
Distributed
 Computing

BitThief QoL

Bachelor Thesis

Markus Hauptner

markuhau@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Georg Bachmeier, Michael König

Prof. Dr. Roger Wattenhofer

September 14, 2017

Acknowledgements

I want to express my gratitude towards my supervisors Georg Bachmeier and
Michael König for providing ideas, important advice, and helpful feedback through-
out the project.

i

Abstract

In this thesis, we improve the QoL (Quality of Life) functionality of BitThief,
a free-riding BitTorrent client. The main goal is the creation of an easy-to-use
web interface to enable users remote access to BitThief from different devices.
To achieve this, the client had to be extended by web-server functionality and a
web frontend had to be designed. Furthermore, the already existing code had to
be altered to improve modularity and ease extensibility.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

1.3 Goals . 1

2 Methods 2

2.1 BitTorrent . 2

2.2 BitThief . 2

2.3 Jetty . 2

2.4 Web Technologies . 3

3 Implementation 4

3.1 Architecture . 4

3.2 Communication . 4

3.3 Backend Implementation . 5

3.3.1 Predefined Handlers . 5

3.3.2 Newly Created Handlers 6

3.4 Frontend Design and Implementation 7

3.4.1 Design . 7

3.4.2 Implementation . 7

3.5 Code Structure . 7

4 Future Work 14

Bibliography 15

iii

Chapter 1

Introduction

1.1 Motivation

The BitTorrent network is big. With an ever-growing number of users and
available files in the network, having a Torrent client running in the background
could be of good use, for example for automating downloads guided by machine
learning algorithms or downloading on a separate device for maintaining a media
server. The main motivation for this particular project was making the usage of
BitThief more easy and attractive for potential users.

1.2 Related Work

As this thesis concerns the BitThief BitTorrent client, previous publications
about it might be of interest to the reader. Free Riding BitTorrent is Cheap
by Locher et al. [1] describes the basics of BitThief and explains the motivation
for building such a free riding BitTorrent client.

1.3 Goals

The main goal of this thesis is the creation of a web-interface for BitThief. In
order to achieve this, the code of the program will be altered to improve the
separation of user-interface and functionality. The web-interface should support
the general features of the old interface, like starting downloads via magnet link,
changing settings, like the maximum download speed, and observing the status
of current downloads.

1

Chapter 2

Methods

2.1 BitTorrent

BitTorrent is a peer-to-peer filesharing protocol that utilizes the download and
upload capacities of each network member. If a user wants to download a file
provided in the BitTorrent network, he can join the network and download parts
of the file from any other network member that already holds parts of said file.
Thus, unlike traditional client-server models, the performance of the network, if
described by throughput, improves with a growing number of network members.
More information about the BitTorrent protocol can be obtained in [2].

2.2 BitThief

BitThief is a so-called free riding BitTorrent client, which roughly means, that
it can download data from the torrent network without uploading any. Detailed
information can be read in [1]. Generally speaking, the original intention for
developing such a selfish client was showing that the BitTorrent protocol can be
abused by selfish clients. A possible solution for this problem was proposed in
[3]. BitThief has been developed at ETH since about 2007, and was the subject
of some previous bachelor and master thesis, thus being suitable for further
development in this thesis.

2.3 Jetty

In order to extend BitThief with server functionality, the decision of which
web server to use had to be made. Jetty seemed especially suitable as it is
a lightweight webserver/servlet container and, like BitThief, Java-based. Fur-
thermore, it is developed by the Eclipse Foundation and thus can be expected to
stay maintained in the foreseeable future. Especially the convenient embedding
process made Jetty stand out from its competition for this particular application.

