
Distributed
 Computing

Outdoor Sports Route Generation

Bachelor Thesis

Sven Dammann

sdammann@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

July 18, 2017

Abstract

In this thesis we enhance an existing algorithm for automatic route generation
for different outdoor activities like running, cycling, biking, skating and hiking.
Based on this algorithm, we built an Android app, which allows configuration
of many settings and bigger route length by the user. We adjust the existing
algorithm to allow the user to set individual starting and end points for the
route. Further, we implement the route generating into an existing navigation
app to provide the user with turn-by-turn navigation.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 1

1.2 Goals . 2

2 Methods 3

2.1 Triangle Algorithm . 3

2.1.1 Triangle with an End Point 3

2.1.2 New Route Length Limit 4

2.1.3 Randomness in every Route 4

2.2 Route Attractiveness Model . 6

2.2.1 Activity Weights . 6

2.2.2 Elevation Map . 7

2.2.3 View Weights . 7

2.2.4 Path Attractiveness Formula 8

3 Android App 9

3.1 Route Parameters Setup . 9

3.2 Map Interface . 10

3.2.1 Setting Start and End Point 10

3.2.2 Turn-By-Turn Navigation 13

4 Server Implementation 15

4.1 Parallel Computing . 15

4.2 Data Management . 16

ii

Contents iii

5 Evaluation 17

5.1 Route Length . 17

5.2 Calculation Time of Routes . 18

5.3 Activity Differences . 19

5.4 Inaccuracy of Path Tracking . 20

6 Conclusion 22

6.1 Future Work . 22

Bibliography 24

A Route Types Examples A-1

Chapter 1

Introduction

Outdoor sports activities have become more and more popular. Typical examples
are running, cycling, biking, skating or hiking. While one can experience the
nature by not being restricted to a route, the overall experience of an exercise
can be improved by selecting a nice route. To get a good route, the performer
of the mentioned activities has many different options. Firstly, one can use a
nice route that one already knows. But with every iteration of that route, it
can become more and more boring. Alternatively, one can also explore existing
online tools and apps, which allow creating routes with maps or get routes shared
by other users. This will result in good routes as these routes are tested and
maybe even rated by other users. The disadvantage though is the fact, that
those routes most likely will not start at the location of the performer and that
they have predefined length which may not apply to the user’s preference.

Besides following a predefined route, the user can also just decide during the
exercise, which turn to take at the next crossing. This approach however is not
guaranteed to result in the best possible route and experience for the exerciser,
as this requires him to focus heavily on navigation and orientation during the
activity. Also, if the user does not know the area well enough, there is a chance
of getting lost.

Our app solves these problems, as it allows setting arbitrary starting and
ending points, choosing a length and different parameters for the type of activity,
the elevation and the view.

1.1 Related Work

This work is based on the Master Thesis Smart Running Route Generation by
Jan Schulze [1]. In that thesis, an app is presented, which generates routes
for outdoor running, where the shape of the routes are approximated with a
triangle. The algorithm uses a route attractiveness model to find the optimal
route. Further, a server is introduced, which runs the described algorithm.

1

1. Introduction 2

1.2 Goals

There already exists an application with the goal to generate running routes (see
Section 1.1). This thesis focuses on improving and enhancing that app with the
following features.

Overhaul the user interface, include turn-by-turn navigation over
headphones

The app should have turn-by-turn navigation over headphones as this is beneficial
for the user by not having to look down at his phone at every crossing. That way
focusing on the exercise rather than on navigation improves the user experience.

Improve algorithms to be able to generate longer routes efficiently

Until now the length of the routes to generate were limited to 12 km. The app
should be able to generated routes with a length up to 100 km. This is possible
due to parallelizing of the route calculation and optimized data management on
the server side.

Add more user customizable parameters for the route generation

The user should be able to set:

• Length: How long the generated route should be

• Type of activity: For which type of activity the user wants to generate a
route

• Environment: The importance of the environment for the route

• Elevation: If the route should be steep or flat

• View: The importance of a good view

• Starting Point: Where the user wants to start his route

• Ending Point: Where the route should end

Chapter 2

Methods

2.1 Triangle Algorithm

The triangle algorithm was introduced in the past thesis by Jan Schulze [1] and
is illustrated in Figure 2.1. It takes a single point as Start and End point,
creates two branches in different directions and connects the two ends of those
branches. This results in a triangular shaped route. Several new optimizations
and enhancements to the Triangular Algorithm are discussed in this chapter.

