
Distributed
 Computing

Building a 3D Object Scanner

Bachelor Thesis

Ulla Aeschbacher

ullaa@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger, Gino Brunner

Prof. Dr. Roger Wattenhofer

September 8, 2017

Acknowledgements

I would like to thank my supervisors Manuel Eichelberger and Gino Brunner
for their input in our meetings and their support throughout the project. I also
thank my friends and family for proofreading and giving encouragement in times
of need.

i

Abstract

This thesis explores the possibilities provided by Google Tango. We present an
application for a smartphone that o↵ers an easy way to scan objects and turn
them into 3D models. We show how to acquire point clouds from an object and
transform them so that multiple scans can be combined. Then, we describe an
algorithm to transform the point clouds into surfaces. We also try to remove the
underlying plane of objects with mixed results.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

2 Background 3

2.1 Motion Tracking and Area Learning 3

2.2 3D Reconstruction and Image Segmentation 4

3 Implementation 5

3.1 Overview . 5

3.2 Acquiring Data . 6

3.3 Transforming Data . 7

3.4 User Interface . 9

3.5 Surface Reconstruction . 11

4 Evaluation 12

5 Conclusion and Future Work 18

5.1 Conclusion . 18

5.2 Future work . 18

Bibliography 19

iii

Chapter 1

Introduction

1.1 Motivation

3D scanning is the process of transforming an object of the real world into a
digital surface model. Until recently, this required specialized and relatively
expensive equipment. But with Google Tango [1] enabled smartphones soon ev-
erybody could have such a device in their pocket at no additional costs. Content
creators could quickly scan an object they want to include in their animation
short or game. Another application is the use of 3D printers to reproduce the
scanned object. Both would be a great time saver because people do not have
to hand-draw those models anymore. People could share models they created in
a open library to maximize reuse.

The goal of this project is to create an app for a Google Tango device which
allows one to create 3D models from arbitrary objects standing on a plane.
Ideally, we cut out the plane afterwards, so the object can be handled on its own
in a versatile manner.

We are working with the Lenovo Phab 2 Pro, which has the required com-
ponents and computing capability, as shown in Figure 1.1. We mainly use three
of the phone’s sensors. For depth perception we need the IR projector which
sends out infrared light and the time-of-flight camera, which resolves distance
based on the known speed of light. It measures the time-of-flight of a light signal
between the camera and the subject for each point in the image and thus gives
us a depth for each of those points. For motion tracking the fisheye camera is
needed. If we wanted the point clouds to have color, we would also have to use
the RGB camera.

1.2 Related Work

There have been some applications for the Tango phone to scan your surround-
ings, but they focus on scanning rooms or appartments, like CHISEL [2] which
allows scanning of large, connected areas. The process of turning point clouds

1

1. Introduction 2

Figure 1.1: The Lenovo Phab 2 Pro Sensors

into surface models has been done many times, for example in [3], where the
focus lies on large and noisy datasets. Segmentation of point clouds is also well
researched, like in [4], which presents an approach to plane segmentation for
tabletop objects. Rusu et al. [5] solve a similar task but additionally to planes
they fit spheres, cylinders and cones. This helps patching up missing data and
create smooth shapes. Dimitrov et al. [6] take a similar approach but put the
focus on industry applications.

Chapter 2

Background

2.1 Motion Tracking and Area Learning

Motion tracking is the ability of a device to track its translations and rotations
and to know where it is in space relative to a base point. We need this information
to be able to relate mutliple scans to each other. Area learning gives the device
the ability to remember what it has scanned before and to recognize learned areas
again. This technique gives the following advantages: First it corrects drift that
accumulates when scanning for longer times, as shown in Figure 2.1, second the
device can localize itself within a learned area.

Figure 2.1: Drift Correction

For this thesis, we are using the Google Tango platform for both motion
tracking and area learning. When scanning an area, the device gives us a point
cloud of the scanned area. A point cloud is a set of (x, y, z)-formatted points,
each representing a measured point in the room. It can be manipulated over the
APIs [7] provided by Google Tango. In this project we are working with the Java
API. Furthermore the phone can save AreaDescriptionFiles (ADFs), which

3

2. Background 4

contain a description of the area it has seen while area learning was enabled.
The user is required to scan the environment first. Afterwards, they can scan
the object with the ADF loaded. As soon as the phone recognizes the area
(‘localizes’) the ADF is automatically used for drift-correction.

