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Abstract

In 2016, Emek et al. [1] introduced the online min-cost perfect matching with
delays (MPMD) problem. In this problem, requests arrive in a continuous time
fashion and should be matched with each other into pairs. These requests will
arrive at one out of k sources, which are given by a description of a metric space.
An algorithm is allowed to either match two requests with each other or delay
the matching. Whenever a matching is done, the algorithm pays a cost, which
is equal to the distance between the two sources of the requests plus the time
both requests have waited from its arrival until the matching. The MPMD for
two sources (2-MPMD) problem is a restricted version of the MPMD problem,
in which there are always exactly two sources (k = 2) with a unit distance be-
tween them. The quality of a 2-MPMD algorithm is measured by its competitive
ratio, which essentially expresses how well the algorithm fares in the worst case
in comparison to an optimal solution. In this thesis we analyze whether random-
ized online algorithms are able to achieve better results than deterministic ones.
We present a randomized version of the deterministic algorithm in [2] and the
reasoning and design decisions that we made in order to arrive at that algorithm.
Furthermore, we prove that every randomized 2-MPMD algorithm has a compet-
itive ratio of at least 1.8. Finally, we present an algorithm which calculates the
cost and matching of an optimal offline solution specifically for the two source
version with a runtime complexity of O(n), where n is the amount of requests of
the input.
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Chapter 1

Introduction

1.1 Motivation

In current days, there exists a large multitude of online games and the popularity
keeps rising. In many of those games, for example, Chess or FIFA, it is required
that the gaming platform matches users with each other in order to be able to
play the game. While matching users, the gaming platform has to consider two
important criteria. One is to match suitable players with each other (in terms of
skill level or network distance or other aspects), the other is to minimize the time
of a player waiting during the matching process. Due to the online environment,
these two criteria are often in conflict. What if the current players in the pool
are a poor match? Should the platform wait? It is not guaranteed that a better
matching player will arrive in the future, so how long should it wait?

The min-cost perfect matching with delays (MPMD) problem is a formaliza-
tion of this challenge done by Emek et al. in 2016 [1]: Requests arrive in an
online fashion at sources of a finite metric space, which is known in advance.
The online algorithm matches these requests with each other by partitioning the
request set into pairs. It is also allowed to delay the matching, in the hope of a
more suitable request appearing in the future. Each match incurs a cost which
consists of two parts: the space cost, which is equal to the distance between the
sources of the metric space, and the waiting cost, which is equal to the waiting
time since the arrival of both requests involved. The quality of an algorithm for
this kind of problem is measured by its competitive ratio (refer to Section 1.2 for
an exact definition).

A special case of the MPMD problem is the two source min cost perfect
matching with delays problem, where the metric space always consists of only
two sources with a unit distance between them. This problem is referred to as
2-MPMD and it abstracts away the space costs of the MPMD problem, leaving
only the wait-or-match (cf. rent-or-buy) question for a request. Emek et al. [2]
showed that any deterministic 2-MPMD algorithm has a competitive ratio of
at least 3 and in addition to that provide a concrete algorithm which achieves
a competitive ratio of exactly 3. In this thesis, we analyze whether a random-
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1. Introduction 2

ized algorithmic approach is able to achieve a better competitive ratio than 3
by designing a randomized algorithm and examining a lower bound for such al-
gorithms. Additionally, a quick look is taken at how an offline algorithm could
operate in order to produce an optimal offline solution specifically for the two
source case.

1.2 Model

In an instance of the 2-MPMD problem, there are two sources denoted by a and
b and a set R of requests. We also refer to R as a sequence of requests or request
sequence. A request is characterized by its source x ∈ {a, b} and its arrival time
t(r) ∈ R≥0. The algorithm receives the requests in an online continuous time
fashion, which means that each request r ∈ R is visible by the algorithm from
the time t(r) on. We assume throughout this thesis for every request sequence
R that the amount of requests (denoted by |R|) it contains is even.

