
Institut für
Technische Informatik und
Kommunikationsnetze

Piet De Vaere

Continuous Measurement of
Internet Path Transparency

Semester Thesis SA-2016-68
October 2016 to January 2017

Tutor: Prof. Dr. Laurent Vanbever
Supervisor: Dr. Mirja Khlewind
Supervisor: Brian Trammell

2

Abstract

In this thesis, a framework for the continuous measurement of internet path transparency is
developed and tested. This framework allows for the scheduled and automated orchestration of
internet measurements using cloud computing infrastructure. Furthermore, integration with the
Path Transparency Observatory (PTO) — a service providing automated measurement analysis —
is provided. To test the measurement system, a study of internet path transparency for Explicit
Congestion Notification (ECN) was performed. Two noteworthy results from this study are that
ECN path dependency varies greatly over time, and that there is a strong link between ECN path
dependency and nationwide internet censorship.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals . 6
1.3 Overview . 7

2 Background 9
2.1 PATHspider . 9
2.2 Path Transparancy Observatory (PTO) . 10
2.3 SaltStack . 10
2.4 Alexa Top Million . 11

3 Design and Implementation 13
3.1 General Considirations . 13
3.2 Architecture Selection . 13
3.3 Campaign Configuration . 15
3.4 PATHspider Modifications . 16
3.5 SaltStack Implementation . 17

3.5.1 SaltStack Module . 17
3.5.2 SaltStack State Logic . 17

4 First Application: ECN 21
4.1 Introduction and Background . 21

4.1.1 Explicit Congestion Notification (ECN) . 21
4.1.2 PATHspider ECN plugin . 21

4.2 Implementation . 22
4.2.1 PATHspider Modifications . 22
4.2.2 Analyzer Modules . 23
4.2.3 SpiderWeb Configuration . 24

4.3 Results . 27
4.3.1 State of ECN Path Transparancy . 27
4.3.2 ECN and Internet Censorship . 29

5 Conclusion 33

6 Future Work 35

Bibliography 37

A List of Acronyms 39

B Implementation Information 41

C Results of the ECN Study 45

3

4 CONTENTS

4

Chapter 1

Introduction

1.1 Motivation

Just like about everything else in this world, the internet started small. In its beginning, it
consisted of only a handful of computers, managed by a close group of researchers. Routing tables
were configured by hand, links were well known, and the number of protocols was limited. In
fact, in its early days, the entire Advanced Research Projects Agency Network (ARPANET) — the
technical foundation of the internet — could easily be drawn in a simple diagram, as is shown in
Figure 1.1.

Figure 1.1: Logical map of ARPANET in April 1971. Ovals represent hosts. Squares represent
interface message processors, the predecessor of the modern router. Image from the ARPANET
completion report [1].

Much has changed since these early days. It is estimated that, at the time of this writing, 3.5
billion people are using the internet [2]. As a consequence of this massive scale-up, the internet
has grown beyond the complexity that an individual human can understand. However, not only
its large scale makes the internet so complex. Other factors, for example, the introduction of
middleboxes, have also added to its intricacy. Middleboxes are loosely defined as any device that

5

6 1.2. GOALS

Figure 1.2: A Zyxel USG60 firewall, a typical example of a middlebox. Image from http://
zyxel.ch

manipulates Internet Protocol (IP) packets for purposes different from packet forwarding [3]. For
example, a firewall as shown in Figure 1.2 qualifies as a middlebox.

Furthermore, because of its decentralized nature, the internet is not homogeneous. For example,
some internet middleboxes treat certain protocols differently than others. This can be intentional
(e.g. for security purposes), or unintentional (e.g. because of misconfiguration or out of date
software). In any case, this greatly increases the difficulty of rolling out a new protocol, protocol
version or protocol extension. After all, it could be that there are middleboxes impeding the
proper functioning of this new protocol.

Unfortunately, there is no better way to determine if this is the case than to perform large scale
internet measurements. Therefore, the measurement and architecture for a middleboxed internet
(MAMI) project has developed PATHspider [4], an active measurement tool that is designed to
measure if datagrams get mangled while travelling over a network. When this is the case, it is said
that the path the datagram was routed over is not transparent. To measure path transparency
using PATHspider requires coordinated measurements from multiple locations. Furthermore, as
internet path transparency is dynamic, periodic measurements have to be performed to keep track
of how it evolves. When performed manually, setting up and running these measurements can be
a tedious task.

This thesis contributes to the work the MAMI project has been doing by designing a system for
automated, periodic, PATHspider measurements. Thus allowing for the continuous measurement
of internet path transparency.

1.2 Goals

The main goal of this thesis is to facilitate the continuous measurement of internet path trans-
parency. In order to accomplish this, an automated measurement framework will be designed.
This framework should have the following properties:

1. It should be possible to perform measurements from a large variety of measurement points.

2. Measurement campaigns should be cost effective.

3. The framework should be compatible with PATHspider.

4. Measurements should be automated: after the initial configuration of a periodic measurement
campaign, no human intervention should be necessary.

5. The framework should be flexible, and designed for future expandability.

6. The measurements should be automatically analysed.

6

http://zyxel.ch
http://zyxel.ch

CHAPTER 1. INTRODUCTION 7

1.3 Overview

This thesis consists of two main parts. First, a platform for automated PATHspider measurements
is designed and implemented. Next, a demo study on internet path transparency for Explicit
Congestion Notification (ECN) is conducted on this platform.

The remainder of this document is structured as follows. First, Chapter 2 provides background
information on the most important components used in this work. Second, Chapter 3 describes
the design of the measurement framework. Third, Chapter 4 documents the demo application of
this framework. Finally, conclusions and future work are reported in Chapters 5 and 6, respec-
tively.

Most code produced for this work is publicly released and can be accessed on https://github.
com/mami-project/.

7

https://github.com/mami-project/
https://github.com/mami-project/

8 1.3. OVERVIEW

8

Chapter 2

Background

The work presented in this thesis uses a number of pre-existing components. The most important
of these components are introduced in this chapter. When the reader is already familiar with some
of these components, the corresponding sections can be skipped without problem.

2.1 PATHspider

PATHspider is a tool for measuring internet path transparancy [4]. That is, it can be used to de-
termine if the internet is transparent for a certain protocol, protocol extension, or protocol version.
Support for different types of measurements is provided through user writeable plugins.

When provided with a list of measurement targets, PATHspider will attempt to connect to each
of the specified hosts twice. First, a baseline is established by connecting to the host using a well
known and universally supported protocol. Next, a second connection attempt is made using the
protocol under test. This is illustrated in Figure 2.1. Based on the results of both connections, it
can be determined if the protocol under test is fully functional or not.

Figure 2.1: Schematic representation of a PATHspider measurement. First, PATHspider attempts
to connect to the host using protocol A. Next, a connection using protocol B is attempted.

However, when the protocol under test fails, a single PATHspider instance can not determine
whether the problem lies with the target host, or if something on the network path is obstructing
the connection. Therefore, multiple measurements should be made, each from a different location
on the internet, as shown in Figure 2.2. When some, but not all, of these measurements show that
the protocol under test is functional, that must mean that the problem lies on the network. After
all, it is confirmed that connectivity to the target host using the protocol under test is possible.
Thus, by combining the results from these measurements, it can be determined if certain paths
are impeding protocol functionality. When this is the case, we say that the protocol under tests
exhibits path dependency.

9

10 2.2. PATH TRANSPARANCY OBSERVATORY (PTO)

Figure 2.2: Schematic representation of a distributed PATHspider measurement. By performing
PATHspider measurements from different locations on the internet, protocol path dependency can
be determined.

2.2 Path Transparancy Observatory (PTO)

In order to determine if there is path dependency, the results from multiple PATHspider measure-
ments have to be combined and analysed. This is done by the Path Transparency Observatory
(PTO) [5]. The PTO provides a number of services:

The upload service provides a RESTful application programming interface (API) that
can be used to upload (raw) measurement data to the PTO. The upload service also allows
for metadata to be uploaded alongside the measurement data.