2

2. Methods 3

2.4 Web Technologies

To make the web interface reactive, modern, and visually appealing, HTML,
JavaScript and CSS have been used. HTML (HyperText Markup Language) is a
markup language and the standard way to define the structure and hierarchy of
web pages. CSS (Cascading Style Sheets) provides a way to describe the style of a
web page and how the different HTML elements should be displayed. JavaScript
is a scripting language that can be used to define the behavior of a web page,
like reacting to the user pressing a button. Additionally, jQuery, a JavaScript
library, has been used in order to simplify HTML document manipulation and
AJAX requests (Asynchronous requests to the server). To simplify the creation of
monotonous and complex elements of the user interface, another library, jQuery
UI, has been used.

Chapter 3

Implementation

The BitThief source code had been modified in three distinct ways. Firstly,
some of the existing code has been refactored in order to improve modularity.
Secondly, the backend for the web server, offering the actual functionality of
BitThief, has been implemented, and lastly, the frontend for the web server,
which is responsible for the user interface, had to be created as well.

3.1 Architecture

The general setup of the architecture looks as follows: The functionality of Bit-
Thief is controlled by the Environment class. It basically provides the API of
BitThief and can be used to, for example, start downloads. The MainServer class
handles all things server related and is responsible for communicating with both
the web frontend and the BitThief functionality (via the Environment class). It
serves as a mediator, as it interprets requests from the web-frontend in order to
call suitable methods of the Environment class. The web-frontend is a website
that can be viewed and interacted with by the end user. Users can access it
by querying the BitThief server with their preferred web browser. It displays
human-readable information about the download (e.g. status, speed, etc.) and
provides mechanisms to inform the server that certain changes are desired (e.g.
pause download via a button).

3.2 Communication

In order to communicate with BitThief, the user has to query the web server using
a web browser. The address reads as follows: http://<ip-address>:<port> where
<ip-address> denotes the ip address of the machine that BitThief is running
on and <port> denotes the configured port of the BitThief web server. The
port number can be defined when starting BitThief by calling the -port starting
parameter. If we assume that the starting script is called BitThief.sh, starting

4

3. Implementation 5

the server on port 1234 would work by executing the following command (Linux):
./BitThief.sh -port 1234

The communication between the frontend and the backend roughly works as
follows: The frontend, which is the web browser running the JavaScript code
and HTML, is shown to the user, who selects appropriate actions, like adding a
magnet link. The JavaScript code converts these queries into POST and GET
requests suitable for sending to the BitThief server (represented by the Main-
Server class). The BitThief server interprets said POST and GET requests using
its handlers (described in detail in section 3.3), and takes appropriate actions (by
using the Environment class described in section 3.5), like starting a download.
Then, an answer (a JSON array or JSON string) is generated and sent back to
the frontend. Thus, the actual download is happening on the device running the
server, and not necessarily on the device running the frontend.

3.3 Backend Implementation

As mentioned before, the Jetty Webserver/Servlet-Container was used to imple-
ment the server functionality of BitThief. The component of Jetty that handles
HTTP requests and responses is the Handler class, which executes the handle-
method upon each new request. In order to respond to different kinds of requests,
multiple handlers can be defined and executed sequentially. For this project, six
handler classes were created, each for one specific purpose, and three predefined
handlers were used.

The API (Application Programming Interface) of the server implementation
for BitThief is the custom created MainServer class to handle all things that
are related to its server functionality. MainServer wraps the Server class (re-
sponsible for actually running the web server) provided by Jetty and adds some
initialization methods. When a message from the client arrives (a JSON object
or JSON array), the handlers defined in the MainServer instance process it and
execute appropriate methods of the Environment instance.

3.3.1 Predefined Handlers

In this section, all predefined handlers provided by Jetty will be described briefly.

The ConstraintSecurityHandler is used to prohibit unauthorized users from
accessing the BitThief functionality and can block access to all files organized
by the server. The actual authentication works using a username and pass-
word, which is matched against usernames and passwords in the users.properties
file. This file is automatically generated in the same directory as BitThief when
starting it for the first time and can be edited in order to add users or change
passwords.

3. Implementation 6

The ResourceHandler can serve static content like HTML, CSS and JavaScript
documents. It forms a core part of the server, as the whole user interface is im-
plemented in JavaScript.