Any algorithm, on input of R, outputs a partition of R into unordered request
pairs. The algorithm is allowed to delay the matching of requests in R. To be
more precise, given two requests r1, r2 ∈ R let m(r1, r2, t) be the match operation
which assigns r1 to r2 from time t on. Matching m incurs a cost which consists
of two parts: A space cost and a time cost. If r1 and r2 have different sources
(x(r1) 6= x(r2)) then we call m an external match, otherwise an internal match.
The space cost of m is 1 if it is an external match and 0 if it is an internal
match. The time cost of m is equal to the sum of the waiting time of r1 and r2,
i.e. it is equal to t − t(r1) + t − t(r2). cost(m) denotes the total cost of match
operation m and is equal to the sum of the space and time costs of the two
involved requests. For an algorithm ALG, MALG(R) denotes the set containing
all match operations done by ALG on the sequence R. The total incurred cost
of ALG on a sequence R is denoted by costALG(R) and is the sum of costs
of all matching operations done by ALG while processing R. It is defined as
costALG(R) =

∑
m∈MALG(R)

cost(m).

In the context of some algorithm, an already arrived request is either open or
matched. It is open if it was not yet involved in any match operation, otherwise
matched. Furthermore, we assume that no two requests with the same source
arrive at the same time.

In order to assess the quality of an algorithm, we use a measurement called
competitive ratio. An algorithm ALG is said to be α−competitive if there exists a
universal constant β such that costALG(R) ≤ α·costOPT (R)+β for every request

sequence, where OPT is an optimal offline algorithm. costALG(R)
costOPT (R) is called the cost

ratio of ALG on sequence R. If ALG is randomized then the expected cost of ALG
is used: E[costALG(R)]. One of the notably big differences between ALG and
OPT is that ALG has no a priori knowledge of R.
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1.3 Related Work

The work of Edmonds [3, 4] paved the way for matching as a classic problem
in graph theory and combinatorial optimization. Karp, Vazirani, and Vazirani
[5] ignited the interest in online matching and allowed many different versions
of this problem to form. In most versions, it is assumed that requests belong to
one side of a bipartite graph and the other half is given in advance.

Emek et al. [1] introduce a different version of the previously studied online
matching problems in the aspect that the underlying graph (or metric space)
is given in advance and the computational challenge lies within the unknown
locations and arrival times of the requests (which are also unbounded in number).
This is known as the MPMD problem and they provide a randomized algorithm
with a competitive ratio of O(log2 n+ log ∆), where n is the number of points in
the metric space and ∆ is the aspect ratio, which is calculated as the quotient of
the biggest distance and smallest distance of any two sources in the metric space.
It is shown by Wang and Wattenhofer [6] that the algorithm of [1], if modified
correctly, can also treat the bipartite version of the MPMD problem and achieve
the same competitiveness. A different online MPMD algorithm with an improved
logarithmic competitive ratio is presented by Azar et al. [7] and they also prove
that no (randomized) online MPMD algorithm can have a competitive ratio of
lower than Ω(

√
log n) in the all-pairs version and Ω(log1/3 n) in the bipartite

version.

In [2] Emek et al. studied a more restricted version of the MPMD problem:
the 2-MPMD problem. They establish an upper bound of 3 on its competitive
ratio by providing a deterministic variant of the online algorithm of [1] restricted
to the 2-MPMD case. Additionally, a lower bound of 3 is proved by showing
that any deterministic online 2-MPMD algorithm must have a competitive ratio
of at least 3, effectively establishing a tight bound on the competitive ratio of
deterministic online 2-MPMD algorithms. It is also shown that the competitive
ratio of a special family of randomized algorithms that include the algorithm of [1]
- the memoryless online 2-MPMD algorithms - is greater than 3. The 2-MPMD
problem captures the essence of the ski rental problem, since the main question
for a request in the 2-MPMD problem is to either wait (rent) or match (buy). As
such, one could also consider work on the ski rental problem [8, 9, 10, 11, 12], in
which randomness proved to be helpful, as related work to the 2-MPMD problem.