Figure 2.1: Triangle Algorithm, taken from Smart Running Route Generation [1]

2.1.1 Triangle with an End Point

To provide the user the ability to end the route at a different point than where
it starts, we modify the triangle algorithm. To keep the triangular shape of
the route, we come up with the following idea, which is graphically depicted in
Figure 2.2.

First, we take a as half of the route length and c as the distance between
Start and End point.

a =
Route lenght

2

3

2. Methods 4

c = Distance betweenStart andEnd

We then calculate the midpoint ~O between the Start (~S) and the End (~E).

~B = ~E − ~S

~O = ~S +
~B

2

Then we calculate the height of the triangle where ~S and ~E form the base of it.
Then we get the apex ~P of this triangle by going in the direction of ~T (orthogonal
to ~B) and length of the height h starting in ~O.

h =

√
a2 − 1

4
c2

~T ⊥ ~B

~P = ~O +
~T

‖ ~T ‖
h

Lastly, the route is calculated by generating a branch from the Start ~S to the
apex ~P and from the End ~E to ~P .

2.1.2 New Route Length Limit

We increase the route length limit from 12 km to 100 km, as a cyclist or a biker
may not be satisfied with a route that is only 12 km long. This change alone
would result in much bigger calculation times for a route being longer than 12 km.
However, optimizations on the server side prevent such increase in computation
time. See Chapter 4 and Section 5.2 for more details.

2.1.3 Randomness in every Route

For generating diverse - and thus interesting - routes, the route calculation is ran-
domized. To ”guarantee” a sufficiently good route, the implementation generates
multiple routes and selects the best one of them.

Random Starting Direction and Angle

If Start and End are the same point, we choose for every route a random direction
Φ between 0◦and 360◦and an angle ϕ between 30◦and 120◦. The first branch is
created in the direction Φ, the second branch in the direction Φ + ϕ.

2. Methods 5

Figure 2.2: Triangle Algorithm with Start and End point

2. Methods 6

Random Height of Triangle

If Start and End are not the same point, we cannot vary the direction or the
angle, as the direction is defined by the Start and End points. As we want a
isosceles triangle for our route, we also cannot vary the angle of the height of
the triangle. We came up with the idea to vary the height, which will vary the
angle of the two branches and create different routes. The height is multiplied
by a randomly chosen number between -1.2 and -0.8 or between 0.8 and 1.2. By
choosing negative numbers between -1.2 and -0.8 we have the ability to reflect
the triangle at its base and get even more different routes.

2.2 Route Attractiveness Model

The route attractiveness model was also introduced in the past thesis [1]. It
assigns every edge in the street network graph a weight which corresponds to the
attractiveness of that particular edge. The attractiveness of an edge consists of
its activity weight, the elevation weight and the view weight.

2.2.1 Activity Weights

The activity weight is defined for example by the type of the street (for example
highway, living street, forest path, ...) and other properties (for example ground
surface, motor vehicles allowed, ...) and models the attractiveness of a path
for each activity. A cycler for example prefers roads and dedicated cycleways
whereas a biker enjoys to ride on paths which are in the nature more than
streets in the city. In the data from OpenStreetMap1 every way has some tags
containing information about the type of street or path and other data related
to the path. For every activity we assign a different weight to every relevant tag,
see Figure 2.3 for some examples of tags and which weights we assign to them.
Then, we calculate the activity weight of a way by multiplying the weights of all
tags of that way.

wactivity =
∏

t∈Tags

t

1openstreetmap.org: OpenStreetMap [2]

2. Methods 7

Tags Biking Running Cycling Hiking Skating

bicycle:dedicated 5.0 0.0 20.0 0.0 5.0

highway:track 20.0 20.0 1.0 20.0 1.0

tracktype:grade4 3.0 1.0 -1.0 5.0 -1.0

natural:forest 10.0 5.0 0.0 5.0 0.0

Figure 2.3: Example for some tags and their weight

2.2.2 Elevation Map

For the elevation weights we cannot take data from OpenStreetMap1, as they
only provide hardly any topographic data. Instead, we take the data from the
Shuttle Radar Topography Mission [3]. We take the absolute elevation between
two points as the elevation weight for the way which connects these two points.

2.2.3 View Weights

The better the view of a route is, the more attractive is this route. A hiker for
example wants to enjoy the view on his trip rather than just see a few meters
ahead. To model a good view, we took a similar approach like in the past
thesis [1]. We look again at the topographic data and calculate the view weight
by ”looking” in eight different directions. We iterate over the nodes in each
direction and count the number of iterations nd until a node has a bigger height
than the node in the previous iteration. The better the view, the bigger is nd
and thus the bigger the view weight wview. If there is no view, then the view
weight wview = 1.

wview = 1 +
∑

d∈Directions
(1− 1

1 + nd
) (2.1)

2. Methods 8

Figure 2.4: Example of the view calculation, taken from Smart Running Route
Generation [1]

2.2.4 Path Attractiveness Formula

To sum up all these three weights and consider the user’s preference for each of
them, we come up with the following formula for the attractiveness of a way.