The analyzer engine monitors the uploaded measurement data, and executes analyzer
modules when new, relevant, data is available. These analysers are provided by the users
of the PTO, and can be arbitrary Python scripts. They generate output in the form of
observations, which are statements about conditions that have been observed on network
paths.

The observation database stores all observations generated by analysers. Analysers can
also query the database.

The web front end provides a user friendly interface to query the observation database.
It is intended to be the main way of extracting data from the PTO. At the time of this
writing, the web front end is under active development, and only an alpha version is avail-
able.

2.3 SaltStack

SaltStack, or Salt for short, is an open source remote execution and configuration management
system [6]. It is targeted mainly at the management of cloud based computing infrastructure. A
typical SaltStack setup consists of two types of nodes: a single master node, and multiple minion
nodes. The master is usually an always up component. When a minion starts, it will connect
to the master, and a bidirectional communication channel is established. The master can send
commands to all connected minions. The minions execute these commands, and report back to
the master using events. This is illustrated in Figure 2.3.

Besides this basic functionality, Saltstack provides many additional features. These include:

• A reactive state management system, allowing the master to automatically respond to events.

10

CHAPTER 2. BACKGROUND 11

• A cloud provisioning module, allowing the master to create and destroy of minions.

• A secure file server, allowing the minions to retrieve files from the master.

• Both client and server side variable stores.

Figure 2.3: Schematic representation of a typical SaltStack infrastructure setup. A single, always
up, master is connected to multiple minions. The master sends commands to the minions, and
the minions generate events.

2.4 Alexa Top Million

The Alexa top million is an ordered list of the top million most popular websites. The list is sorted
according to the Alexa traffic metrics [7], and has long been the de facto standard target list for
internet measurement.

Although the list is made freely available by the Alexa Internet company, it has recently been
announced that it will be replaced by a paid service in the near future. The MAMI Public Target
List [8] strives to provide an open alternative to the measurement community, and can be used
for future measurement campaigns.

11

12 2.4. ALEXA TOP MILLION

12

Chapter 3

Design and Implementation

3.1 General Considirations

Based on the first two requirements put forward in Section 1.2, it was decided to base the mea-
surement framework on cloud computing. This does not only allow for measuring from a variety
of different locations (Requirement 1), but is also cost effective (Requirement 2). The later is
true because measurement nodes can be created when they are needed, and destroyed once the
measurement is complete. This means that the user is only billed for the measurement infras-
tructure while the measurements are taking place. In order to be compatible with PATHspider
(Requirement 3), Linux based servers should be used.

The automatic analysis of the measurements (Requirement 6), can be accomplished by using the
Path Transparency Observatory (PTO) (See Section 2.2). As the PTO was designed specifically
for this purpose, this was a natural decision.

For the two remaining requirements — automated measurements and flexibility —, there is no
readily available solution. Therefore, one will have to be designed. The requirement to have
automated periodic measurements (Requirement 4), suggests that an orchestration component
will be needed. As this is not commonly provided as a service, this component will have to be
implemented on a self managed server. As this server should be able to start measurements at
any time, it must be always up. The last remaining requirement is flexibility (Requirement 5).
Because this does not easily translate into a single design decision, it will be used as a decision
criterion throughout the entire design process.

3.2 Architecture Selection

From the previous section, it follows that at least three components will be needed: an always
up orchestration server, cloud based measurement nodes and the PTO. These components can be
organised in a number different ways, the two most sensible of which are shown in Figure 3.1.

The setup in Figure 3.1(a) is the simplest, because it eliminates the need for result handling on
the orchestrator. Furthermore, uploading the results directly to the PTO also puts less load on
the orchestrator. On the other hand, by letting all results pass through the orchestrator — as in
Figure 3.1(b) —, it becomes possible to do a first analysis on the data before passing it on to the
PTO.

Because it is the philosophy behind the PTO that as much raw data as possible should be stored,
and because it adds the least amount of complexity, the architecture in Figure 3.1(a) will be used.

13

14 3.2. ARCHITECTURE SELECTION

(a) The orchestrator sends measurement commands to the measurement
nodes. The measurement nodes send their results directly to the PTO.

(b) The orchestrator sends measurement commands to the measurement nodes.
It also receives the measurement results, and forwards these to the PTO.

Figure 3.1: Schematic representations of two possible measurement architectures.

This can be done without compromising in flexibility, as the results are uploaded to the PTO using
a RESTful API. Thus, by running a command compatible API on the orchestrator, and pointing
the measurements nodes to it, the architecture from Figure 3.1(a) can effectively be transformed
into the architecture in Figure 3.1(b).

Now that a decision has been made on the general architectural structure that will be used, the
measurement system can be developed in more detail. To keep costs low, the cloud based mea-
surement nodes should only be online while a measurement is taking place. Thus, the orchestrator
should not only be able to send commands to the measurement nodes, but should also be able to
create them. Because creating and setting up cloud servers is a complex process, it was decided
to use SaltStack, a cloud management framework (see Section 2.3). This provides a number of
advantages:

• Cloud server creation is largely simplified. Creating and connecting to a cloud server can be
done with a single command.

• Cloud server creation is largely abstracted. SaltStack has out-of-the-box support for more
than twenty cloud providers, and after initial configuration, all provider specific settings are
abstracted away.

• A secure and bidirectional communication channel is automagically created between the
orchestrator and the measurement nodes.

• Integration with a large number of tools (e.g. Slack [9]) is provided.

• Configuration can be done using a high level and modular system, eliminating the need for

14

CHAPTER 3. DESIGN AND IMPLEMENTATION 15

Figure 3.2: Schematic representations of the complete measurement architecture.

long and unwieldy (shell) scripts.

Because the orchestrator will create and configure all measurement nodes, there are only two ele-
ments of the measurement infrastructure the user should interact with. These are the orchestrator
(to configure measurement campaigns), and the PTO (to configure measurement analysers).

Adding the SaltStack and the user to the architecture in Figure 3.1(a), results in the final archi-
tecture shown in Figure 3.2.

3.3 Campaign Configuration

Path transparency measurements are typically organized in campaigns. Each campaign consists
of the following:

A PATHspider configuration determining the kind of measurement that will be made.

A target list specifying which communication endpoints will be tested.

A set of measurement locations determining where the measurements will take place
from.

A time schedule defining when the measurements runs will take place.

To allow the user to efficiently configure and schedule measurement campaigns, SpiderWeb was
created. SpiderWeb is a tool that can read out campaign configuration files (see below), and can
instruct SaltStack to perform a measurement run. By using a time-based job scheduler (e.g. Cron
[10]), periodic measurements can be performed.

A campaign configuration file should be JavaScript object notation (JSON) formatted, and should
contain the properties specified in Table B.2. Listing 3.1 shows an example configuration file.
What follows is a line by line explanation of this example.

The first property sets the name of the measurement campaign.

1 {
2 "campaign ": "modern -times",

15

16 3.4. PATHSPIDER MODIFICATIONS

Next the argument string that will be passed to PATHspider is specified. Before this string is
actually passed on to PATHspider, it will be processed by the PATHspider execution module (see
Section 3.5.1). There, the Python format() function will be applied to it. This will substitute all
bracketed expressions by the value stored under that key in the SaltStack local variable store. All
properties of the campaign configuration file are also made available in the local variable store, so
they can be used as well. In this example, {campaign} represents the campaign name specified
on line 2, {id} represents the hostname of the measurement node and {cloud_location} the
physical location of the measurement node.

3 "pathspider_args ": "--pto -campaign {campaign} --pto -url
’https :// observatory.com/hdfs ’ --pto -api -key 1337
--pto -filename {id} --pto -location {cloud -location} ecn",

On line 4, the location of the PATHspider input file is specified. This is the location of the file on
the orchestrator. This file will automatically be copied to all measurement nodes.