Chapter 2

Designing a Randomized
2-MPMD Algorithm

This chapter presents the design decisions and reasoning that were made in
order to arrive at a randomized 2-MPMD algorithm, that is suspected to have a
competitive ratio of less than 3. Considering a worst case algorithm is the same
as having an adversary that always finds the worst possible sequence for that
algorithm. The idea why randomization can potentially achieve better results
stems from the fact that an adversary cannot abuse a specific property of the
algorithm to achieve bad results, because the algorithm has a chance to process
the requests in a different way (where that bad property might not hold).

2.1 Background

The designed algorithm is based on appropriate modifications of the deterministic
algorithm DM2 in [2]:

Algorithm 0 Algorithm DM2 at time step t.

if there exist two open requests r1 6= r2 with x(r1) = x(r2) then
match(r1, r2)

else if there exist two open requests r1 6= r2 with x(r1) 6= x(r2) then
T ← T + dt
if T = 1 then

match(r1, r2)
T ← 0

end if
end if

DM2 is designed for a continuous time environment but is more easily un-
derstood when described as if it were in a discrete time environment, in which
it takes discrete time steps dt. dt is infinitesimally small so that we can assume
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2. Designing a Randomized 2-MPMD Algorithm 5

that every request arrives in a separate time step. Whenever a request r1 arrives
and there exists another open request r2 in the same source, then DM2 matches
the two requests immediately. Apart from that, DM2 also keeps a timer T which
increases only whenever an open request in each source is present at the current
time. In a discrete sense: Given two consecutive time steps t1, t2, at the start
of t2 if there were open requests in each source during time step t1 then add
dt = t2 − t1 to T . Whenever T reaches 1, DM2 matches the currently two open
requests, which reside in different sources, externally and resets T back to 0.

We use the notion of smart algorithms from [2]. An algorithm A (online or
offline) is said to be smart if it satisfies the following property: If request r arrives
at a source where there already exists an open request r′ 6= r, i.e. x(r′) = x(r)
and t(r′) < t(r), then A matches r and r′ immediately, that is, at time t(r).
Notice that any smart algorithm will never have more than two open requests
for a positive duration of time. Algorithm DM2, for example, is clearly smart
by definition.

Lemma 2.1. There exists an online method that transforms any algorithm A
into a smart algorithm Ã without increasing the total cost incurred by the algo-
rithm.

For the proof refer to [2, p. 5].

We subsequently assume that every algorithm we consider is smart (including
the optimal offline algorithm OPT ). The cost incurred by a smart algorithm A
is comprised of three cost components:
(C1) the space cost incurred by A for matching externally;
(C2) the time cost incurred by A while there exists as single open request; and
(C3) the time cost incurred by A while there exist two open requests (one at
each source)

Lemma 2.2. The parity of the number of open requests is the same for any
2-MPMD algorithm and OPT at any time t.

Proof. Let A be an arbitrary 2-MPMD algorithm. Let OPT and A run on the
same sequence S. At any point in time t we have for A and OPT that the amount
of seen requests up to t (i.e. all requests with arrival time less or equal to t) is
equal to the sum of the matched requests and the open requests (these sets might
differ for A and OPT, but the total amount is the same). The amount of matched
requests must be even because matching is done in pairs. Therefore, the set of
open requests of OPT and A must have the same parity.

With Lemma 2.2 we are able to ignore cost component (C2) in the analyses
regarding the cost ratio of some smart algorithm A. This is equivalent to only
considering request sequences, where requests always arrive in both sources at
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the same time. For the remainder of this thesis, we assume this property for
every sequence considered and introduce a more compact notation:

We represent every pair of request r′, r∗ with x(r′) 6= x(r∗) and t(r′) = t(r∗)
as a single request r. Since it is not necessary to specify the source of a request
anymore it suffices to represent a sequence S in the following way:
S = {a, b, c, d} is a sequence consisting of four requests r1, r2, r3, r4 with

t(r1) = a t(r2) = b t(r3) = c t(r4) = d

Matching r1 at time t then means to do match operation m(r′1, r
∗
1, t) and

matching r1, r2 internally at time t means m(r′1, r
′
2, t) and m(r∗1, r

∗
2, t). Similarly,

we consider the amount of requests in S (denoted by |S|) to be 4, even though
it actually represents 8 requests (4 in each source). We refer to |t(ri)− t(rj)| as
the gap between ri, rj . Using this notation, DM2 can be rewritten into:

Algorithm 0 Algorithm DM2 at time step t.

if there exist two open requests r1 6= r2 then
match(r1, r2)

else if there exists one open requests r1 then
T ← T + dt
if T = 1 then

match(r1)
T ← 0

end if
end if

Emek, Shapiro and Wang also defined a special class of randomized algo-
rithms in [2]: the memoryless algorithms. They also proved that any memoryless
algorithm has a competitive ratio of greater than 3. Therefore, it is not necessary
to consider any algorithms that fall into the class of the memoryless algorithms
during the design of our algorithm.

2.2 Initial Idea

The starting point is a randomized version of the algorithm DM2.

In contrast to DM2, RDM2 flips a coin whenever T reaches 0.5 and depending
on the outcome will either match and reset T or do nothing. If T reaches 1, RDM2
will still match r1, r2 deterministically. One of the reasons why deterministic
algorithms are lower bounded by a competitive ratio of 3 is that they have to
wait for a significant amount of time before being able to safely match a request
pair externally. E.g. if DM2 would decide to match request pairs externally at
T < 1 then the adversary could simply design a sequence where a request pair
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Algorithm 1 Algorithm RDM2 at time step t.

1: if there exist two open requests r1 6= r2 then
2: match(r1, r2)
3: else if there exists one open requests r1 then
4: T ← T + dt
5: if T = 0.5 then with probability p = 0.5:
6: match(r1)
7: T ← 0
8: else if T = 1 then
9: match(r1)

10: T ← 0
11: end if
12: end if

arrives immediately after the external match. Therefore, waiting until T = 1 is
necessary for DM2. RDM2 introduces the possibility of matching a request pair
externally sooner than DM2 in a random fashion, such that the adversary is not
able to design a bad sequence in the same way as for DM2.

For the remainder of this thesis, let ε be a sufficiently small, positive number.
We prove that the competitive ratio of RDM2 is greater than 3 by providing a
counter example:

S = {0, 0.5 + ε, 2, 2.5 + ε} (2.1)

See Figure 2.1 for an illustration of sequence S.

ε is necessary in order to have a defined behaviour for RDM2. If the second
request would be exactly at 0.5, it would be unclear what RDM2 would actually
do (already flipped the coin or not?). In this case ε allows us to model the
situation in which a request appears immediately after RDM2 has flipped a coin
at T = 0.5. For the cost calculations, we treat ε as if it were 0.

The cost ratio of RDM2 on S is as follows:

E[costRDM2(S)]

costOPT (S)
=

6.325

2
= 3.1875 (2.2)

This shows that the competitive ratio of RDM2 is greater than 3.

Note that in S the gap between r2, r3 can be arbitrarily large as long as it
is greater than 1 (in our case it is 1.5). The idea is that RDM2 should not have
the possibility of matching r2, r3 internally.
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time t

0 0.5+ε 2 2.5+ε

r1 r2 r3 r4

Figure 2.1: Illustration of sequence S. Note that every request ri should represent
two requests arriving at the same time in each source.

2.3 Modifying the Probability

The first aspect that we consider to modify in RDM2 is the probability p at line
5. Analyzing E[costRDM2(S)], using a general p shows:

S1 := p[2] + (1− p)[3]

S2 := p[2 + S1] + (1− p)
E[costRDM2(S)] = p[2 + S1 + S2] + (1− p)[3 + S1] = 6 + 4p2 − p3 − p

In order to get E[costRDM2(S)]
costOPT (S) < 3, a value p must be found such that 4p2 −

p3 − p < 0 holds and we find that setting p = 0.25 yields a cost ratio of ∼ 2.99
which is less than 3 for sequence S.

