parser.



Appendix C

Creating an XML file for
TI-Server experiments

In order to execute any simulation with HSF an XML file has to be created which
can then be parsed by HSF. In this section all elements that are needed for the
simulation of a TI-Server are explained.

C.1 main Element, the Simulation element

The XML file is composed of one main element in which all Schedulers, servers
and workers are defined. The element has one attribute defining the duration of
the simulation. The Simulation element thus looks as follows:
¡simulation name=”...”¿
¡duration value=”...” unit=”...”/¿
...
...
...
¡/simulation¿

”name” is the name of the simulation and can be any string.
”value” takes an integer.
”units” takes ”h” if the duration is given in hours, ”min” when in minutes, ”sec”
when in seconds, ”ms” when in milliseconds, ”us” when in microseconds and
”ns” when in nanoseconds.

C.2 runnable element

After defining the Simulation element, this one is filled with runnable elements.
The runnable elements have a ”type” value defined. This devides the runnable
element into 3 classes, the scheduler, the server and the worker. Each class has its

14
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unique properties and variables. In C.2.1, C.2.2 and C.2.3 the different runnable
will be explained.

Here is the basic definition of the runnable element:
¡runnable type=”...” ... ¿
...
...
¡/runnable¿

C.2.1 Scheduler type

The scheduler runnable element has a additional value, the ”algorithm”. In this
project the following values are needed:

• ”ppEDF” this creates an pre partitioned EDF scheduler see ??. As an
additional attribute this element takes ”cores”= an integer value indicating
the number of used cores.

• ”thermal calib” is the same as ”ppEDF” except that all schedulers and
dispatchers are running on core 0.

• ”TI Server” is exactly the same as ”ppEDF” under a different name

• ”EDF” creates an EDF scheduler. This is only defined on core 0 for the
moment. If more cores should be used use ”ppEDF”.

In the following example a ppEDF scheduler with 4 cores is represented:

¡runnable type=”scheduler” cores=”4” algorithm=”ppEDF” ¿
...
...
¡/runnable¿

Inside the scheduler runnable workers and schedulers can be defined. With this
a scheduler hierarchies can be build. The lower a scheduler is in the hierarchy
the lower its priority level is. In ppEDF, thermal calib, TI Server, and all event
based schedulers servers can be defined. For all other scheduler servers are not
yet implemented.

C.2.2 Server type

The scheduler runnable element has a additional value, the ”server type”. The
only used value is:
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• ”TIS” creates a thermal isolation server see ??. For the thermal isolation
server 3 diffrent attrbutes have to be defined, the core attribute setting
the core on which the server runs, the TTL attribute which sets maximum
active time of the server and the cooldown this defines the cooldown time
of the server.
Exemple:
¡runnable type=”server” server type=”TIS” ¿
¡core value=”0” /¿
¡cooldown value=”10” units=”ms” /¿
¡TTL value=”10” units=”ms” /¿
...
...
¡/runnable¿

Inside a Server element worker elements can be defined. These workers then
represent the load of the respective server.

C.2.3 Worker type

The last element is the worker element. The worker gets two new values. The
task value defines the task that will be executed by the worker. Currently
”busy wait” and ”temp meas” are used in this theses. The second value is the
periodicity. It can be ”periodic”, ”aperiodic”, ”sporadic” or ”periodic jitter”.
Depending on the periodicity the worker will have different attributes.

• If ”periodic” then the worker has an period attribute
¡period value=”10” units=”ms” /¿

• If ”sporadic” no additional attribute is needed.

• If ”periodic jitter” then period and jitter attributes are needed
¡period value=”10” units=”ms” /¿
¡jitter value=”1” units=”ms” /¿

• If ”aperiodic” then release time is needed
¡release time value=”10” units=”ms” /¿

All worker element has a wect attribute ¡wect value=”10” units=”ms” /¿

C.3 element hierarchy

In order to build larger and complex schedulers a hierarchy of the elements
described in C.1 and C.2.Here are the most important rules to follow in order to
build a successful simulation:
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• The heighest element in the hierarchy always has to be an simulation ele-
ment.

• Inside the simulation element a level 0 (heighest level) scheduler has to be
defined first. This can be any scheduler type. But type ppEDF TI Server
and thermal calib have to be level 0

• inside the level 0 scheduler a hierarchy of schedulers, servers and workers
can be defined as described in C.2.1, C.2.2 and C.2.3.