4 "input_file ": "/ target_list.csv",

The minions property specifies what measurement nodes should be used. The key of every entry
is a SaltStack cloud profile (cloud profiles are a mechanism used to predefine cloud servers), and
the value is the number of measurement nodes to be spawned. In this example, 3 nodes will be
spawned of each profile. Each of these nodes will independently measure every endpoint in the
input file.

5 "minions ":
6 {"do -nyc2 -2048": 3,
7 "do -sfo1 -2048": 3,
8 "do -ams3 -2048": 3
9 },

The final property specifies what measurement nodes should do when the measurement is com-
pleted, and the results uploaded to the PTO. The current options are destroy and None. The
former will cause the node to issue a request to be destroyed, the later will do nothing.

10 "when_done ": "destroy"
11 }

3.4 PATHspider Modifications

When a measurement is completed, the measurement nodes must upload their results to the PTO.
Because the ability to upload to the PTO is useful for a broad range of PATHspider measure-
ments, it was decided to add this functionality to PATHspider itself. In order to accomplish this,
PATHspider was modified so that it does not only writes measurement results to the regular out-
put file, but also writes the results to a temporary file that is compressed using bzip2. Once the
measurement is completed, PATHspider will upload this file to the PTO using its RESTful API.
A seperate, bzip2 compressed file is used, because PATHspider outputs can be gibibytes in size,
but are also highly compressible. Space savings of 95 % are not uncommon. Together with every
upload, PATHspider also uploads metadata. This metadata includes: the measurement tool used,
the PATHspider version, the dataformat, the measurement campaign, the location of the measure-
ment server, and the timespan of the measurement. The former three entries tell the observatory
how to interpret the data. The later three are used provide extra context to the analyzer modules,
and to determine which uploads should be analyzed together.

The upload functionality is provided to the PATHspider user using a number of command line flags
to set the location of the PTO, the PTO credentials, the measurement campaign, the measurement

16

CHAPTER 3. DESIGN AND IMPLEMENTATION 17

Figure 3.3: Flowchart of the PATHspider SaltStack execution module program flow.

location and the target filename. A full overview of the options is given in Table B.1. All options
can also be specified in a JSON formatted configuration file. Settings passed via the command
line will overwrite the values in the configuration file.

3.5 SaltStack Implementation

As SaltStack will be used to orchestrate the measurements, an interface between SaltStack and
PATHspider must be designed. This interface is documented in Section 3.5.1. Next, Section 3.5.2
describes the orchestration logic.

3.5.1 SaltStack Module

One of the ways in which SaltStack supports remote code execution, is through the use of execu-
tion modules. These modules are Python scripts that are executed on the SaltStack minions, and
have access to the local variable stores, the SaltStack event bus and all other SaltStack compo-
nents.

To facilitate automated PATHspider measurements, a custom execution module was written. This
module does three things: it provides a wrapper for the invocation of PATHspider, it preprocesses
the PATHspider argument string, and it fires events informing the orchestrator about the state
of the measurement. A simplified version of the control flow of the execution module is shown in
Figure 3.3.

SaltStack events are identified by a tag, and contain a key-value store. Typically, this tag is a hi-
erarchical structure containing the most important event information. The PATHspider execution
module uses three types of tags. They are listed in Table B.3. Each of these tags is appended
with the hostname of the measurement node generating the event. The content of each event also
follows a predefined scheme. The fields in this scheme are listed in Table B.4, and Listing 3.2
shows an example event.

3.5.2 SaltStack State Logic

Now that SaltStack can interface PATHspider, the measurement state logic must be configured.
This is done using the SaltStack reactor module. The reactor module can be used to configure the
orchestrator to automatically execute commands when certain events are received. The orches-
trator can then instruct the measurement servers to execute a new set of tasks. Figure 3.4 shows
the orchestration steps necessary to set up a measurement node and run a measurement.

The first step of this process is to request the cloud service provider to create a new measurement
server. Using SaltStack’s cloud module, this step is combined with the installation of the SaltStack
minion. Thus, with a single command, a new measurement server is created and connected

17

18 3.5. SALTSTACK IMPLEMENTATION

to the management infrastructure. Once the measurement server is ready, it will generate a
server started event. The orchestrator will react to this event by sending the startup tasks list
to the measurement server. The measurement server will use the task variable in its local variable
store to determine which tasks from the task list should be executed. When using SpiderWeb, the
task variable is automatically set to "pathspider", causing the measurement server to fetch the
PATHspider inputfile, and to install and execute PATHspider itself. SaltStack will use the custom
PATHspider execution module (see Section 3.5.1) to call the PATHspider command, and just before
the PATHspider command is invoked, this execution module will fire a spider started event.
The orchestrator will respond to this event by instructing the measurement node to advertise the
start of the measurement on Slack.

When the measurement is completed, and the results are uploaded to the PTO, the PATHspider
execution module will fire a spider completed event. The orchestrator will react to this event
by commanding the measurement server to send a Slack message. Once the Slack message is send,
the measurement server will issue a deletion request. This is done in the form of an event. When
the orchestrator receives this event, it will send a request to the cloud provider to destroy the
measurement node.

A number of things should be noted about this procedure:

• Most work is done on the measurement servers. This is intentional to keep the load on the
orchestrator low.

• Depending on the application needs, simple or complex tasks can be linked to events. In the
current implementation, some tasks are so simple that they might as well be executed on
the orchestrator (e.g. posting a message to Slack). However, to keep the system expandable,
it was chosen to move all work to the measurement servers.

• Only the orchestrator interacts with the cloud providers. This allows for better management
of the cloud service provider API-keys.

18

CHAPTER 3. DESIGN AND IMPLEMENTATION 19

Figure 3.4: Timeline showing the orchestration steps involved in performing a PATHspider mea-
surement using the SaltStack infrastructure.

19

20 3.5. SALTSTACK IMPLEMENTATION

Listing 3.1: An example SpiderWeb configuration file.

1 {
2 "campaign ": "modern -times",
3 "pathspider_args ": "-i eth0 -w50 --pto -campaign {campaign}

--pto -url ’https :// observatory.com/hdfs ’ --pto -api -key 1337
--pto -filename {id} --pto -location {cloud -location} ecn",

4 "input_file ": "/ target_list.csv",
5 "minions ":
6 {"do -nyc2 -2048": 3,
7 "do -sfo1 -2048": 3,
8 "do -ams3 -2048": 3
9 },

10 "when_done ": "destroy"
11 }

Listing 3.2: An example event generated by the PATHspider execution module. This specific event
is generated if PATHspider exceeds its maximum execution time.

1 /mami/pathspider/spider/failed/BEsjFVRfHN -do -sgp1 -2048 -1
2 {
3 ’finished ’: True ,
4 ’success ’: False ,
5 ’error ’: "Pathspider timeout",
6 ’message ’: None
7 }

20

Chapter 4

First Application: ECN

Based on the generic PATHspider measurement framework presented in Chapter 3, a first applica-
tion will be developed: the automated and continuous measurement of internet path transparency
for ECN. The example application will perform measurements over the Alexa top million on a
weekly basis.

4.1 Introduction and Background

4.1.1 Explicit Congestion Notification (ECN)

ECN is a protocol that allows routers to signal to hosts that network congestion is imminent, so
that hosts can proactively lower their data tramsission rate [11]. It is implemented as an extension
to both transmission control protocol (TCP) and IP, and is a fully optional feature.

During the TCP handshake, the use of ECN is negotiated as follows: in the SYN segment, an ECN
capable host sets both the ECN-echo (ECE) and congestion window reduced (CWR) flags of the TCP
header. When the receiving hosts responds with a SYN-ACK segment with the ECE flag set, but the
CWR flag not set, ECN is successfully negotiated.

During an ECN-enabled TCP session, all packets are marked with an ECN capable transport (ECT)
codepoint in the IP header. When a router on the path of the packet expects congestion to occur,
it may change the ECT codepoint to a congestion encountered (CE) codepoint. When a host receives
packet with the CE codepoint set on a socket, it will set the ECE flag in its next transmission over
that socket. The ECE flag is repeated until a segment with the CWR flag is received.

