
Distributed
 Computing

Online Graph Exploration

Semester thesis

Simon Hungerbühler

simonhu@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Sebastian Brandt

Prof. Dr. Roger Wattenhofer

January 16, 2017

Acknowledgements

I thank my supervising tutor Sebastian Brandt for his assistance during this
thesis. He took the time for our weekly meetings and provided helpful inputs
when I had trouble. He also gave me a lot of support while writing and helped
me to satisfy the academic standards.

i

Abstract

How should you act, if you wake up at an unknown place and you have to create
a map of your environment for orientation? The problem is, that you only see
the possible paths, but you do not know where they will end until you are there.
What are good strategies to finish quickly? How much longer do you need,
compared to someone who has a map?
First we consider unit-weight graphs. We prove a tight bound for the competitive
ratio on unit-weight graphs. This bound is equal to 2.
Later we consider graphs with two different edge weights. Different natural
algorithms have a competitive ratio of at least 4 on this graph class. The so called
hierarchical depth search algorithm has a proven upper bound of 4 on graphs
with two different edge weights. But potentially it has a better competitive ratio.
We found a lower bound graph with a competitive ratio of 3.
Finally we provide an algorithm, which explores graphs with two different edge
weights. This algorithm prevents some of the poor behavior of the others. It
could have a better competitive ratio than 4.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

2 Model 3

3 Unit-Weight Graphs 4

4 Graphs with Two Weights 6

4.1 Depth First Search . 6

4.2 Hierarchical Depth First Search 7

4.3 Advanced Depth First Search . 8

Bibliography 12

A Appendix Chapter A-1

A.1 Eigenständigkeitserklärung . A-1

iii

Chapter 1

Introduction

In online graph exploration an agent has to explore an unknown input graph. At
the beginning the agent does not know anything about the graph. Whenever the
agent arrives at a new node all incident edges are learned. Based on the partial
information, the agent has already received, he has to decide where to go next.
The goal is to find a tour with as little as possible costs.
Online graph exploration is the online version of the traveling salesman prob-
lem. To measure how good an online algorithm performs, competitive analysis is
used. The competitive ratio is the ratio between the costs of the online algorithm
divided by the costs of the optimal solution of the offline problem.
One possible example could be a tour with a car through different cities. The
online driver has no knowledge about the area and drives just after the direction
signs. It learns the cities and theirs connecting roads step by step. The offline
driver on the other hand gets a map in advance and has all information to plan
an optimal tour.
The competitive ratio is at least 1, because you cannot be better than the opti-
mal tour. But how much worse can you get? Is there a strategy with a bounded
competitive ratio on all graphs? How does the number of edge weights influence
the competitive ratio?
We take a look at graphs with one and two edge weights. We discuss the com-
petitive ratios of existing algorithms and provide a new algorithm.

1.1 Related Work

One of the most intuitive strategies is called nearest neighbor or greedy. As the
name implies, the explorer always chooses the nearest unexplored node as the
next node to visit. Unfortunately this algorithm is only log n competitive [3].
Even on unit-weight graphs it is log n competitive [4].
There has been a lot of research on the topic of online graph exploration. New
algorithms have been introduced over a long period of time, but there is still a
large gap between the lower and upper bound of the competitive ratio. A lower
bound of 5/2 − ε for every deterministic algorithm has been showed by Stefan

1

1. Introduction 2

Dobrev et al. [1]. This is until now the highest lower bound graph to the best of
our knowledge. Nicole Megow et al. found an algorithm with an upper bound
on the competitive ratio of 2k [2]. With k the number of distinct weights. They
generalized this result to arbitrary graphs by rounding every weight to the next
power of 2 and achieved an upper bound for the competitive ratio of log n (n the
number of nodes in the graph). This upper bound is achieved by an algorithm
called hierarchical depth first search (hDFS). We analyse this algorithm and give
a lower bound graph for any k with a lower bound on the competitive ratio of
2k − 1. The basis lower bound graph consists of two different weights, but it is
expandable to any number of weights.

Chapter 2

Model

There are different possible models for online graph exploration. We only con-
sider undirected connected graphs G = (V,E). Every edge e ∈ E has a non-
negative weight. The explorer has to visit all nodes. The tour begins at the
start vertex s ∈ V . Whenever the explorer arrives at a new vertex, it learns all
incident edges with their costs. But it does not know the identity of the vertex
at the other end of the edge until both vertices are explored. Every vertex is
distinguishable by its ID. The tour is finished, when all nodes have been visited
and the explorer has returned to the start vertex. The total costs are the accu-
mulated costs of every traversed edge.
The task is to find a tour with minimal cost. To rate the behavior of an online
algorithm we use competitive analysis.