Algorithm 2 Algorithm RDM2 v2 at time step t with p = 0.25.

1: if there exist two open requests r1 6= r2 then
2: match(r1, r2)
3: else if there exists one open requests r1 then
4: T ← T + dt
5: if T = 0.5 then with probability p = 0.25:
6: match(r1)
7: T ← 0
8: else if T = 1 then
9: match(r1)

10: T ← 0
11: end if
12: end if

Although Algorithm 2 does have a cost ratio of less than 3 on sequence S,
it is still very close to 3. There is a good chance that there exists a different
sequence which actually has a cost ratio of greater than 3 for Algorithm 2, which
proves to be true. We present counter example S′.
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time t

0 0.5+ε 2 2.5+ε 4 4.5+ε 6 6.5+ε

r1 r2 r3 r4 r5 r6 r7 r8

Figure 2.2: Illustration of sequence S′. Recall that every request ri should rep-
resent two requests arriving at the same time in each source.

S′ = {0, 0.5 + ε, 2, 2.5 + ε, 4, 4.5 + ε, 6, 6.5 + ε}

See Figure 2.2 for an illustration of sequence S′.

Similar to sequence S, the gaps between (r2, r3), (r4, r5) and (r6, r7) can be
arbitrarily large as long as they are greater than 1. The cost ratio of RDM2v2
on S′ is

E[costRDM2v2(S
′)]

costOPT (S′)
=

12.1006

4
= 3.0251

2.4 Avoiding Large Gaps

Looking at the counter examples S and S′ in more detail, we notice a pattern:
They use large gaps to connect duplicates of the same subsequence Ssub together,
where Ssub consists of two requests separated by a gap of 0.5 + ε. Doing this
impacts our suggested algorithms in a bad way. Usually, one could expect that if
any two sequences A and B were merged together into a sequence AB by placing
a large gap between them (e.g. between the last request of A and the first request
of B), then the cost of an algorithm running on AB would be the sum of the
costs of A and B. While this is true for OPT it is not for Algorithm 2: When
processing Ssub it will either match both requests internally with each other or
both externally. When matching both externally, it already made a poor decision,
whereas matching both internally will leave the timer T at a value larger than
0.5, making the next instance of Ssub match poorly. This results in the cost of
two Ssub connected together being greater than just two times the cost of Ssub,
while OPT only has a doubled cost.

To counteract this property we improve our algorithm by letting it reset
timer T to 0 whenever it observes a large gap, which would be any gap of size
1 or greater. For the following algorithm let rlast and rsecondLast with t(rlast) >
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t(rsecondLast) be the two most recently seen requests (i.e. with the greatest arrival
times at that time step).

Algorithm 3 Algorithm RDM2 v3 with resetting T at large gaps at time step
t.
1: if t(rlast)− t(rsecondLast) > 1 then
2: T ← 0
3: end if
4: if there exist two open requests r1 6= r2 then
5: match(r1, r2)
6: else if there exists one open requests r1 then
7: T ← T + dt
8: if T = 0.5 then with probability p:
9: match(r1)

10: T ← 0
11: else if T = 1 then
12: match(r1)
13: T ← 0
14: end if
15: end if

We notice a special property about Algorithm 3:

Lemma 2.3. Let A,B be arbitrary request sequences. Let AB be the sequence
obtained by connecting A and B with a large gap between the last request of A
and the first request of B. We have that

E[costRDM2v3(AB)] = E[costRDM2v3(A)] + E[costRDM2v3(B)]

Proof. The timer T is always set to 0 during the large gap between subsequence A
and subsequence B. Due to T being the only state information that the algorithm
keeps, A cannot influence the behaviour of the algorithm while processing B and
vice versa. This means that after the algorithm has processed subsequence A in
AB it will start processing subsequenceB as if it would be a separate input, which
implies that E[costRDM2v3(AB)] = E[costRDM2v3(A)] + E[costRDM2v3(B)].