C.3.1 TI-Server example

Here is an example of TI-Server simulation. In this simulation 4 cores are used.
On core 0 an EDF scheduler is scheduling 2 workers. The first worker is measur-
ing the temperature of all cores in 1 ms intervals. The second worker executes a
busy wait task with period

Listing C.1: Test

1 <s imu la t i on name=” t i s ”>
2

3 <durat ion value=”6” un i t s=” sec ”/>
4

5 <runnable type=” schedu l e r ” co r e s=”4” a lgor i thm=”TI Server ”>
6

7 <runnable type=”worker” p e r i o d i c i t y=” pe r i o d i c ” task=”temp meas”>
8 <core va lue=”0”/>
9 <per iod value=”1” un i t s=”ms” />

10 <wcet value=”100” un i t s=”us” />
11 <r e l a t i v e d e a d l i n e va lue=”1” un i t s=”ms” />
12 </ runnable>
13

14 <runnable type=”worker” p e r i o d i c i t y=” pe r i o d i c ” task=”busy wait ”>
15 <core va lue=”0”/>
16 <per iod value=”10” un i t s=”ms” />
17 <wcet value=”5” un i t s=”ms” />
18 <r e l a t i v e d e a d l i n e va lue=”10” un i t s=”ms” />
19 </ runnable>
20

21 <runnable type=” s e rv e r ” s e r v e r t yp e=”TIS”>
22 <core va lue=”1”/>
23 <cooldown value=”5” un i t s=”ms” />
24 < t t l va lue=”5” un i t s=”ms” />
25

26 <runnable type=”worker” p e r i o d i c i t y=” pe r i o d i c ” task=”busy wait ”>
27 <core va lue=”1”/>
28 <per iod value=”25” un i t s=”ms” />
29 <wcet value=”10” un i t s=”ms” />
30 <r e l a t i v e d e a d l i n e va lue=”25” un i t s=”ms” />
31 </ runnable>
32
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33 </ runnable>
34

35 <runnable type=” s e rv e r ” s e r v e r t yp e=”TIS”>
36 <core va lue=”2”/>
37 <cooldown value=”3” un i t s=”ms” />
38 < t t l va lue=”7” un i t s=”ms” />
39

40 <runnable type=”worker” p e r i o d i c i t y=” pe r i o d i c ” task=”busy wait ”>
41 <core va lue=”2”/>
42 <per iod value=”10” un i t s=”ms” />
43 <wcet value=”6” un i t s=”ms” />
44 <r e l a t i v e d e a d l i n e va lue=”10” un i t s=”ms” />
45 </ runnable>
46

47 </ runnable>
48

49 <runnable type=” s e rv e r ” s e r v e r t yp e=”TIS”>
50 <core va lue=”3”/>
51 <cooldown value=”6” un i t s=”ms” />
52 < t t l va lue=”4” un i t s=”ms” />
53

54 <runnable type=”worker” p e r i o d i c i t y=” pe r i o d i c ” task=”busy wait ”>
55 <core va lue=”3”/>
56 <per iod value=”20” un i t s=”ms” />
57 <wcet value=”5” un i t s=”ms” />
58 <r e l a t i v e d e a d l i n e va lue=”20” un i t s=”ms” />
59 </ runnable>
60

61 </ runnable>
62

63 </ runnable>
64

65 </ s imu la t i on>
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1 Project Description

Mixed-Criticality is emerging as a significant trend for future computer systems, e.g.
automotive, avionics, medical and cloud systems. For such systems, applications
of different safety/security criticality levels share a common commercial-off-the-
shelf computing platform, to meet increased performance demand and to reduce
system cost. The ultimate design goal for mixed criticality systems is to provide
different levels of assurance to applications of different criticality levels, while the
main difficulty is that resource sharing could lead to mutual interferences among
critical and non-critical applications, jeopardizing safety/security guarantees.

Meanwhile, all modern processing platforms are thermally constrained i.e. their
temperature has to be below a threshold to ensure safe operation. With continuously
shrinking feature sizes of circuits, power densities of processors have increased
rapidly. This increase in power density corelates to increase in temperature; making
temperature an increasingly stringent design constraint. In a mixed-criticality
setting, temperature could greatly affect system reliability; possibly even lead to
system failure due to thermally-triggered shutdown. Therefore, it is imperative to
consider thermal constraints while designing mixed-criticality systems.

2 Project Goals

As part of this thesis, you will develop an evaluation framework for testing mixed
criticality thermal protection mechanisms on a hardware testbed. The hardware
testbed will comprise of an x86 platform running Ubuntu. Depending on your
interest, you may also work on algorithm development/extension and theoretical
analysis. The tasks of this thesis are detailed as follows:

• Understand the basic building blocks of the scheduling framework. These
include POSIX threads, RTPreempt Linux kernel patch.