Definition 2.1. The competitive ratio for an algorithm on one graph is defined
as the ratio of the cost the online algorithm accumulates and the optimal costs
achieved by an offline algorithm on this graph.

Definition 2.2. The general competitive ratio for an algorithm is the highest
competitive ratio the algorithm has on any graph or a graph class.

Definition 2.3. The competitive ratio for a graph is the lowest competitive
ratio an online algorithm achieves on it.

Definition 2.4. A boundary edge e = (u, v) is an edge with one explored vertex
u and an unexplored vertex v. An edge is considered explored only if both
vertices are explored.

3

Chapter 3

Unit-Weight Graphs

A unit-weight graph has only one edge weight. Without loss of generality we
assume that it is 1.
We prove a constant competitive ratio of 2 on unit-weight graphs.

Theorem 3.1. The competitive ratio on unit-weight graphs is 2.

Proof. On our proof of the lower bound we will construct a graph G = (V,E) at
which every online algorithm has at least a competitive ratio of 2.
The graph contains two special nodes. The start node and the branch node.
This two nodes are connected via two paths of length l. From the branch node
starts a new path. This path is not connected to anything but just ends after
some nodes. The number of the nodes of this third path is determined by the
behavior of the online algorithm. Figure 3.1 shows one possible state of the par-
tially explored graph G.
Since an online algorithm has to explore all nodes, it must arrive at the branch
vertex after a finite number of traversed edges. At the first arrival at the branch
vertex the algorithm has traversed at least l + 2 · a edges. a is the number of ex-
plored nodes on that path starting from the start node and ending at the branch
node which is not fully explored. If the algorithm just walked on one path yet,
a might also be zero.
Now there are three not completely explored paths. One starting at the start
node and two starting from the branch node. The online algorithm can explore
all of these paths. Every time a new node on a path is explored an additional
node is connected to this path. We call the the number of explored nodes on the
path starting at the start node ã. (ã ≥ a)
The number of explored nodes at the two other paths we call b1 and b2. Without
loss of generality b1 ≥ b2. As soon as ã + b1 = l the path starting at the start
node is connected with the longer of the two other paths. The number of nodes
of the third path gets now defined as b2+1. This means, that the explorer missed
to visit the last node of the path. The graph is now completely constructed.
At this point the accumulated costs from the online algorithm are at least
l + 2 · ã + 2 · b2 + b1. The last two tasks of the online algorithm are to visit

4

3. Unit-Weight Graphs 5

the last unexplored node of the third path and then to return from there to the
start vertex.
The total costs accumulated form the online algorithm are at least:
l + 2 · ã + 2 · b2 + 2 · b1 + 2 · (b2 + 1) + l
= 4 · l + 4 · b2 + 2
The minimal costs to explore this graph are: 2 · l + 2 · b2 + 2
For every ε > 0, there exists an l, that the competitive ratio is equal to 2− ε.

We show a lower bound with two simple arguments: A depth first search (DFS)
on a graph G = (V,E) with n vertices traverses 2 · (n − 1) edges. The optimal
tour traverses at least n edges. For every vertex one. Therefore the upper bound
is also 2.

Figure 3.1: Lower bound graph for unit-weight graphs

Chapter 4

Graphs with Two Weights

With more weights things get more complicated. The lower bound of the com-
petitive ratio increases. The authors of [1] proved a lower bound of 5/2 − ε for
every deterministic online algorithm on arbitrary graphs.
What happens to the upper bound of the competitive ratio? The authors of [2]
constructed an algorithm called hierarchical depth first search (hDFS) which is
2k-competitive (k equals the number of distinct edge weights). Until now there
is no known algorithm with constant competitive ratio on arbitrary graphs. On
the other hand there is no proof that it cannot exist.
In this chapter we focus on graphs with two different weights. First we show that
DFS works bad on graphs with two different edge weights. Later we analyze an
existing algorithm called hierarchical depth first search. In the end we present
our own algorithm.

4.1 Depth First Search

DFS works pretty good at unit-weight graphs. It has a CR of 2 and we proved
that there does not exist an algorithm with a CR < 2. But how good is DFS
on graphs with two weights? Unfortunately the competitive ratio gets arbitrar-
ily bad, if the difference of the two weights increases. Without loss of generality
we assume the smaller weight to be 1. For the higher weight we use the symbol X.

Lemma 4.1. A lower bound of the competitive ratio for DFS on graphs with
two edge weights is X/2.

Proof. We construct the lower bound graph as follows: It consists of three nodes
arranged in a triangle (see Figure 4.1). The two edges ending at the start node
have weight 1. The edge between the two other nodes has weight X. The costs
for a DFS are 2 + 2 ·X. The optimal costs depend on X. If X < 2 the optimal
costs are 2 + X. If X > 2 the optimal cost are 4. For large X the competitive

6

4. Graphs with Two Weights 7

Start

1

X

1

Figure 4.1: Lower bound graph for DFS

ratio is about X/2. The competitive ratio increases linearly with respect to X.