Previous work has shown that some internet middleboxes mangle segments or packets with the
ECN flags or codepoints set [12, 13] As a result of this, two ECN capable hosts might be unable to
establish a connection, or their connection might be otherwise disturbed. This shows the important
of ECN internet path dependency, and the relevance of charting it.

4.1.2 PATHspider ECN plugin

PATHspider ships with a plugin for measuring ECN path dependency. The measurement is per-
formed as explained in Section 2.1. First, a baseline measurement is made by attempting to open
a regular TCP connection with the target host. Next, a TCP connection attempt with ECN
negotiation is made. Once both connection attempts are made, a local, first analysis of the results

21

22 4.2. IMPLEMENTATION

is performed. More concretely, for each measurement target, it is tested if certain conditions are
observed. If they are, they are appended to the target’s output record.

The conditions that are tested for are listed below. In the following, ECN is said to be enabled
whenever its use was negotiated during the TCP handshake, regardless of whether or not that
negotiation was successful. For implementation purposes, the conditions are formalized using a
hierarchical naming scheme. These formal names can be found in Table B.5.

• The ECN connectivity condition provides information about the success of the PATHspider
connection attempts. Four different types of connectivity are defined. Firstly, ECN con-
nectivity if said to be working if it was possible to connect to a measurement target with
ánd without ECN enabled. Secondly, the connectivity is marked as broken if the connection
could only be made without ECN enabled. Thirdly, if the connection was only successful
with ECN enabled, connectivity is said to be transient. Finally, if both connection attempts
failed, the connectivity is marked as offline.

• The ECN negotiation condition provides information on whether or not ECN could be suc-
cessfully negotiated.

• The ECN ECT condition provides information on whether or not an ECT codepoint was
received.

• The ECN CE condition provides information on whether or not a CE codepoint was received.

4.2 Implementation

4.2.1 PATHspider Modifications

During testing it was found that PATHspider and its ECN plugin had multiple bugs and short-
comings that prevented the accurate measurement of path transparency.

These mostly include general logic and concurrency errors, that — although very time consuming
to resolve — are of limited interest to this thesis. Therefore, this section will only describe two
modifications made: the updating of PATHspider’s build-in Domain Name System (DNS) resolver,
and the addition of Hypertext Transfer Protocol (HTTP) requests to a measurement cycle.

Updates to the DNS resolver

As public measurement target lists (e.g. the Alexa top million, see Section 2.4) are typically
provided as a list of hostnames, but the PATHspider ECN module measures against IP addresses,
it is necessary to resolve the target lists to IP addresses before testing is performed. This can be
done using PATHspider’s bulk DNS resolver plugin.

Initially, this was done once, and the resulting list of IP addresses was used for all measurements.
However, it was noticed that over the period of a month, a significant number of webhosts would
change their IP address. This means that it is necessary to periodically reresolve the list of
measurement targets.

Because PATHspider’s bulk DNS resolver would only return the first IP address from the DNS
response, it was possible that the same hostname would resolve to a different IP address, even if its
DNS records did not change. This would complicate IP address based comparisons of measurement
targets with multiple A or AAAA records. The DNS resolver was therefore modified to return all
A and AAAA records from the DNS response. Furthermore, the resulting IP addresses are now
automatically deduplicated to prevent virtual hosting servers from being tested multiple times
during the same measurement run.

22

CHAPTER 4. FIRST APPLICATION: ECN 23

Table 4.1: The results of the bechmark of sending the HTTP request in the connect() versus
the post connect() function. connect() duration indicates the length of a single call to the
connect() function, Connection duration indicates the time elapsed between entering the first and
leaving the second connect() call, Measurement duration indicates the time needed to measure
a single target, and HTTP sucess ratio indicates the fraction of times the HTTP response was
sucesfully received.

Request in connect() Request in post connect()

mean standard deviation mean standard deviation

connect() duration [s] 0.258 0.872 0.256 0.876
Connection duration [s] 6.61 4.63 7.08 4.76
Measurement duration [s] 10.7 5.17 11.3 5.29
HTTP success ratio 0.992 0.001 0.952 0.003

Performing HTTP requests

Originally, the ECN plugin would close each of its connections to a measurement target without
transferring any data. Because TCP control segments do not usually have an ECT codepoint set,
this meant that no packets with ECT set would be received. To solve this problem, the plugin was
modified to perform a HTTP request before closing the connection.

When measuring multiple targets simultaneously, PATHspider will spawn multiple worker threads.
One for each measurement target. Because some protocol configurations — like the use of ECN —
are system wide, PATHspider includes a mechanism to synchronise the workers with the system
configuration. Every time it changes the system configuration, PATHspider will call the connect()
function of each worker. For an ECN measurement, this will happen twice per measurement cycle.
To avoid measuring time dependent features, the two connect() calls should be made as close
together as possible. This also means that the connect() functions should be as short as possible.
When more time consuming actions have to be performed, this can be done in the post_connect()
function, that is called after both connections are made.

Because HTTP requests are time consuming, they were initially performed in the post_connect()
function. However, it is not uncommon for the post_connect() call to be made ten seconds or
more after the first connect() call. This would cause some webservers to (silently) close the HTTP
connection before the request was made. To solve this, the transmission of the HTTP request
was moved to the connect() function, while the response is still fetched in the post_connect()
function. To verify that this does not affect the timing of the connect() calls, a benchmarking test
was performed. Eight different measurement servers were used, four making the HTTP request in
connect(), and four making the request in post_connect(). A sample of 10.000 hosts from the
Alexa top million was measured ten times from each server. The results in Table 4.1 show that
there are no negative effects on timing. The small improvement in performance is attributed to
the fact that less connection timeouts occur.

4.2.2 Analyzer Modules

When measurement results are uploaded to the PTO, they are first grouped together by measure-
ment run (or more strictly spoken, by time). The PTO then applies a number of analysers to the
results. In this work, only the ECN connectivity conditions were analysed. Studying the other
features of ECN path transparency is left as future work.

23

24 4.2. IMPLEMENTATION

Table 4.2: Absolute count of what ECN connectivity condition pairs where measured. The first
four columns show how many PATHspider instances observed each condition. The last column
shows for how many targets this set of conditions was seen. Combined data from multiple mea-
surements over parts of the Alexa top million. Table truncated.

ECN connectivity condition Host count

Works Broken Transient Offline

7 0 0 0 66274
0 0 0 7 2473
6 0 0 1 308
6 1 0 0 215
6 0 1 0 207
.

Single measurement analysis

In the first version of the ECN measurement setup, a single measurement was made from each
location, and the analyser structure shown in Figure 4.1 was used. Analysis happens in two steps.
Firstly, a direct analyser retrieves the uploaded measurement output files from the upload service,
and copies all conditions generated by PATHspider to the observation database. Secondly, a
dependency analyser queries the observation database looking for sings of path or site dependency.
A host (identified by an IP address) is said to exhibit site dependency, if all PATHspider results
report connectivity as broken. When there is both broken and working connectivity reported, the
host is marked as path dependent.

A number of test measurement runs were performed on a 10,000 host sample from the Alexa
top million. Unfortunately, upon inspection of the analysis results, it was determined that this
measurement setup was too sensitive to transient effects. Looking at Table 4.2, this is hinted at
by the fact that their are about as much hosts that have broken ECN connectivity once, as their
are hosts that have transient ECN connectivity once. Thus, it is very likely that transient network
effects are causing the host’s connectivity to be marked as broken.

Duplicated measurement analysis

In order to prevent transient network effects from influencing the measurement results, it was
decided to duplicate the measurements. Instead of taking one measurement from every location,
three measurements are now made close together in time. To process these measurements, the
analyser structure has been updated as shown in Figure 4.2. Direct observations from the same
measurement location are now merged together in to super observations. When it is not clear
what the condition of the super observation should be, it is set to weird. The detailed logic used
to merge observations together can be found in Appendix B.2. Results of the condition pairs
observed with this new measurement setup are shown in Table 4.3. It can be seen that there is a
much smaller fraction of hosts that is marked as broken or transient.