With Lemma 2.3, analyzing the competitive ratio of Algorithm 3 is equivalent
to ignoring lines 1-3 and only allowing request sequences with no gap larger than
1 as input.

In Algorithm 1, the improvement gained by changing p to 0.25 stems from
the fact that it is better to wait and match internally in counter example S (i.e.
to less likely execute lines 5-7). With Algorithm 3 we addressed a different aspect
of the counter examples and therefore the case with p = 0.5 must be analyzed
again.
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time t

0 0.5+ε 1.25 1.25+ε 2 2.5+ε

r1 r2 r3 r4 r5 r6

Figure 2.3: Illustration of sequence S∗0.5. Recall that every request ri should
represent two requests arriving at the same time in each source.

time t

0 0.5+ε

1.25 1.25+ε

2 2.5+ε

3.25 3.25+ε

4 4.5+ε

5.25 5.25+ε

6 6.5+ε

r1 r2 r3 r4 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13

Figure 2.4: Illustration of sequence S∗0.25. Recall that every request ri should
represent two requests arriving at the same time in each source.

Unfortunately, there is still a counter example possible in a similar pattern as
before. We present two counter examples S∗0.5 and S∗0.25 for the cases of p = 0.5
resp. p = 0.25.

S∗0.5 = {0, 0.5 + ε, 1.25, 1.25 + ε, 2, 2.5 + ε}
S∗0.25 = {0, 0.5 + ε, 1.25, 1.25 + ε, 2, 2.5 + ε, 3.25, 3.25 + ε, 4, 4.5 + ε, 5.25, 5.25 + ε, 6, 6.5 + ε}

See Figure 2.3 resp. Figure 2.4 for illustrations.

LetRDM2v30.5 denote Algorithm 3 with p = 0.5 and analogouslyRDM2v30.25
with p = 0.25. Then the cost ratios are

E[costRDM2v30.5(S∗0.5)]

costOPT (S)
=

6.325

2
= 3.1875

E[costRDM2v30.25(S∗0.5)]

costOPT (S)
=

12.1006

4
= 3.0251
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2.4.1 An Additional Timer

Considering the cost ratios of RDM2 v3 on its counter examples we notice that
they are exactly the same costs as with RDM2 v2 and RDM2 on S′ and S
respectively. This shows us that there is an alternative way to put sequences
together apart from using large gaps: In S∗ a gap of 1.5 was simulated by two
gaps of size 0.75 with two extremely close requests inserted between them. The
two inserted requests achieve the same costs for RDM2 v3 as if they would not
be there, while separating the large gap into two smaller gaps.

Consider the sequence S∗0.5. Clearly, it would be the same request sequence
as S if r3 and r4 were removed. To avoid confusion, we rename the requests of S
into s1, s2, s3, s4. We claim that the expected cost of RDM2 v3 is the same as the
expected cost of RDM2 running on S. We show that r3, r4 have corresponding
cases in S, where the costs are the same. There are two ways how requests r3
and r4 can be matched by RDM2v30.5:

1) r3 and r4 get matched internally with each other: m1(r3, r4) or
2) r2 and r3 match internally and r4 matches externally: m2(r2, r3),m3(r4)

Case 1) can occur in two different situations depending on what happened be-
fore r3, r4 arrived: r1 and r2 could have either been matched internally with
each other or both externally. If we ignore m1(r3, r4) of RDM2 v3, we can find
equivalent situations when considering RDM2 running on S. The only difference
which m1(r3, r4) can make, is a cost difference of ε and can thus be neglected.

Case 2) occurs if previously r1 matched externally and r2 does not match ex-
ternally by itself. This is equivalent to the case in S where s1 gets matched
externally (at time 0.5) and s2 matches externally at time 1.5. It is not difficult
to see that cost(m2) + cost(m4) is equivalent to the cost of the external match
of s2 at time 1.5.