Lemma 4.2. An upper bound of the competitive ratio for DFS on graphs with
two edge weights is 2 ·X

Proof. An upper bound for the DFS on graphs with two different edge weights
follows from these two arguments: The worst thing DFS can do, is always take
en edge of weight X. This leads to costs of 2 · (n− 1) ·X. The optimal solution
has at least costs of n. Hence the competitive ratio for DFS is always smaller
then 2·(n−1)·X

n ≤ 2 ·X

4.2 Hierarchical Depth First Search

Hierarchical depth first search hDFS [2] explores an input Graph G = (V,E)
in a DFS manner. But it only focuses on a subgraph G̃(v, w) of G (with v the
current position and w some weight). G̃ is composed of all nodes, which are
accessible with edges of weight at least w from v. The weight w is chosen as the
smallest value such that G̃ still contains boundary edges.
The algorithm does not consider the actual distance it takes to explore a new
vertex but only the value of the highest edge weight it has to traverse. This
fact leads to situations, where the algorithm walks very long distances because
it always takes the smaller edge weight first.
We construct a lower bound graph G = (V,E) where we exploit this behavior.
The start vertex has 4 neighbors. All are connected to the start vertex with an
edge of weight 1. Two neighbors are the starting points of two chains of length
l. In these chains all nodes are connected to their neighbors with an edge of
weight 1. After this two chains are built there are 4 leafs in the graph. The two
neighbors from the start node, which have not been changed yet and the two
endpoints of the chains. Then add to every leaf the lowest weight of all k weights

4. Graphs with Two Weights 8

Figure 4.2: Lower bound graph for hDFS

you want to add to the graph. Repeat this step until no distinct weights are left.
Finally merge the two end nodes of the chains of the length l + k. An example
how this could look like with three weights is shown in Figure 4.2.

The optimal tour has costs of: 2 · l + 6 ·
k∑

i=1
wi − wk

hDFS traverses the chains of length l two times for every weight, because the
algorithm does not take higher boundary edges if it can reach other boundary
edges with smaller weights. The graph has two additional chains which contain
all edge weights for the reason that there is always an unexplored boundary edge
near the start and the explorer has to return and cannot take two new nodes at
once on the long chains of length l. For the highest edge weight the algorithm
takes only one chain twice.
hDFS has at least costs of 2 · (2 · k − 1) · l. If l is large enough the competitive
ratio of hDFS is 2 · k − 1 on these graphs.

4.3 Advanced Depth First Search

Advanced depth first search aDFS is our algorithm designed to explore graphs
with only two different edge weights. As the name implies, it does a DFS but
with certain exceptions.
aDFS avoids the disadvantages of hDFS. Our algorithm does not go back large
distances, if there is a boundary edge of weight X. But what does large mean?
When should you return and when should you take an edge with a large weight?
We answer this question with the following consideration. Imagine a cycle with
one edge of weight X and the other edges with weight 1. The explorer has to
visit all nodes and then to return to the start. After which number of visited
nodes should the explorer return if it is in front of the X edge?
If the cycle has less than X edges of weight 1 it is always better to go back than
to explore the edge of weight X. If the cycle has more than X edges of weight

4. Graphs with Two Weights 9

1 it is always better to traverse the edge of weight X and finish the tour in one
round. Unfortunately the explorer does not know the total number of nodes in
the cycle but knows the number of already visited nodes.

Definition 4.3. A boundary edge e = (u, v) of weight X is called blocked, if
there is a boundary edge e′ = (u′, v′) of weight 1 with a shortest path between
the two explored nodes of these two boundary edges smaller than X.

Definition 4.4. A boundary edge e = (v, u) of weight X is called unblocked, if
there is no boundary edge e′ = (u′, v′) of weight 1 with a shortest path between
the two explored nodes of these two boundary edges smaller than X.

Definition 4.5. A boundary edge e = (v, u) of weight 1 is allways considered
to be unblocked.

Lemma 4.6. There exists a strategy with a competitive ratio of 2 on these cycles.

Proof. The strategy is to perform a DFS but to ignore blocked boundary edges.
If the agent has visited all nodes it returns to the start on the shortest path and
does no backtracking.
There are two cases: The edge of weight X is blocked or unblocked when the
agent arrives there.
If the edge of weight X is blocked when the agent arrives there, the agent returns
to the start and then explores the other side of the cycle until it arrives at the
other endpoint of the edge of weight X. Then the agent has visited all nodes
and returns to the start. As the agent explored all nodes with an edge of weight
1 and traversed all this edges twice the costs cannot be higher than twice the
optimal costs.
If the edge of weight X is unblocked the agent explores all nodes in one round.
As the edge of weight X is unblocked there are more than X edges of weight 1 (n
is bigger or equal than X). The costs accumulated by this strategy are smaller
than two times the minimal costs.