A = penvironment ∗ wactivity + pelevation ∗ welevation + pview ∗ wview (2.2)

Where pweight type is the users preference for that weight and wweight type is the
calculated weight for that way.

Chapter 3

Android App

We rework the app Smart Route from the past thesis [1] and perform several
improvements to the user experience. A new setup page for the route parameters,
a new map interface and turn-by-turn navigation are added to the application.
In order to get a route, the user runs through the setup page, then sets the Start
and End point of his choice and finally triggers a route generation on the server
with a press of a button. Only few seconds later the route is displayed on the
map and the exercise is ready to begin.

This improved version of the app is published on the Swiss Google Play
Store1. Currently, all the route generation is performed on the dedicated server.
Running the triangle algorithm on the phone is currently not implemented. How-
ever, this is theoretically possible, see Section 6.1 for more details.

3.1 Route Parameters Setup

A new setup page, depicted in Figure 3.1, allows setting all the route parameters,
except the Start and End point, in one place. The user has the following options
to customize the parameters.

• Route Length: To set the desired length of the route, the user can set the
distance with a seek-bar at the top or tap on the distance below the bar
to manually enter a number.

• Type of Activity: Depending on the activity, the route attractiveness com-
putation uses different edge weights, as explained in Section 2.2. The
following activities are supported:

– Biking

– Running

– Cycling

1http://play.google.com/store/apps/details?id=sd.smartroute: Smart Route

9

3. Android App 10

– Hiking

– Skating

• Environment: Sets the environment weight preference penvironment

– Insignificant: penvironment = 0

– Slightly important: penvironment = 1

– Fairly important: penvironment = 2

• Elevation: Sets the elevation weight preference pelevation

– Flat: pelevation = -1

– Insignificant: pelevation = 0

– Steep: pelevation = 1

• View: Sets the view weight preference pview

– Insignificant: pview = 0

– Slightly important: pview = 1

– Fairly important: pview = 2

3.2 Map Interface

The map interface shows the OsmAnd map, which is based on OpenStreetMap
data (see Figure 3.2). In order to get the OsmAnd map, we implement the setup
page as well as the route generation functionality of the previous app [1] into the
open-source maps and navigation app Maps & GPS Navigation - OsmAnd2.

The gear-wheel button in the lower left corner opens the setup page. In the
lower right corner, there are two flag buttons which allow setting the Start and
End point.

3.2.1 Setting Start and End Point

When the setup is completed, one can set the Start point by tapping on the
green flag icon in the lower right corner. By doing so, the user is presented with
3 options:

• Choose Start on Map: By selecting this, the user can tap anywhere on the
map to set the Start point.

2https://play.google.com/store/apps/details?id=net.osmand

3. Android App 11

Figure 3.1: Setup Page Overview

3. Android App 12

Figure 3.2: Map Interface. Buttons (left to right): Setup page button, Start
turn-by-turn navigation, Focus current location, Set Start and End point

3. Android App 13

• Use current location: This option waits for a GPS signal and then sets the
start point to the current location of the user.

• Same Start as End: If the End point is already set, this sets the Start point
at the same location as the End point.

To set the End point, the process is analogous to setting the Start point after
tapping the checkered flag button in the lower right corner.

3.2.2 Turn-By-Turn Navigation

For implementing turn-by-turn navigation, we tried at first to implement the
route generation into a Google Maps application. This did not work out as
Google does not provide the necessary APIs to developers. In a second attempt
we choose to use the open-source maps and navigation app OsmAnd, which
has the necessary APIs. OsmAnd provides on-screen turn-by-turn navigation
instructions (see Figure 3.3) as well as spoken audio guidance over the speaker
of the phone or attached headphones.

3. Android App 14

Figure 3.3: Turn-By-Turn Navigation

Chapter 4

Server Implementation

At the moment the route generation algorithm runs on a server. We use the
server that was introduced in the past thesis [1]. A limitation of that server from
the last project was that only routes up to 12 km could be generated. Several
changes to our server are performed in order to generate longer routes more
efficiently.