4.2.3 SpiderWeb Configuration

Using SpiderWeb, a weekly measurement of the full Alexa top million was configured. These
measurements take place from Frankfurt, London, New York City, San Francisco, Singapore and
Toronto. The SpiderWeb configuration file can be found in Appendix B.3.

24

CHAPTER 4. FIRST APPLICATION: ECN 25

Table 4.3: Absolute count of what ECN connectivity super condition pairs where measured during
a single run. The first four columns show how many PATHspider instances observed each condition.
The last column shows for how many targets this set of conditions was seen. Measurement were
taken over the full Alexa top million, from 7 locations. Table truncated.

ECN connectivity super condition Host count

Works Broken Transient Offline Weird

7 0 0 0 0 748586
0 0 0 7 0 13236
6 0 0 1 0 2246
0 7 0 0 0 902
5 0 0 2 0 805
6 0 0 0 1 534
4 0 0 3 0 473
3 0 0 4 0 365
2 0 0 5 0 257
0 6 0 0 1 164
6 1 0 0 0 147
1 0 0 6 0 138
6 0 1 0 0 70
.

Figure 4.1: Schematic representations of the first version of the analyser logic. PATHspider outputs
are converted in to direct observation, and from these path and site dependency is derived.

25

26 4.2. IMPLEMENTATION

F
igu

re
4.2:

S
ch
em

atic
rep

resentation
s
of

th
e
secon

d
version

of
th
e
an

alyser
logic.

T
h
is

d
esign

introd
u
ces

th
e
con

cep
t
of

su
per

ob
servation

s.
P
A
T
H
sp
id
er

ou
tp
u
ts

are
converted

in
to

direct
ob

servation
,
th
ese

are
th
en

grou
p
ed

by
location

to
form

su
per

ob
servation

s.
F
in
ally,

th
e
su
per

ob
servation

s
are

u
sed

to
d
erive

p
ath

an
d
site

d
ep

en
d
en
cy.

26

CHAPTER 4. FIRST APPLICATION: ECN 27

4.3 Results

Using the three layer analyser scheme from Figure 4.2, results for ECN path and site dependency
are derived.

To get a better insight in to the measurement results, different grades of path dependencies are
defined:

1. weak path dependency
A host is flagged as weakly path dependent, if their is at least one working, and at least one
broken super condition for it.

2. strict path dependency
A host is flagged as strictly path dependent, if it is weakly path dependent, and there are
no transient, offline or weird super conditions for it.

3. strong path dependency
A host is flagged as strongly path dependent, if it is strictly path dependent, and if it has
at least two broken super conditions associated with it.

Similarly for site dependency, except that there is no notion of strict dependency here:

1. weak site dependency
A host is flagged as weakly site dependent, if there are broken, but no working super condi-
tions associated with it.

2. strong site dependency
A host is flagged as strongly site dependent, if there are only broken super conditions for it.

4.3.1 State of ECN Path Transparancy

At the time of this writing, three measurement runs have been performed and analysed. These
measurements took place during week 49 through 51 of 2016. Each measurement was initiated in
the beginning of the week, and lasted for about two days. The results are shown in Figures 4.3
and 4.4. Note that these graphs only show the hosts that were tested during all three measurements
runs. Because the list of measurement targets gets re-resolved before every run (see Section 4.2.1),
this is not the case for all measured hosts. Results in tabular form, as well as plots showing all
hosts are included in Appendix C.

As can be seen in Figures 4.3 and 4.4, during each measurement run a similar amount of hosts
was marked as path or site dependent. Interestingly enough, only a small number of hosts was
always marked as path dependent. This indicates that ECN path dependency is a property that
varies greatly over time. However, what exactly is causing this can not be concluded based on
these results, and future work will be needed.

The results for ECN site dependency show greater persistency over time. This is to be expected
as ECN site dependency is likely to be caused by a middlebox close to the target host, or by the
host itself. Thus, one would only expect ECN site dependency to change when either the host or
its network infrastructure is upgraded. A possible cause for the measured time variations is the
presence of load balancers with heterogeneously configured handlers behind them.

Note again that this analysis is based on the ECN connectivity conditions. An analogue analysis
can be done on the presence of ECT codepoints to gain a better understanding of how ECN
connections are treated after they have been established. This analysis is left as future work.

27

28 4.3. RESULTS

Figure 4.3: Graph of the number of hosts that exhibited weak, strict or strong path dependency
over time. Only the hosts that were tested during all three measurement runs are plotted. The
Intersection bar shows the hosts that were marked during every measurement. Note that the bar
graphs are overlapping: all strongly path dependent hosts are also strictly path dependent, et
cetera.

Figure 4.4: Graph of the number of hosts that exhibited weak or strong site dependency over time.
Only the hosts that were tested during all three measurement runs are plotted. The Intersection
bar shows the hosts that were marked during every measurement. Note that the bar graphs are
overlapping: all strongly site dependent hosts are also weakly site dependent.

28

CHAPTER 4. FIRST APPLICATION: ECN 29

4.3.2 ECN and Internet Censorship

When the results for ECN path transparancy are combined with the MaxMind GeoLite2 geoIP
database [14], the geographical distribution of ECN path transparancy can be charted. This has
been done, and the results are shown in Figures 4.5 and 4.6.

Figure 4.5(a) shows the distribution of strong ECN path dependency over the world in absolute
numbers. It appears that China (CN), South Korea (KR) and the United States (US) exhibit
the most path dependency. However, when the vertical axis is normalized to the number of
entries every country has in the Alexa top million (see Figure 4.5(b)), it can be seen that that
path dependency in the United States is over an order of magnitude lower than in the other two
countries.

Four countries consistently show high levels of ECN path dependency. That is, one permille or
more of interrogated hosts in those countries exhibit ECN path dependency. It is interesting to
see that three of those countries (i.e. China (CN), North Korea (KP) and South Korea (KR)) are
publicly know to apply heavy internet censorship [15, 16]. This shows that ECN path dependency
is a strong indicator of internet freedom. It is most likely that the ECN path dependency in these
countries is caused by unequally configured internet censorship servers, and that ECN functionality
depends on which server performs the censorship. Why Taiwan (TW) shows a high level of
ECN path dependency is unclear. One possible explanation is that because it is an island with
limited global connections [17], ECN incompatible equipment at one international peering point
can greatly influence the results.

Figure 4.6 shows a similar analysis for strong ECN site dependency. Although the link with
internet censorship is not as clear here as it was before, China (CN), North Korea (KP) and South
Korea (KR) all exhibit high levels of ECN site dependency. Furthermore, comparing Figure 4.5
with Figure 4.6 again shows that ECN site dependency is a much more time independent property
than ECN path dependency.

29

30 4.3. RESULTS

(a) Hosts in absolute numbers.

(b) Number of hosts normalized to the total amount of hosts from each country in the Alexa top million.

Figure 4.5: Graph of the number of hosts marked as strongly ECN path dependent by country.
Only the top ten countries are shown. The Intersection bar shows the hosts that were marked
during every measurement.

30

CHAPTER 4. FIRST APPLICATION: ECN 31

(a) Hosts in absolute numbers.

(b) Number of hosts normalized to the total amount of hosts from each country in the Alexa top million.

Figure 4.6: Graph of the number of hosts marked as strongly ECN site dependent by country.
Only the top ten countries are shown. The Intersection bar shows the hosts that were marked
during every measurement.

31

32 4.3. RESULTS

32

Chapter 5

Conclusion

The goal of this work was to design a system to support the continuous measurement of internet
path transparency. For this system, a number of design criteria were specified: Firstly, making
measurements should be possible from a large number of locations, and should be cost effective.
Secondly, the system should be PATHspider compatible and should be flexible. Lastly, after the
initial setup, both the measurements themself, and the analysis of their results should be fully
automated.