2.2 3D Reconstruction and Image Segmentation

The technique to turn point clouds back into 3D surfaces is known as 3D re-
construction. It is often achieved via point set triangulation [8], where all or a
subset of the points are connected by edges so that the resulting triangles form
a surface. The quality of such a mesh can be evaluated by di↵erent means. One
way is by the minimum weight, that is the minimum sum of edges, another by
penalizing triangles with small angles. Both methods try to make the likeness of
the surface to the original object to be as good as possible, while simultaneously
trying to keep the mesh simple.

We use the free Point Cloud Library (PCL) [9] to achieve a triangulation [3].

Chapter 3

Implementation

3.1 Overview

We achieve the goal of getting from point clouds to 3D models by going through
the following procedure, see also Figure 3.1:

• Acquire point clouds from the phone

• Combine several point clouds together into one by transforming them so
they are all with respect to a common base coordinate system

• Reconstruct the surface from the combined point cloud

• Separate objects from the plane they sit on

• Display surface model on the computer

IR Projector Time-of-Flight Camera

Separate Point Clouds

Fisheye Camera

Pose Data

One Combined Point Cloud

Reconstructed Surface

Separate Object Model

Figure 3.1: Flowchart of the process

5

3. Implementation 6

3.2 Acquiring Data

When starting the Tango service we initialize a Tango object which is the inter-
face used to connect to the Project Tango service. Then we connect a Listener
to it. While scanning, we get four di↵erent kinds of events back to our listener
Tango UpdateCallback.

Poses The first event gives us a TangoPoseData object, called a pose from
now on. This object contains the rotation and translation of the phone at a
timestamp with respect to a base pose. There are three di↵erent combinations
of target-base-pairs:

• the Device frame with respect to the Start-of-Service frame, which is used
if there are no ADFs available

• the Device frame with respect to the Area-Description frame, which is used
if there is a ADF loaded and a normal point cloud comes in

• the Area-Description frame with respect to the Start-of-Service frame,
which is used if the device localizes itself and updates the ADF

Every time a pose comes in, which is approximately every five milliseconds, it is
automatically saved in the Tango object. We only have to update the frustrum
on the screen and save the timestamp. The frustrum shows us the direction
we are looking in, as seen in Figure 3.3 (b). We only update the information
displayed on the screen periodically, so we wait until the timestamps are 100 ms
apart before doing so.

Point clouds The second event gives us a TangoPointCloudData object, which
contains the point cloud aquired at a timestamp. Everytime such an object ar-
rives, approximately every 200 ms, we also update the screen, then query the
pose at the same timestamp. This gives us the pose that is closest to the given
timestamp and in the specified target-base-pair. We are only interested in the
point cloud, if the device has been su�ciently moved since the last point cloud
was saved. After the transformation (discussed in section 3.3) and rounding, all
points within a certain threshold are saved to a global list.

Events Then there are TangoEvents, which are triggered whenever an event
occurs that the developer needs to be aware of, like exceptions or notifications
of sensors. When that happens, an error code is printed either as an alert on
screen or a log entry visible in Android Studio, our programming environment.

3. Implementation 7

Camera images And fourth we get a notification signaling that the RGB or
fisheye camera has an image available. We are ignoring these notifications in this
project to focus on getting correct depth data.

3.3 Transforming Data

Beeing able to correctly transform points is crucial as every point cloud is
recorded with respect to the device. If we would merge them as they are, they
would all end up stacking on top of each other. We first have to rotate and
translate them according to where the phone was when the particular cloud was
scanned. The first pose we get from the phone is used as the base. All point
clouds have to be transformed so that they are with respect to the base before
we are able to merge the clouds together.

We name some coordinate systems (CS) as follows, and will use them again
throughout the thesis. The rectangle represents the phone pointing to the right
and with the screen facing the reader:

x

y

z

(a) Phab CS

x

y

z

(b) Device CS

x

z

y

(c) Start of Service CS

Figure 3.2: Coordinate Systems

The points in TangoPointCloudData given by the phone are in the Phab CS,
the Device frame is associated with the Device CS and both the Start-of-Service
frame and the Area-Description frame are associated with the Start of Service
CS. Our device reports its pose relative to its chosen frame of reference. The
transformation matrices that allow to switch from one system into the other are
as follows (MY

X

describes the transformation from system X to system Y) :

T

Device

Phab

=

0

@
1 0 0
0 �1 0
0 0 �1

1

A
A

Start of Service

Device

=

0

@
1 0 0
0 0 �1
0 1 0

1

A

To make sure that all points are in a common coordinate system, we have to
do a rotation and a translation. As the common base frame we use the Start-
of-Service frame which is set when the Tango service is first started. We now