The DefaultHandler is a simple handler implementation used to end the
handler chain more gracefully. It produces a simple error page (also called 404
page) if the requested resource cannot be located.

3.3.2 Newly Created Handlers

In this section, all newly created handlers will be described briefly.

The UpdateHandler is responsible for answering requests about the current
status of all downloads. On a suitable request, a JSON array is being created and
returned with each JSON object encoding information about one specific down-
load. Some of the included details are name, bytes downloaded, total number of
bytes, bytes uploaded, download speed and the download hash.

The EditHandler answers requests intended to edit certain options about one
specific download. Examples include pausing/unpausing a download, removing
a download from the download list, and reading or writing settings for one par-
ticular download (not global settings). Figure 3.4 shows the dialog box of the
frontend used to issue requests for editing those specific settings. The post re-
quest must encode parameters like the hash string of the desired download, a
string encoding which action to take (like pause or readSetting) and, in case the
request tries to write settings, information about which settings to change.

The MagnetHandler is responsible for starting a download from a magnet
URI. The only parameter it needs is the magnet URI itself.

The UploadHandler is called when uploading a torrent file to the device run-
ning the server. Though the de-facto standard of most popular torrent trackers
is the magnet-link, some trackers still use torrent files.

The SettingsHandler is a little different to the other handlers, as it responds
to two different targets. If the specified target is readSettings, it will respond with
a JSON object encoding the global settings of BitThief, if it is writeSettings, it
will modify the global settings of BitThief according to the parameters encoded
in the request.

The DirectMagnetHandler is the only handler not called by a request from
the web frontend. It was added in order to ease the direct encoding of magnet
links and server address in a single string. This means that tools accessing the
BitThief functionality can now start a download more easily. If we assume the
server was running on a machine with ip address 10.0.0.1 and listening on port
8080, calling 10.0.0.1:8080/direct?<magnetLink> would start a download for
the magnet link <magnetLink>

3. Implementation 7

3.4 Frontend Design and Implementation

The web frontend was implemented using HTML, CSS and JavaScript.

3.4.1 Design

To keep the design simple, the main interface only displays three buttons. One
for starting a download using a magnet link, one for uploading a torrent file, and
one for accessing the global settings. These buttons are situated prominently
on the very top of the page. When a download is being started, either using a
magnet link or a torrent file, a new box appears below the main buttons. Said
box contains all necessary information about the download, like speed and status,
and adds some control buttons. Additionally, a progress bar is being added to
visually represent the percentage of downloaded data. Some screenshots of the
interface can be seen in figures 3.1, 3.2, 3.3 and 3.4.

3.4.2 Implementation

The core component of the frontend implementation is a JavaScript file. It is
responsible for the whole functional behavior of the web page. Additionally it
tries to update the user interface periodically to reflect the changing state of
the download. To accomplish this task, a GET request is sent to the server
(handled by the UpdateHandler, as described in section 3.3.2) each second. In
order to simplify some commonly used or sophisticated tasks, the script relies on
the JavaScript libraries jQuery and jQuery UI (described in section 2.4).

The HTML file defines the hierarchical structure of the buttons and dialog
boxes, while a CSS file is being used to define the styling of all HTML compo-
nents.

3.5 Code Structure

In order to improve modularity and the separation of functionality and user-
interface, some of the previously existing source code has been moved or altered.
Instead of discussing details, a short description about the current structure of
the functionality part will be provided. A graphical representation can be seen
in figure 3.5.

The core class for all functionality matters is the Environment class. An
instance of this class represents an instance of the BitThief functionality itself
and contains all other important classes used to control it. If a program (in
this case, a server) wants to use any of BitThiefs functionality, it can instantiate

3. Implementation 8

Figure 3.1: The main interface while running two downloads simultaneously.

3. Implementation 9

Figure 3.2: The dialog for starting a download via magnet link.