To meet all these requirements, a cloud based measurement framework was created. Using a cloud
based system is inherently cost effective, and by providing compatibility with a broad range of
cloud providers, a large number of measurement locations can be used. Furthermore, PATHspider
compatibility is provided by only using Linux servers, and flexibility was considered during the
entire design process. In order to allow for automated measurements, the framework is integrated
with SaltStack, a software suite specificaly designed to manage (ephemeral) cloud based infras-
tructure. Automated analysis of the measurement results is provided as a service by the Path
Transparency Observatory.

After this framework was implemented, it was used for a first application: the measurement of
internet path transparency for ECN. This application did not only showcase the effectiveness of
the measurement framework, but also provided valuable insights in global ECN support. Two
results are particularly interesting. Firstly, it was shown that ECN path dependency shows a
high level of time dependence. Secondly, a strong link between nationwide internet censorship and
ECN path dependency was discovered. The later clearly illustrates that a free and open internet
is not only of social importance, but is also needed to ensure proper technical operation of the
net.

33

34

34

Chapter 6

Future Work

This work paves the way for a number of future studies. Furthermore, the results of the ECN study
open up a number of research questions. Bellow a list of suggested future work is provided.

• The most logical next research step is to use the framework designed during this thesis to
set up and perform more internet path transparency measurement campaigns. For example,
an analysis of when ECT tagged IP packages are received could be performed.

• To allow for more powerful measurement campaigns, a system for reactive measurement
campaigns could be designed. These measurement campaigns would dynamically be changed
depending on the observed measurement results. This would allow for a number of advanced
measurement capabilities. For example, basic measurements could be used to trigger more
advanced and intensive data collection.

• The ability to perform multiple measurements close together in time should be included in
the PATHspider core. As PATHspider is also intended to be used as a stand alone tool,
recognising transient effects should not be done on the PTO, but in the PATHspider core.

• As ECN path dependency is shown to be a highly time dependently property, more research
is needed to determine why this is the case. This will provide better insight in what should be
done to improve global ECN support, and can provide information useful for when designing
and rolling out new protocols.

• As a part of the previous item, it should be investigated how filtering out fast changing
transients influences the measurement results. This is needed to verify if the current use of
super observations is justifiable.

35

36

36

Bibliography

[1] F. Heart, A. McKenzie, J. McQuillan, and D. Walden, “ARPANET completion report,”
DARPA, Tech. Rep., 1978.

[2] International Telecommunication Union. (2016) ICT facts and figures 2016. [Online].
Available: https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

[3] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” RFC 3234
(Informational), Internet Engineering Task Force, Feb. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3234.txt

[4] I. R. Learmonth, B. Trammell, M. Kuhlewind, and G. Fairhurst, “Pathspider: A tool for
active measurement of path transparency,” in Proceedings of the 2016 Applied Networking
Research Workshop, ser. ANRW ’16. New York, NY, USA: ACM, 2016, pp. 62–64. [Online].
Available: http://doi.acm.org/10.1145/2959424.2959441

[5] E. Gubser, “Building a path transparency observatory,” Master’s thesis, ETH Zurich, 2016.

[6] SaltStack Inc. (2016) SaltStack automation for CloudOps, ITOps & DevOps at scale.
[Online]. Available: https://saltstack.com/

[7] Alexa Internet. (2017) Website traffic statistics. [Online]. Available: http://www.alexa.com/
siteinfo

[8] B. Trammel. (2016) MAMI Public Targets List. Measurement and Architecture for a
Middleboxed Internet project. [Online]. Available: https://github.com/mami-project/targets

[9] Slack Technologies. (2016) Slack messenger. [Online]. Available: https://slack.com

[10] P. Vixie, cron(8) Linux User’s Manual, 4th ed., April 2010.

[11] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Congestion Notification
(ECN) to IP,” RFC 3168 (Proposed Standard), Internet Engineering Task Force, Sep. 2001,
updated by RFCs 4301, 6040. [Online]. Available: http://www.ietf.org/rfc/rfc3168.txt

[12] S. Bauer, R. Beverly, and A. Berger, “Measuring the state of ecn readiness in servers, clients,
and routers,” in Proceedings of the 2011 ACM SIGCOMM conference on Internet measure-
ment conference. ACM, 2011, pp. 171–180.

[13] A. Medina, M. Allman, and S. Floyd, “Measuring interactions between transport protocols
and middleboxes,” in Proceedings of the 4th ACM SIGCOMM conference on Internet mea-
surement. ACM, 2004, pp. 336–341.

[14] MaxMind, Inc. (2016) GeoLite2 Databases. [Online]. Available: http://dev.maxmind.com/
geoip/geoip2/geolite2/

[15] J. Pagliery, “A peek into north korea’s internet,” blog, CNN, 2014. [Online]. Available:
http://money.cnn.com/2014/12/22/technology/security/north-korean-internet/index.html

37

https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
http://www.ietf.org/rfc/rfc3234.txt
http://doi.acm.org/10.1145/2959424.2959441
https://saltstack.com/
http://www.alexa.com/siteinfo
http://www.alexa.com/siteinfo
https://github.com/mami-project/targets
https://slack.com
http://www.ietf.org/rfc/rfc3168.txt
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://money.cnn.com/2014/12/22/technology/security/north-korean-internet/index.html

38 BIBLIOGRAPHY

[16] OpenNet Initiative. (2017) Country profiles. [Online]. Available: https://opennet.net/
country-profiles

[17] TeleGeography, A Division of PriMetrica, Inc. (2017) Submarine cable map. [Online].
Available: http://www.submarinecablemap.com/

38

https://opennet.net/country-profiles
https://opennet.net/country-profiles
http://www.submarinecablemap.com/

Appendix A

List of Acronyms

Acronyms

API application programming interface

ARPANET Advanced Research Projects Agency Network

CE congestion encountered

CWR congestion window reduced

DNS Domain Name System

ECE ECN-echo

ECN Explicit Congestion Notification

ECT ECN capable transport

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript object notation

MAMI measurement and architecture for a middleboxed internet

PTO Path Transparency Observatory

REST representational state transfer. Alternative form: RESTful

TCP transmission control protocol

39

40

40

Appendix B

Implementation Information

This appendix contains information that can help the reader get a better understanding of the
implementation, but is not necessary to understand this thesis.

B.1 Tables

Table B.1: An overview of the PATHspider command line arguments related to the PTO.

Argument Description

--pto-url Sets the location of the PTO to use.
--pro-api-key Sets the API-key to be used to authenticate to the PTO.
--pto-campaign Sets the measurement campaign this upload belongs to.
--pto-filename Sets the name this upload will be saved as.
--pto-location Can be used to provide extra information about the physical location of the

measurement.
--pto-config Specifies configuration file to use. All of the above arguments can be defined

in the configuration file. Command line arguments overwrite configuration
file values.

Table B.2: An overview of the entries in a campaign configuration file.

Property Description

campaign The name of the measurement campaign.
pathspider_args The argument string to pass to PATHspider.
input_file The path to the file containing the target list.
minions A JSON document specifying what cloud nodes should be instantiated.
when_done What a measurement node should do after completion of the measurement.

Current options are destory and None.

41

42 B.1. TABLES

Table B.3: An overview of the event tages used by the PATHspider execution module.

Tag Description

mami/pathspider/spider/started/ A PATHspider measurement has been started.
mami/pathspider/spider/completed/ A PATHspider measurement was successful.
mami/pathspider/spider/failed/ A PATHspider measurement was unsuccessful.

Table B.4: An overview of the fields used in events generated by the PATHspider execution module.

Field Type Description

finished boolean True if the event signifies that something has finished.
success boolean True if the event signifies that something was successful.
error string If an error occurred this field contains the name of the error.
message string An optional, freeform, message explaining the event.

Table B.5: Overview of the conditions used by the PATHspider ECN module, and all analyzers
developped during this thesis.