• Prepare the evaluation platform for development.

• Build a basic scheduling framework that is able to spawn realtime tasks
according to a static schedule.

• Integrate a thermal model developed by the project supervisors into the
scheduling framework.

• Build a “thermal isolation” server that is able to regulate execution of Lo
Criticality applications to guarantee thermal isolation.

• Perform evaluation experiments on the hardware.

The evaluation experiments should demonstrate:

• The working of the thermal isolation scheme

• In case of deviations from the expected result, the reasons for deviations should
be clearly explained and mitigation strategies should be proposed.
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3 Project Tasks

3.1 Get to know the building blocks

the building blocks include:

1. RTPreempt Linux kernel patch[2]: With this kernel patch, the kernel gains
“hard” realtime capabilities. As part of this task, RTPreempt patch will be
applied to a linux installation.

2. POSIX Threads [1]: POSIX thread libraries allow a user to spawn threads with
different properties (priority, core affinity e.t.c.). In this thesis our realtime
processes will be POSIX threads.

Due Date: 2 Weeks

3.2 Get to know the existing code/framework

We currently have the following two modules implemented:

1. The meter app periodically reads processor temperature and dumps its value
in a log file.

2. SF3P[3]: This is a scheduling framework developed here at TIK for fast
prototyping of scheduling algorithms. It may be easier to add thermal
protection to SF3P.

there modules can give you a good starting point on how to build/evaluate scheduling
algorithms and how to record temperature traces.
Due Date: 1 Week

3.3 Building the basic hypervisor

The basic hypervisor receives a static schedule as a text file and executes that
schedule by spawning POSIX threads and issuing sleep/run commands according
to the schedule. Ability to assign real-time priorities to threads and to set core
affinity of different threads is important. Hypervisor should also have a lightweight
module which periodically monitors/logs system temperature. You will need to
verify that SF3P has these capabilities; and where missing, add these capabilities.
Due Date: 2 Weeks

3.4 Explore different source applications

Typically, the heating of a given core is application dependent (Different applications
have different thermal characteristics). In this task you will try to build applications
have different thermal characteristics.
Due Date: 1 week

3



3.5 Build the LO Scheduler

Based on the scheme developed by project advisers, implement the LO scheduler.
The LO scheduler should be able to support various LO criticality servers which are
assigned thermal budgets. Tasks of a given LO server are only allowed to execute if
sufficient budget is available. Budget consumption and replenishment mechanisms
will also need to be implemented.
Due Date: 5 Weeks

3.6 Perform evaluation experiments

Perform experiments illustrating that the proposed thermal protection mechanism
works. In case of deviation from this expectation, the reasons for deviation should
be clearly explained and possible mitigation strategies should be proposed.
Due Date: 1 Week

3.7 Finalizing report/final presentation

The last few weeks of this project will be left for writing report and preparing the
presentation. It is highly recommended that you should keep working on the report
continually as you progress through the project.
Due Date: 2 Weeks

3.8 Participate in the theoretical development of the thermal protection
scheme (Optional)

Depending on your interest, you may participate in the development of the actual
thermal protection mechanism. You contribution may include:

• An optimal scheme for assigning budgets to Lo criticality servers.

• Given a thermal budget, try to give some timing guarantees.

3.9 Write a paper (Optional)

This work can result in a research paper, in case the results from the previous tasks
are satisfying a research paper can be written together with the advisors.

4 Project Organization

4.1 Weekly Meeting

There will be a weekly meeting to discuss the project’s progress based on a schedule
defined at the beginning of the project. A progress report should be provided at
least 24 hours before the meeting.
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4.2 Report

A hard-copy of the report is to be turned in. The copy remains the property of the
Computer Engineering and Networks Laboratory. A copy of the developed software
needs to committed to the SVN repository at the end of the project.

4.3 Initial and Final Presentation

In the first month of the project, the topic of the project will be presented in a
short presentation (less than 5 minutes) during the group meeting of the Computer
Engineering Lab. The duration of the talk is limited to three minutes. At the end of
the project, the outcome of the project will be presented in a 15 minutes talk, again
during the group meeting of the Computer Engineering Lab.

4.3.1 Grading

The grading will be based on the departement regulation and take into consideration
all the aspects of the students work during the project. In order to complete the
project with a positive grading, the minimal requriements torwards the student are
to complete the tasks 3.1 - 3.7
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