3. Implementation 8

expect, that the following transformation would yield the desired result:
0

BB@

x

0

y

0

z

0

w

0

1

CCA = A ·R · T ·

0

BB@

x

y

z

1

1

CCA+ t (3.1)

Here A · R is the rotation matrix equivalent to the quaternion (q
x

, q

y

, q

z

, q

w

)
given by the TangoPoseData. While quaternions use less space, they are not as
intuitive and easy to transform as rotation matrices. The matrix is thus acquired
by doing the following:

A ·R =

0

BB@

1� 2 · q2
y

� 2 · q2
z

2 · q
x

· q
y

� 2 · q
z

· q
w

2 · q
x

· q
z

+ 2 · q
y

· q
w

0
2 · q

x

· q
y

+ 2 · q
z

· q
w

1� 2 · q2
x

� 2 · q2
z

2 · q
y

· q
z

� 2 · q
x

· q
w

0
2 · q

x

· q
z

� 2 · q
y

· q
w

2 · q
y

· q
z

+ 2 · q
x

· q
w

1� 2 · q2
x

� 2 · q2
y

0
0 0 0 1

1

CCA·

0

BB@

q

x

q

y

q

z

q

w

1

CCA

The translation vector t is also given by the TangoPoseData. The only part that
changes with each new point cloud is R, as the phone is moved around and its
pose changes.

But, for a reason that is not clear to me, we have to switch the x and y angles
of the R rotation matrix.. We do this by first extracting the angles

R =

0

BB@

r

11

r

12

r

13

r

14

r

21

r

22

r

23

r

24

r

31

r

32

r

33

r

34

r

41

r

42

r

43

r

44

1

CCA

✓

x

= arctan2 (r
32

, r

33

) (3.2)

✓

y

= arctan2 (�r

31

,

p
r

32

2 + r

33

2) (3.3)

✓

z

= arctan2 (r
21

, r

11

) (3.4)

and then creating three rotation matrices as follows

X =

0

BB@

1 0 0 0
0 cos(✓

y

) � sin(✓
y

) 0
0 sin(✓

y

) cos(✓
y

) 0
0 0 0 1

1

CCA

Y =

0

BB@

cos(�✓

x

) 0 sin(�✓

x

) 0
0 1 0 0

� sin(�✓

x

) 0 cos(�✓

x

) 0
0 0 0 1

1

CCA

Z =

0

BB@

cos(✓
z

) � sin(✓
z

) 0 0
sin(✓

z

) cos(✓
z

) 0 0
0 0 1 0
0 0 0 1

1

CCA

3. Implementation 9

We combine those into the matrix R

0 = Z · Y ·X and change Formula 3.1 by
including R

0 instead of R. With this, we are now able to scan while rotating the
phone around the x and y axis.

In a similar way we define t

0

t =

0

BB@

t

x

t

y

t

z

0

1

CCA ! t

0 =

0

BB@

t

0
x

t

0
y

t

0
z

0

1

CCA =

0

BB@

t

y

�t

x

t

z

0

1

CCA

and replace t in Formula 3.1 by t

0. Now all three translation axis work as ex-
pected.

3.4 User Interface

The starting screen, seen in Figure 3.3(a), presents the user with the scanning
options. The first button is for switching between loading an ADF or not. When
activated, the user has to select the ADF by tapping Manage ADFs. On this
list they can also delete and rename them. Area learning mode has to be on
for the scanner to be able to create ADFs. When tapping Start, the scanning
screen appears, Figure 3.3(b). Here the user can create ADFs or scan objects.
The buttons to save the ADF or the scan trigger a dialog, Figure 3.3(c), where
the user has to enter a file name. The ADF is then saved. When a scan is
saved, a file is created in the directory Documents/ScannerFiles and the points
are written one by one to the file.

The rest of the process is done on the computer. To get a file from the phone,
we can call

cd Library/Android/sdk/platform -tools/
./adb pull storage/emulated /0/ Documents/ScannerFiles/Name

⇠/Target/Directory/Name.txt

We use Polygon File Format (ply) to display point clouds in blender. It
is a file format designed to store data from 3D scanners. To transform them
into surfaces, we need Point Cloud Data (pcd) files, an extension to ply-files
specifically for PCL. They are both pretty similar in storing one point per line,
its components separated by spaces. The headers they use di↵er though. We
execute a shell script to prepend headers to the file, depending on what type of
point cloud file we want. Examples of the two file formats can be seen in Figure
3.4.