In a first step, the data crawler generates the route attractiveness data for
a defined region, in our example for Switzerland. This data is stored in files on
disk. When a route of length L is requested via the servlet, the route generator
loads all the data which is in the radius L

2 around the Start point. Then the
input parameters are used to generate routes out of which finally the best one
is returned to the servlet and from there to the application on the user’s phone.
This work flow is depicted in Figure 4.1.

4.1 Parallel Computing

The triangle algorithm creates multiple routes and then selects the best one of
them. As the previous server only had one single core, all work was performed
sequentially. With the new implementation, parallelization is used to speed up
the route computation and thus allow longer routes to be generated. We define
the computation of a single route as a task, which can run in a thread pool.
When a route is requested by the user, a fixed number N of tasks is generated
and run in the thread pool. N depends on the requested route length L:

• 0 km < L < 10 km: N = 400

• 10 km ≤ L < 25 km: N = 200

• 25 km ≤ L < 50 km: N = 50

• 50 km ≤ L ≤ 100 km: N = 25

15

4. Server Implementation 16

Figure 4.1: Server Diagram

After all tasks have completed, the generated routes are compared to find the
best route. This is done sequentially as it would cause data races if performed
in parallel. However, the comparison takes only a short time in respect to the
generation of the routes.

4.2 Data Management

When a route is requested, the algorithm loads the data around the Start point
from the disk. For routes over 10 km this takes a few seconds to complete. So
with every route request, this is wasted time, especially if the route is generated
at the same Start point over and over again. We overcome this inefficiency by
loading all available data once at start-up of the server and keeping it in the
RAM. Now, the algorithm has faster and lower-latency access to the needed
route attractiveness data which results in faster route generation times.

Chapter 5

Evaluation

In this chapter, we analyze computation times and several example routes for
each activity and the influences of different weights for various activities.

5.1 Route Length

First, we examine the accuracy regarding the route length of the algorithm. We
generate five routes each for different lengths and look how close the returned
route to the requested length is. We plotted the results in a scatter graph, which
is depicted in Figure 5.1. As we can see in the graph, the returned route length
is always, except in the case of 100 km, inside a 10 % margin of error, which we
assume is acceptable.

17

5. Evaluation 18

Figure 5.1: The requested length L in km on the x axis versus the effective length
in km on the y axis

5.2 Calculation Time of Routes

Next, we take a look at calculation times of the triangle algorithm. For this
evaluation we again generated five routes each for different lengths and plotted
the results in a scatter graph. The graph is depicted in Figure 5.2 and shows
that the computation times are always shorter than 5 seconds for routes under
75 km.

5. Evaluation 19

Figure 5.2: The requested length L in km on the x axis versus the computation
time T in seconds on the y axis, best linear fit y = 0.0422 ∗ x + 0.8141

5.3 Activity Differences

To evaluate the variation between the different activity settings, we generated
five routes for each activity and analyze the proportion of forest, streets and
non-streets (paths, tracks, forest tracks). The first route for each activity had
its starting point near the forest at the Zürichberg, the second route started in
downtown Zürich, the third one in Zürich Altstetten again close to the forest,
the forth in Zürich Schwammendingen and the last one in Rümlang. We omitted
the hiking sample in downtown Zürich, as we think that this is not a realistic
scenario. Instead, we generated an additional route for hiking at the Uetliberg.
Figure 5.3 depicts the average composition of all generated routes.

In the best case the forest and tracks proportion for Cycling and Skating
would be 0. However, as we can see in the results, Cycling and Skating have
very low forest and tracks proportions as in some cases the algorithm cannot

5. Evaluation 20

Activity ∅ Forest [%] ∅ Streets [%] ∅ Tracks [%] Screenshot

Running 48 ± 25.8 38 ± 29.5 62 ± 29.5 Figure A.1

Biking 40 ± 33.8 49 ± 28.2 51 ± 28.2 Figure A.2

Cycling 3 ± 4 85 ± 17.6 15 ± 17.6 Figure A.3

Hiking 60 ± 30.3 26 ± 16.6 74 ± 16.6 Figure A.4

Skating 2 ± 4 92 ± 2.4 8 ± 2.4 Figure A.5

Figure 5.3: Example for some tags and their weight

find a route without going through a forest or taking a track. Yet, they have
high proportions of streets, which is beneficial for these activities. Running and
Biking have a good proportion of forest in their routes and take about equal
proportions in streets and tracks. Hiking clearly prefers forest and tracks over
streets, which makes sense.

5.4 Inaccuracy of Path Tracking

For scalability reasons, the route attractiveness data does not include every single
node from the OpenStreetMap data. Nodes which only have two neighbours and
thus only connect their two neighbours, are omitted. This results in path tracking
inaccuracies, as depicted in Figure 5.4.