Using this insight, we improve our algorithm such that it also recognizes
simulated large gaps. We achieve this by introducing a second timer G that will
reset timer T to 0 whenever it reaches 1. G increases whenever there is no open
request present. In other words, G increases whenever the first timer T is not
increasing. G is reset to 0 whenever the algorithm does an external match or G
reaches 1.

Note that Lemma 2.3 still holds for Algorithm 4 and it suffices to only consider
request sequences which only contain gaps that are less than 1, when reasoning
about its competitive ratio.
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Algorithm 4 Algorithm RDM2 v4 time step t.

1: if there exists no open request then
2: G← G+ dt
3: if G = 1 then
4: T ← 0
5: G← 0
6: end if
7: else if there exist two open requests r1 6= r2 then
8: match(r1, r2)
9: else if there exists one open requests r1 then

10: T ← T + dt
11: if T = 0.5 then with probability p:
12: match(r1)
13: T ← 0
14: G← 0
15: else if T = 1 then
16: match(r1)
17: T ← 0
18: G← 0
19: end if
20: end if



Chapter 3

Lower Bound for 2-MPMD

This chapter presents a lower bound established for randomized algorithms and
focuses on proving the following theorem:

Theorem 3.1. Any randomized 2-MPMD algorithm has a competitive ratio of
at least 1.8.

We prove this theorem by using Yao’s min-max principle [13, 14, 15], which states
that the expected cost of a randomized algorithm on the worst case input cannot
be better than the worst case random probability distribution of a deterministic
algorithm which performs best for that distribution. In other words, it suffices to
provide a distribution over inputs, such that every deterministic algorithm will
have an expected cost ratio of at least 1.8 on that input distribution. The cost of
an algorithm on a distribution of inputs, is the expected cost over those inputs.

We give an input distribution D which consists of two cases D1, D2.
D1 consists of only a single request arriving at time 0 (recall that one request
represents two requests, one in each source, at the same time). D2 consists of two
requests, where one request arrives at time 0 and a second request arrives some-
where within the time interval [ε, 23 ] with a uniform distribution. See Figure 3.1
for an illustration of D2. Both cases D1, D2 have an equal chance of appearing.

time t

0 2
3

r2

r1

Figure 3.1: Illustration of sequence S2. Request r2 appears within the shown
time window with a uniform probability.
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We proceed in showing that every deterministic algorithm has an expected
cost ratio of at least 1.8 on D.
An optimal offline algorithm would be able to distinguish D1 from D2 and will
always match externally immediately after the request arrived in case of D1 and
otherwise wait until the second request arrives in case of D2. The expected cost
of an optimal offline algorithm OPT would then be:

E[costOPT (D)] =
1

2
· 1 +

1

2
· (2

3
· 1

2
) =

5

6

The only two (reasonable) options a deterministic algorithm has for this input
distribution is:

1) Match everything immediately as they arrive externally or
2) Wait some amount of time u before matching the first request externally, if
within that waited time a second request arrives, match the first and second re-
quest internally with each other, otherwise match the second request externally
immediately after arrival.
Let ALG1 and ALG2 denote the deterministic algorithms operating as described
in 1) and 2) respectively.

The cost ratio for ALG1 on D is

E[costALG1(D)] =
1

2
+

1

2
· 2 =

3

2
E[costALG1(D)]

E[costOPT (D)]
=

3

2
· 6

5
=

9

5
= 1.8

In order to determine the cost ratio of ALG2 on D we minimize its cost term
over the waiting parameter u ∈ [0, 23 ].

E[costALG2(D)] =
1

2
(1 + 2u) +

1

2
(
3

2
u(u) + (1− 3

2
u)(2 + 2u))

min
∀u∈[0, 2

3
]
E[costALG2(D)] =

3

2
(3.1)

Where Equation 3.1 minimizes to 3
2 at u = 2

3 . The cost ratio of ALG2 is thus:

E[costALG2(D)]

E[costOPT (D)]
=

3

2
· 6

5
=

9

5
= 1.8

With which we have shown that every (reasonable) deterministic algorithm
has a cost ratio of at least 1.8 on input distribution D. This in turn implies that
every randomized algorithm has a competitive ratio at least 1.8.