3. Implementation 10

(a) The Start Activity (b) Scanning (c) Saving a scan

Figure 3.3: Screenshots

ply
format ascii 1.0
element vertex 33444
property float x
property float y
property float z
end_header
-0.009965 -3.097502 -0.520190
1.998883 0.388584 -0.472801
2.074370 -0.948711 -0.705841
2.048257 -0.807378 -0.255036
...

(a) Example .ply

VERSION .7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 33444
HEIGHT 1
POINTS 33444
DATA ascii
-0.009965 -3.097502 -0.520190
1.998883 0.388584 -0.472801
2.074370 -0.948711 -0.705841
2.048257 -0.807378 -0.255036
...

(b) Example .pcd

Figure 3.4: The two file formats used

3. Implementation 11

3.5 Surface Reconstruction

Surface reconstruction is done on the computer. We use PCL [9], which is a
library o↵ering lots of algorithms for point cloud and mesh processing. To get
a triangulation, we first need the surface normals. They are computed with a
NormalEstimation object from the PCL. Next we input our point cloud and
normals into a Greedy ProjectionTriangulation, which returns us a Visual-
ization Toolkit (vtk) file with the polygon mesh. This file format can represent
various datasets such as points, grids or polygonal data.

The algorithm we are using is based on the incremental surface growing
principle. It selects a starting point, searches through the neighbors to find
points that are a best match for forming a triangle, then branches out from that
triangle until no more valid triangles can be connected. Then it starts with an
unconnected point again. Additionally we use the library for separating the point
cloud into planes and non-planes [10]. This is done such that objects standing
on a plane like a table can be detached and used as a standalone object.

There are three main variables for this algorithm: the maximum edge length,
the maximum number of nearest neighbors that are searched and the distance
threshold for plane segmentation. For our application on medium sized objects,
we settled on a small edge length of 2.5 cm, trying to exclude outliers from
creating singular triangles. Our maximum number of neighbors is a standard
100 and we chose a threshold of 10 cm for the plane segmentation.

Chapter 4

Evaluation

Transformation The process of combining several point clouds into one is
the most challenging part of this thesis, mostly because the point clouds do not
fit together without an additional translation. To illustrate that, let us take a
quadratic room as a recurring example. We are holding the phone in portrait
orientation and scanning from the middle of the room to one side, then turning
90 degrees clockwise and scanning again, then doing the same for the third wall.
We assume the Phab CS of Figure 3.2(a). We are thus scanning around the x

axis.

3

1

2

Figure 4.1: Rotation around x axis

It shows as follows when not doing anything to the point clouds we receive
from the phone.

1

2

3

y

x

z

Figure 4.2: x axis, no transformation

This is to be expected because we ignore the movement the phone did while
scanning. There is no translation, but there is rotation around the vertical axis of

12

4. Evaluation 13

the phone. Now if we take into account the matrix T from the previous chapter,
we get the following result:

1

2

3

y

x

z

Figure 4.3: x axis, transformation with T

It works as expected and just rotates the points into the Device CS. All we
have to do now is to rotate the points with the corresponding rotation matrix
A ·R given by the API. It indicates the transformation from the Device CS into
the Start of Service CS. The scans give the following image:

1 2

3

y

z

x

Figure 4.4: x axis, transformation with T and A ·R

We can see, that this is not what we wanted. We notice though that the
points rotate around the y axis instead of the x. So we switch those two as
mentioned in Section 3.3 and get:

3

1

2

x

z

y

Figure 4.5: x axis, transformation with T and A ·R0

When scanning around the horizontal axis, the y axis in Figure 3.2(a), we
get a similar result.

4. Evaluation 14

3

1

2

Figure 4.6: Rotation around y axis

Here again, only when doing the described translation we get a satisfactory
result.

3

1

2

x

z

y

Figure 4.7: y axis, transformation with T and A ·R0

When rotating around the z axis in Figure 3.2 (a), we do not receive what
we expected.

2

1

Figure 4.8: Rotation around z axis

When applying the described transformation, we get the situation in Figure
4.9.

We see that it rotates with the right angle, but around the wrong axis. If we
wanted to fix this, then the previous two rotations would not work again. We
actually found that not being able to rotate the phone around this axis was not
too hindering when scanning.