Condition Description

ecn.connectivity.works A connection could be established with and without
attempting ECN negotiation.

ecn.connectivity.broken A connection could be established without ECN ne-
gotiation, but not with ECN negotiation.

ecn.connectivity.transient A connection could be established with ECN negoti-
ation, but not without ECN negotiation.

ecn.connectivity.offline A connection could never be established.
ecn.negotiated ECN could be negotiated.
ecn.not negotiated ECN could not be negotiated.
ecn.ect zero.seen The ECT(0) codepoint was received.
ecn.ect one.seen The ECT(1) codepoint was received.
ecn.ce.seen The CE codepoint was received.
ecn.connectivity.super.works Same as ecn.connectivity.works, but based on

multiple observations
ecn.connectivity.super.broken Same as ecn.connectivity.broken, but based on

multiple observations
ecn.connectivity.super.transient Same as ecn.connectivity.transient, but based

on multiple observations
ecn.connectivity.super.offline Same as ecn.connectivity.offline, but based on

multiple observations
ecn.connectivity.super.weird When multiple observations where combined in to this

one, nothing could be derived about the hosts connec-
tivity.

ecn.path dependent.weak See Section 4.3.
ecn.path dependent.strict See Section 4.3.
ecn.path dependent.strong See Section 4.3.
ecn.site dependent.weak See Section 4.3.
ecn.site dependent.strong See Section 4.3.

42

APPENDIX B. IMPLEMENTATION INFORMATION 43

B.2 Super Observatation Logic

The following code snippet is used to merge multiple conditions in to one super condition.

1 def c a l c u l a t e s up e r c o nd i t i o n (cond i t i on s) :
2 ”””
3 Combines mu l t ip l e condi t ions in to a super condi t ion .
4 Firs t looks i f connections with or without ECN have ever been seen working .
5 Then uses t h i s information to der ive an obserserva t ion about the host .
6 See source for exact l o g i c .
7 : param l i s t condi t ions : A l i s t of condi t ions tha t should be merged .
8 Each element should be in the input condi t ions of t h i s analyzer
9 : re turns : the supercondit ion derived from the inputcondi t ions .

10 Will always be in the output condi t ions of t h i s analyzer
11 : r type : l i s t
12 ”””
13
14 ecn seen work ing = False
15 no ecn seen work ing = False
16
17 ## FIRST, f ind out what we have seen working
18 for cond i t i on in cond i t i on s :
19 i f cond i t i on == ’ ecn . c onne c t i v i t y . works ’ :
20 ecn seen work ing = True
21 no ecn seen work ing = True
22
23 e l i f cond i t i on == ’ ecn . c onne c t i v i t y . broken ’ :
24 no ecn seen work ing = True
25
26 e l i f cond i t i on == ’ ecn . c onne c t i v i t y . t r an s i e n t ’ :
27 ecn seen work ing = True
28
29 e l i f cond i t i on == ’ ecn . c onne c t i v i t y . o f f l i n e ’ :
30 pass
31
32 ## SECOND, determine on the ac tua l super condi t ion .
33 # Everything i s working , Yay !
34 i f ecn seen work ing and no ecn seen work ing :
35 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . works ’
36
37 # Nothing i s working , host must me o f f l i n e !
38 i f not ecn seen work ing and not no ecn seen work ing :
39 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . o f f l i n e ’
40
41 # This h in t s at ECN broken . Let ’ s v e r i f y tha t a l l observat ions agree :
42 e l i f not ecn seen work ing and no ecn seen work ing :
43 i f v e r i f y a l l e l em e n t s e q u a l (cond i t i ons , ’ ecn . c onne c t i v i t y . broken ’) :
44 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . broken ’
45 else :
46 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . weird ’
47
48 # This h in t s at ECN trans i en t . Let ’ s v e r i f y tha t a l l observat ions agree :
49 e l i f ecn seen work ing and not no ecn seen work ing :
50 i f v e r i f y a l l e l em e n t s e q u a l (cond i t i ons , ’ ecn . c onne c t i v i t y . t r an s i e n t ’) :
51 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . t r an s i e n t ’
52 else :
53 supe r cond i t i on = ’ ecn . c onne c t i v i t y . super . weird ’
54
55 return [s upe r cond i t i on]
56
57 def v e r i f y a l l e l em e n t s e q u a l (a r ray to check , e l ement va lue = None) :
58 ”””
59 Ver i f i e s tha t a l l e lements in an array are equal to a cer ta in value .
60 I f no value i s passed , the f i r s t element of the array i s used .
61 : param l i s t array to check : the array to check the elements from
62 : param element va lue : the value the elements should be equal to .
63 de f au l t s to the f i r s t element of the array .
64 : re turns : True i f a l l e lements are equal , False otherwise
65 : r type : boo l
66 ”””
67
68 # There i s nothing in the array , tha t ’ s not r i g h t
69 i f len (a r r ay to check) == 0 :
70 return False
71
72 # i f no value i s spec i f i ed , j u s t check tha t a l l va lues in the array are
73 # equal to the f i r s t one .
74 i f e l ement va lue == None :
75 e l ement va lue = ar ray to check [0]

43

44 B.3. SPIDERWEB CONFIGUATION FILE

76
77 for element in a r ray to check :
78 i f element != e lement va lue :
79 return False
80
81 return True

B.3 SpiderWeb Configuation File

This is the configuration file used for the measurement campaign presented in Chapter 4.

1 {
2 "pathspider_args ": "-i eth0 -w50 --pto -campaign {campaign}

--pto -url ’https :// observatory.mami -project.eu/hdfs ’
--pto -api -key <<redacted >> --pto -filename {id} --pto -location
{cloud -location} ecn",

3 "input_file ":
"/var/dns -autoresolv/more -is-better/more -is-better -latest -scramble.csv",

4 "minions ":
5 {"do -nyc2 -2048": 3,
6 "do -sfo1 -2048": 3,
7 "do -ams3 -2048": 3,
8 "do -sgp1 -2048": 3,
9 "do -lon1 -2048": 3,

10 "do -fra1 -2048": 3,
11 "do -tor1 -2048": 3
12 },
13 "when_done ": "destroy",
14 "campaign ": "more -is -better"
15 }

44

Appendix C

Results of the ECN Study

This appendix adds to Section 4.3 by presenting the measurement data in tabular form, and by
providing additional plots.

Table C.1: Overview of the number of hosts that were tagged as ECN path or site dependent
per measurement run. The intersection row shows the number of hosts that were tagged with a
certain condition over all three measurement runs. This table considers all measured hosts.

ECN path dependency ECN site dependency

Measurement run weak strict strong weak strong

Week 49, 2016 281 250 104 1155 897
Week 50, 2016 312 257 122 1096 818
Week 51, 2016 343 301 106 1088 866
Intersection 49 69 13 909 497

Table C.2: Overview of the number of hosts that were tagged as ECN path or site dependent
per measurement run. The intersection row shows the number of hosts that were tagged with
a certain condition over all three measurement runs. This table considers only hosts that were
tested during all three measurement runs.

ECN path dependency ECN site dependency

Measurement run weak strict strong weak strong

Week 49, 2016 258 231 94 1066 827
Week 50, 2016 286 235 115 1015 762
Week 51, 2016 324 283 99 1012 804
Intersection 49 69 13 909 497

45

46

Figure C.1: Graph of the number of hosts that exhibited weak, strict or strong path dependency
over time. All measured hosts are plotted. The Intersection bar shows the hosts that were marked
during every measurement. Note that the bar graphs are overlapping: all strongly path dependent
hosts are also strictly path dependent, et cetera.

Figure C.2: Graph of the number of hosts that exhibited weak or strong site dependency over
time. All measured hosts are plotted. The Intersection bar shows the hosts that were marked
during every measurement. Note that the bar graphs are overlapping: all strongly site dependent
hosts are also weakly site dependent.