A first idea could be that the explorer is not allowed to depart further than X
from a blocked boundary edge. This turns out to be a very bad idea. Figure
4.3 shows a lower bound graph with an arbitrarily bad competitive ratio for this
constraint. We assume that there are a chains of edges of weight 1. This chains
all have a length of X. The chain on the left side has length X − 1. On every
node of this chain one node is connected with an edge weight of X.
Since the agent is not allowed to depart further than X from a blocked edge, the
only possibility to unblock all edges of weight X, is to explore every round one
additional edge on every chain of edges of weight 1. After X − 1 repetitions of
this step all nodes of the graph are explored.

4. Graphs with Two Weights 10

The optimal tour costs are: 2 ·X ·X + 2 · (a + 1) ·X

The online algorithm has costs of: 2 ·X ·X + (a + 1) ·
X∑
i=1

i

= 2 ·X ·X + (a + 1) ·X · (X + 1)/2
If a is chosen as X and X is large enough a lower bound of the competitive ratio
of an algorithm with this constraint is about X.
Another problem of an algorithm with this repression are deadlocks. Two bound-
ary edges of weight X are blocked by two different boundary edges of weight 1.
The first boundary edge of weight 1 is too far away from the second boundary
edge of weight X and vice versa. Therefore neither of them is unblocked and the
algorithm gets stuck.

Algorithm aDFS(G,u)
Input: A partially explored graph G, a vertex u ∈ V

1: if there is a boundary edge (u, v) of weight 1 do
2: traverse (u, v)
3: aDFS(G’,v) //G’ partially explored graph when the explorer moved to v
4: else if there is an unblocked boundary edge (u, v) of weight X do
5: traverse (u, v)
6: aDFS(G’,v) //G’ partially explored graph when the explorer moved to v
7: else if all nodes are visited and u is the start node do
8: break
9: else do

10: plan a shortest tour through all vertices which have an unblocked boundary
11: edge and then back to the start
12: traverse (u, v) // v first vertex of this tour
13: aDFS(G’,v) //G’ partially explored graph when the explorer moved to v
14: end if

The solution is to cancel this rule. The final specification of advanced depth
first search aDFS is formally written above. Whenever the explorer is at a node
with a boundary edge of weight 1 it takes this edge. If the explorer is at a node
with an unblocked boundary edge of weight X and no boundary edge of weight 1
aDFS also traverses this edge of weight X. If there are no unblocked boundary
edges at the current node the algorithm plans a shortest tour through all nodes
with an unblocked boundary edge and then back to the start. Advanced depth
first search just visits the first node of this shortest tour. At this node is at least
one unblocked boundary edge, which will be traversed next.
For the new specification we have not found any lower bound graph with a com-
petitive ratio larger than 2. On any cycle with two different edge weights aDFS
has at least a competitive ratio of 2. The graphs with two different edge weights

4. Graphs with Two Weights 11

Start

X X X X X

1 1 1 1 1

1
1

1

111

1 1
1

1

1

1

1

1

1

1
1

1

1

1
1

1

11
1

1

1

1

1

1

1

1

1

1

1

Figure 4.3: Lower bound graph

on which hDFS has a competitive ratio of 3 aDFS has a competitive ratio of less
than 2. Also with the graphs on which the greedy algorithm has a competitive
ratio of log n aDFS is still below 2.
We have no proof for an upper bound of the competitive ratio for aDFS due to
the fact that the behavior of the tour planning is not really predictable. But it
seems that aDFS performs better on graphs with two different weights than the
others do.

Bibliography

[1] Stefan Dobrev, R.K., Markou, E.: Online graph exploration with advice. In:
Structural information and communication complexity. (2012)

[2] Nicole Megow, K.M., Schweitzer, P.: Online graph exploration: New result-
son old and new algorithms. In: Automata, Languages and Programming

[3] Daniel Rosenkrantz, R.S., Lewis, P.: An analysis of several heuristics for the
traveling salesman problem. In: SIAM journal on computing. (1977)

[4] Cor Hurkens, G.W.: On the nearest neighbor rule for the traveling salesman
problem. In: Operations research letters. (January 2004)

12

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work

	2 Model
	3 Unit-Weight Graphs
	4 Graphs with Two Weights
	4.1 Depth First Search
	4.2 Hierarchical Depth First Search
	4.3 Advanced Depth First Search

	Bibliography
	A Appendix Chapter
	A.1 Eigenständigkeitserklärung