4. Evaluation 15

1

2

y

z

x

Figure 4.9: z axis, transformation with T and A ·R0

Figure 4.10: Outlier triangles

Surface Reconstruction A problem with surface reconstruction is the exis-
tence of outliers in the point cloud. Ignoring the outliers by setting a small edge
length worked pretty well, but was not completely successfull. There were still
some separate floating triangles, as marked in red in Figure 4.10. Also the sheer
amount of points leads to the creation of quite uneven surfaces.

In Figure 4.11 we can see a box scanned with our app. Interestingly, the
box itself is triangulated better than the plane that its standing on. Our first
thought was that this happened because it was a dark floor and Tango does not
work well with dark objects. But when we tried the same object on a lighter
floor, we got a similar result. Because of the uneven triangles of the floor, plane
segmentation gets di�cult. We have to cut away a broad strip to get all points
associated to the floor. With that we also cut away some of the object. In Figure
4.11 (c) we tried to find a middleground, using the 10 cm threshold mentionied
in section 3.5.

4. Evaluation 16

(a) Box Point Cloud

(b) Box Surface

(c) Box Surface with plane cut away

Figure 4.11: Surface Reconstruction, scanned with our app

4. Evaluation 17

Memory Leak At first, the screen only shows the currently visible points. We
wanted to expand this by showing all points that have been accumulated so far
in the current scan. A bu↵er contains the points that are to be displayed. By
adding the current points to the bu↵er and increasing the bu↵er size, instead of
replacing the points in the bu↵er with the new ones we should be able to see all
points. This process works, but brings an important problem: the memory used
for the app is suddenly increasing constantly by about 1MB per ten seconds,
even if we are not scanning any new points. There has to be a thread that has a
memory leak, but we can not figure out which one or how to stop it. Thus, we
only show the current points on the screen.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we created an app that can scan an object, and transform it into
a surface model on a computer. We are successfully taking into account ADFs,
so that the phone corrects its position as soon as it recognizes where it is. This
does not lead to a great change in point cloud accuracy though. The point clouds
are loaded onto the computer and can be triangulated. The goal of separating
objects from the plane they are standing on was only partially accomplished,
small objects often get accidentally cut away as well.

5.2 Future work

There are several ways in which this project could be improved or extended:

• Filter out outliers and simplify the point clouds in general so that plane
separation would be more accurate

• Include the information from the color camera to assign a color to every
point

• Separate multiple objects that are scanned at the same time

• Fit shapes like spheres and cones to the objects to get surfaces without
holes

• Find and fix the bug so that one can rotate the phone in every direction
while scanning

• Do the surface reconstruction on the phone instead of on a computer

• Let people move objects in front of the camera instead of moving the
camera around the object

18

Bibliography

[1] Tango — Google Developers: https://developers.google.com/tango/

[2] Klingensmith, M., Dryanovski, I., Srinivasa, S., Xiao, J.: Chisel: Real time
large scale 3d reconstruction onboard a mobile device. In: Robotics Science
and Systems 2015, Pittsburgh, PA (July 2015)

[3] Marton, Z.C., Rusu, R.B., Beetz, M.: On fast surface reconstruction meth-
ods for large and noisy point clouds. In: IEEE. (2009)

[4] Trevor, A., Gedikli, S., Rusu, R., Christensen, H.: E�cient organized point
cloud segmentation with connected components. (01 2013) 1–6

[5] Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene seg-
mentation and reconstruction of 3d point cloud maps for mobile manipula-
tion in domestic environments. In: 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. (Oct 2009) 1–6

[6] Dimitrov, A., Golparvar-Fard, M.: Segmentation of building point cloud
models including detailed architectural/structural features and mep sys-
tems. Automation in Construction 51 (2015) 32 – 45

[7] Tango Developer Overview — Tango — Google Developers:
https://developers.google.com/tango/developer-overview

[8] Point set triangulation - Wikipedia: https://en.wikipedia.org/wiki/point set triangulation

[9] Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE
International Conference on Robotics and Automation (ICRA), Shanghai,
China (May 9-13 2011)

[10] Holzer, S.: Pcl: Segmentation. In: ICCV. (2011)

19

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Background
	2.1 Motion Tracking and Area Learning
	2.2 3D Reconstruction and Image Segmentation

	3 Implementation
	3.1 Overview
	3.2 Acquiring Data
	3.3 Transforming Data
	3.4 User Interface
	3.5 Surface Reconstruction

	4 Evaluation
	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future work

	Bibliography