5. Evaluation 21

Figure 5.4: Inaccuracy of Path Tracking example. The red circles illustrate the
missing nodes, and the red lines show the optimal tracking.

Chapter 6

Conclusion

In this thesis we presented several improvements to the triangle algorithm, which
allow generating routes for five different outdoor activities and with different
Start and End points. Further, we introduced a new path attractiveness formula
with user preference factors for each weight which improved the flexibility of
generated routes.

The existing Android app was reworked and enhanced with a new setup page
for all the route parameters, a new map interface based on OsmAnd, as well as
turn-by-turn navigation for the generated routes.

On the server side, we introduced parallel computing and a new data man-
agement, which allows faster route generation and more efficient calculation of
routes longer than 10 km.

6.1 Future Work

Client Side Computation

If the user has no cellular data plan or wants to generate a route in an area
without reception, the ability to do client side computation of routes would
be beneficial. While it is theoretically possible to run the triangle algorithm
on a phone itself without a huge effort in code rewriting, one would have to
develop an optimized data management of the attractiveness data for Android
phones. The current implementation requires around 10 GB of RAM for all the
data of Switzerland, which as of today no mobile phone supports. One possible
approach would be to partition the data of Switzerland into different regions,
for example every canton of Switzerland as one region, and save each region in a
zip file. Then, the app could download the necessary zip file and run the route
generation on the phone. Nowadays, nearly every phone has at least two CPU
cores, so we could even benefit from the parallel computing when doing client
side route generation.

22

6. Conclusion 23

Population Density for View Weights

Currently, the view weights only take topographical data into consideration. In
a city however, there could be a good view according to the weights where in
reality there is not because of many houses and buildings blocking the view.
The current implementation does not work as expected, as there is no noticeable
difference between routes with a good view compared to routes without view.
One possible solution to create view weights closer to the real world view could
be to find a data source of the population density in the current region and divide
the weights by this density. This would result in very low view weights inside of
big cities and reasonable big view weights in free nature and thus making them
more realistic.

Dynamic Route Update

One further feature which could be implemented in the future is dynamic route
updating. When the user leaves the generated route in the current implemen-
tation, the app tries to navigate him back onto the computed route. Leaving
the route can happen by mistake or consciously by the user. In the later case,
it could be desirable to ask the user if he wants a new route with his current
location as Start point and with the length of the remaining part of the old route.

Data Optimizations

The data as well as the data management could be optimized further. As men-
tioned above, all the data of Switzerland requires about 10 GB of RAM. We
could not figure out why this is the case, since on disk the data takes roughly 2.5
GB. This would require memory analysis and maybe some data structure opti-
mizations. In addition more data could be generated, for example throughout
Europe. Also, one could try to fix the inaccuracy issue mentioned in Section 5.4,
as this would improve the navigation experience in some cases.

Bibliography

[1] Schulze, J.: Smart running route generation. (November 2016)

[2] Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE
Pervasive Computing 7(4) (2008) 12–18

[3] Rabus, B., Eineder, M., Roth, A., Bamler, R.: The shuttle radar topography
mission-a new class of digital elevation models acquired by spaceborne radar.
ISPRS journal of photogrammetry and remote sensing 57(4) (2003) 241–262

24

Appendix A

Route Types Examples

Figure A.1: Running Example Route

A-1

Route Types Examples A-2

Figure A.2: Biking Example Route

Route Types Examples A-3

Figure A.3: Cycling Example Route

Route Types Examples A-4

Figure A.4: Hiking Example Route

Route Types Examples A-5

Figure A.5: Skating Example Route

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Goals

	2 Methods
	2.1 Triangle Algorithm
	2.1.1 Triangle with an End Point
	2.1.2 New Route Length Limit
	2.1.3 Randomness in every Route

	2.2 Route Attractiveness Model
	2.2.1 Activity Weights
	2.2.2 Elevation Map
	2.2.3 View Weights
	2.2.4 Path Attractiveness Formula

	3 Android App
	3.1 Route Parameters Setup
	3.2 Map Interface
	3.2.1 Setting Start and End Point
	3.2.2 Turn-By-Turn Navigation

	4 Server Implementation
	4.1 Parallel Computing
	4.2 Data Management

	5 Evaluation
	5.1 Route Length
	5.2 Calculation Time of Routes
	5.3 Activity Differences
	5.4 Inaccuracy of Path Tracking

	6 Conclusion
	6.1 Future Work

	Bibliography
	A Route Types Examples