46

APPENDIX C. RESULTS OF THE ECN STUDY 47

Table C.3: Overview of the number of hosts that were tagged as strongly ECN path dependent,
broken down per country. Numbers are given both in absolute form, and as a fraction of the total
number of hosts that were measured in that country. The intersection column shows the number
of hosts that were tagged with a certain condition over all three measurement runs. This table
considers all measured hosts.

Week 49, 2016 Week 50, 2016 Week 51, 2016 Intersection

Country Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

BR Brazil 2 2.68e-04 0 0.00e+00 1 1.34e-04 0 0.00e+00
BZ Belize 0 0.00e+00 2 1.01e-02 3 1.51e-02 0 0.00e+00
CA Canada 0 0.00e+00 0 0.00e+00 1 8.35e-05 0 0.00e+00
CN China 46 1.42e-03 55 1.70e-03 48 1.48e-03 7 2.16e-04
DE Germany 1 1.77e-05 2 3.54e-05 1 1.77e-05 1 1.77e-05
EC Ecuador 1 5.78e-03 1 5.78e-03 1 5.78e-03 1 5.78e-03
ES Spain 0 0.00e+00 9 9.47e-04 0 0.00e+00 0 0.00e+00
FR France 2 6.67e-05 3 1.00e-04 4 1.33e-04 0 0.00e+00
HK Hong Kong 1 2.02e-04 3 6.05e-04 0 0.00e+00 0 0.00e+00
IT Italy 1 1.10e-04 0 0.00e+00 0 0.00e+00 0 0.00e+00
KP North Korea 8 5.33e-01 1 6.67e-02 2 1.33e-01 0 0.00e+00
KR South Korea 19 2.30e-03 21 2.54e-03 23 2.78e-03 0 0.00e+00
MD Moldova 1 6.45e-03 0 0.00e+00 0 0.00e+00 0 0.00e+00
MX Mexico 1 7.64e-04 1 7.64e-04 0 0.00e+00 0 0.00e+00
MY Malaysia 1 7.98e-04 0 0.00e+00 1 7.98e-04 0 0.00e+00
NL Netherlands 0 0.00e+00 0 0.00e+00 1 4.20e-05 0 0.00e+00
PL Poland 0 0.00e+00 0 0.00e+00 1 1.33e-04 0 0.00e+00
PS Palestine 0 0.00e+00 1 3.57e-02 0 0.00e+00 0 0.00e+00
RU Russia 1 3.99e-05 0 0.00e+00 5 2.00e-04 0 0.00e+00
SA Saudi Arabia 1 2.37e-03 2 4.74e-03 1 2.37e-03 0 0.00e+00
SG Singapore 3 3.41e-04 3 3.41e-04 0 0.00e+00 0 0.00e+00
TH Thailand 1 3.55e-04 1 3.55e-04 0 0.00e+00 0 0.00e+00
TR Turkey 2 2.76e-04 1 1.38e-04 1 1.38e-04 0 0.00e+00
TW Taiwan 3 7.73e-04 4 1.03e-03 4 1.03e-03 0 0.00e+00
US US 9 2.52e-05 11 3.08e-05 8 2.24e-05 4 1.12e-05
VN Vietnam 0 0.00e+00 1 2.99e-04 0 0.00e+00 0 0.00e+00

47

48

Table C.4: Overview of the number of hosts that were tagged as strongly ECN site dependent,
broken down per country. Numbers are given both in absolute form, and as a fraction of the total
number of hosts that were measured in that country. The intersection column shows the number
of hosts that were tagged with a certain condition over all three measurement runs. This table
considers all measured hosts.

Week 49, 2016 Week 50, 2016 Week 51, 2016 Intersection

Country Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

AR Argentina 2 9.55e-04 2 9.55e-04 2 9.55e-04 2 9.55e-04
AT Austria 1 5.36e-04 1 5.36e-04 1 5.36e-04 1 5.36e-04
AU Australia 1 1.74e-04 1 1.74e-04 1 1.74e-04 1 1.74e-04
AZ Azerbaijan 0 0.00e+00 1 4.55e-03 0 0.00e+00 0 0.00e+00
BA Bosnia 3 3.70e-02 3 3.70e-02 3 3.70e-02 3 3.70e-02
BR Brazil 0 0.00e+00 1 1.34e-04 1 1.34e-04 0 0.00e+00
CA Canada 1 8.35e-05 1 8.35e-05 1 8.35e-05 1 8.35e-05
CH Switzerland 17 5.64e-03 17 5.64e-03 16 5.31e-03 16 5.31e-03
CN China 433 1.34e-02 398 1.23e-02 437 1.35e-02 176 5.43e-03
DE Germany 12 2.12e-04 13 2.30e-04 10 1.77e-04 9 1.59e-04
DK Denmark 1 4.95e-04 1 4.95e-04 1 4.95e-04 1 4.95e-04
DZ Algeria 1 6.29e-03 1 6.29e-03 1 6.29e-03 1 6.29e-03
EE Estonia 1 5.62e-04 1 5.62e-04 1 5.62e-04 1 5.62e-04
ES Spain 3 3.16e-04 3 3.16e-04 3 3.16e-04 3 3.16e-04
FR France 5 1.67e-04 6 2.00e-04 4 1.33e-04 4 1.33e-04
GB UK 3 1.16e-04 1 3.85e-05 2 7.71e-05 1 3.85e-05
HK Hong Kong 89 1.80e-02 66 1.33e-02 65 1.31e-02 42 8.48e-03
HU Hungary 1 4.96e-04 1 4.96e-04 1 4.96e-04 1 4.96e-04
ID Indonesia 1 3.72e-04 1 3.72e-04 1 3.72e-04 1 3.72e-04
IN India 2 2.66e-04 2 2.66e-04 2 2.66e-04 2 2.66e-04
IR Iran 2 4.46e-04 2 4.46e-04 3 6.69e-04 2 4.46e-04
JP Japan 38 9.69e-04 40 1.02e-03 39 9.95e-04 37 9.44e-04
KP North Korea 5 3.33e-01 12 8.00e-01 9 6.00e-01 4 2.67e-01
KR South Korea 145 1.75e-02 145 1.75e-02 150 1.81e-02 103 1.25e-02
MX Mexico 2 1.53e-03 2 1.53e-03 2 1.53e-03 2 1.53e-03
MY Malaysia 2 1.60e-03 2 1.60e-03 1 7.98e-04 1 7.98e-04
PE Peru 2 5.65e-03 2 5.65e-03 2 5.65e-03 2 5.65e-03
PH Philippines 1 2.61e-03 0 0.00e+00 0 0.00e+00 0 0.00e+00
PT Portugal 2 1.42e-03 2 1.42e-03 3 2.13e-03 2 1.42e-03
RU Russia 4 1.60e-04 5 2.00e-04 5 2.00e-04 4 1.60e-04
SA Saudi Arabia 1 2.37e-03 0 0.00e+00 1 2.37e-03 0 0.00e+00
SV El Salvador 1 1.59e-02 1 1.59e-02 1 1.59e-02 1 1.59e-02
TH Thailand 7 2.48e-03 5 1.77e-03 5 1.77e-03 4 1.42e-03
TR Turkey 3 4.13e-04 3 4.13e-04 4 5.51e-04 3 4.13e-04
TW Taiwan 9 2.32e-03 8 2.06e-03 10 2.58e-03 6 1.55e-03
UA Ukraine 1 2.53e-04 1 2.53e-04 1 2.53e-04 1 2.53e-04
US US 92 2.57e-04 65 1.82e-04 72 2.01e-04 57 1.59e-04
VN Vietnam 3 8.98e-04 2 5.98e-04 4 1.20e-03 2 5.98e-04
WS Samoa 0 0.00e+00 0 0.00e+00 1 5.00e-01 0 0.00e+00

48

	Introduction
	Background
	Design and Implementation
	First Application: ECN
	Conclusion
	Future Work
	Bibliography
	List of Acronyms
	Implementation Information
	Results of the ECN Study