3. Implementation 10

Figure 3.3: The settings dialog for changing global settings. Most of the settings
options are self-explanatory. Check For Update lets BitThief check for available
updates automatically. OutputDirectory defines the directory in which all files
should be downloaded to. Keep in mind that it refers to the directory of the
machine running the BitThief server and not necessarily the one running the web
frontend.

3. Implementation 11

Figure 3.4: The settings dialog for changing download-specific settings. Upload
data defines whether any data (except meta data) should be uploaded to the
BitTorrent network. Use T4T protocol defines whether the T4T protocol should
be used instead of the BitTorrent protocol. Download Pieces in order defines
whether the pieces that a download consists of, should be downloaded in order
or randomly

3. Implementation 12

Figure 3.5: The general layout of BitThief. Other classes and methods represent
more classes used by Environment to control the functionality. Other possible
client classes represent other classes that want to use the functionality of Bit-
Thief, for example GUIs. A description of Environment and the classes on the
left can be found in section 3.5. For more information about MainServer, refer
to section 3.3

3. Implementation 13

the Environment class or reference an already instantiated one. This way, the
BitThief functionality could even be offered in form of a library.

An instance of BitThiefConfiguration is used to store and edit global settings
for a particular Environment instance. It contains methods to read and modify
global settings, like the maximum download rate, or whether the T4T protocol
should be used. Figure 3.3 shows the dialog box provided by the web frontend
to change those settings.

The DownloadManager class is used to coordinate downloads. Downloads
can be added, paused, and removed using either the TorrentDownload object
itself (described below) or a hash string encoding the download.

The TorrentDownloadRepository class contains, as the name implies, infor-
mation about all the downloads currently processed by BitThief. Each of those
downloads is being represented by a TorrentDownload object.

A single TorrentDownload instance represents an actual download. It con-
tains all download-specific information, like the current status (downloading,
paused, etc.), filename, the download speed, a hash string that uniquely identi-
fies it, and much more. The hash string can be used to get the TorrentDownload
object it represents by calling a specific method (getDownload(hashstring)) on
DownloadManager or DownloadRepository.

The BTPreferences class is intended to store preference information that are
more specific to the user interface.

Chapter 4

Future Work

As BitThief can now be run in server mode only, some interesting new utilizations
are possible. As the previous thesis about BitThief [4] has already implemented a
system to retrieve information about available torrents from indexes (Web pages
that list available magnet links), a certain automation of downloading might now
be desirable.

A possible useful extension would be a system that tracks downloading habits,
and automatically downloads files that the user might be interested in. This
could be useful if the user wants to obtain periodically appearing tv shows or
shows of the same genre.

Another advancement could utilize the newly implemented function of start-
ing a download via a string that encodes the address of the server and some
magnet link. An example might be a browser plug-in that rewrites magnet links
to links directly starting a download on BitThief. Once configured with the cor-
rect server address and port, any magnet link could then be clickable by the user
and directly start the download.

14

Bibliography

[1] Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free riding in bittorrent
is cheap. In: Hot Topics in Networks. (2006)

[2] Cohen, B.: Incentives build robustness in bittorrent. (2003)

[3] Locher, T., Schmid, S., Wattenhofer, R.: Rescuing tit-for-tat with source
coding. In: Proceedings of the Seventh IEEE International Conference on
Peer-to-Peer Computing. (2007)

[4] Vasavada, V.: Bitthief new ux. Bachelor’s thesis, ETH Zurich (2016)

15

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Goals

	2 Methods
	2.1 BitTorrent
	2.2 BitThief
	2.3 Jetty
	2.4 Web Technologies

	3 Implementation
	3.1 Architecture
	3.2 Communication
	3.3 Backend Implementation
	3.3.1 Predefined Handlers
	3.3.2 Newly Created Handlers

	3.4 Frontend Design and Implementation
	3.4.1 Design
	3.4.2 Implementation

	3.5 Code Structure

	4 Future Work
	Bibliography