Chapter 4

Optimal Offline 2-MPMD
Algorithm

One way to obtain an optimal offline 2-MPMD solution would be to apply the
general optimal offline algorithm for MPMD: Model the request sequence as a
min weight perfect matching problem and then apply known algorithms on it.
But since the general algorithm is designed for the general case, it might be
more efficient to have an algorithm specifically for the 2-MPMD problem. In this
chapter, we provide an optimal offline algorithm for the 2-MPMD case, which has
a complexity of O(n) where n is the number of requests in the input sequence.

The algorithm receives the input sequence S in form of D(S) where D(S) is
an array containing the gaps between the requests in S. D(S)[0] contains the first
gap of S, D(S)[1] the next gap and so on. E.g. the request sequence consisting of
4 requests arriving at times {0, 0.2, 0.7, 1} would then be the array [0.2, 0.5, 0.3],
where 0.2 is the gap between the first and second request, 0.5 is the gap between
the second and third request and so on.

4.1 Dynamic Program

We present a dynamic program DP that will determine the optimal offline cost
and matching for an input sequence S. DP fills a 1-dimensional table T of length
n − 1, which is defined such that T [0] contains the optimal offline cost for the
first request of S, T [1] contains the optimal offline cost for the first two requests
of S and so on. We initialize the first two entries of T in the following way:

T [0] := 1 T [1] := min (2, 2 ·D(S)[0])

Additionally, if 2 · D(S)[0] < 2, then a pointer is also stored in entry T [1]
which points to T [0]. DP then fills the rest of T in the following manner:

T [i] = min (2 ·D(S)[i− 1] + T [i− 2], 1 + T [i− 1]) (4.1)

16
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In addition to calculating the entry T [i], DP also stores a pointer for each
entry beyond the first, which points to either entry T [i − 1] or entry T [i − 2],
depending on which part was actually the minimum in the calculation of T [i]. If
2 ·D(S)[i − 1] + T [i − 2] < 1 + T [i − 1] then store a pointer to T [i − 2] else to
T [i− 1].

The cost of an optimal offline solution to sequence S can be looked up in entry
T [n− 1] and we can obtain the matched pairs of S by backtracking the pointers
in the entry, starting with entry T [n− 1]: If the pointer of entry T [i] points only
one entry back, the (i + 1)-th request of S was externally matched, otherwise
it was internally matched with the i-th request of S and we next consider the
pointer of T [i− 2].

DP is correct because for any request in its input sequence, DP considers
every possible action for it (match it externally, internally with previous request
or internally with the following request) and picks the best out of those. It is
clear that DP requires only a constant amount of time for each entry of T and
therefore has a complexity of O(n).



Chapter 5

Conclusion

5.1 Summary

Based on the deterministic algorithm DM2 from [2], we have designed a ran-
domized 2-MPMD algorithm but also found counterexamples to it. Analyzing
the nature of those counterexamples we found that the algorithm has a bad
performance when processing specific sequences that contain large gaps. Using
this insight we improved the algorithm accordingly and arrived at the current
algorithm to beat: Algorithm 4. Using Yao’s principle we concluded that any
randomized algorithm has a competitive ratio of at least 1.8. We have also con-
structed a dynamic program which can be used as an optimal offline algorithm
specifically for the 2-MPMD problem with a runtime complexity of O(n).

5.2 Future Work

Most of our results are possibly only intermediate results and can be a good
point to base future work on. One could analyze Algorithm 4 more in detail and
establish an upper bound of less than 3 with it or find a counter example of a
different nature, which does not rely on large gaps. Future works could also try to
refine the lower bound we provided. Furthermore, the calculation of the expected
cost for Algorithm 4 is suspected to be NP-hard but no proof was provided for
that yet.

18
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