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Abstract

Mixed-criticality scheduling and stochastic schedulability analysis are topics that
have been extensively studied in the state of the art. However, the idea to
combine and integrate both is an emerging field. In this thesis, I review both
topics, and implement some of the concepts into a cohesive Python toolbox.
This framework offers the objects, scripts, and functions to generate synthetic
mixed-criticality task sets with stochastic execution times, test these task sets
for schedulability using various deterministic and probabilistic schemes, and vi-
sualize and compare the results. Furthermore, the framework has been designed
to be understandable, modular, and extendible. To validate the correctness of
the framework, I evaluated several deterministic and stochastic mixed-criticality
schemes.
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Chapter 1

Introduction

Traditional analysis of embedded system scheduling always takes a somewhat
pessimistic approach, by which all jobs are assumed to always take up their full
worst-case execution time (WCET) budget. This results in powerful hardware
that operates far below its full computational potential for the majority of the
time, to ensure the most critical subset of its tasks does not miss any deadlines.
To diminish this (necessary) over-catering, there are two distinct tools to con-
sider: For one, we could classify some tasks as more critical than others, because
they have to provide stricter guarantees about their run-time behaviour. This
classification then allows high- and low-critical tasks to be treated differently,
such that they all meet their individual necessary specifications; it is what is re-
ferred to as mixed-criticality (MC). Secondly, we could try to model a task’s
execution time not as a single deterministic WCET, but instead as a random
variable. If we know its probability distribution, then we can not only calculate
a task’s deadline miss probability (DMP) per time unit, but also decide
on schedulability with respect to some threshold. Note that a system deemed
schedulable this way has a non-zero probability of still missing a deadline, but
WCETs often are assumptions themselves, with a certain non-zero exceedance
probability associated to them. The obvious question now is: Can mixed-
criticality and stochastic execution times be combined? As a step to-
wards answering this question, I wanted to build a Python framework that allows
for easy task set synthesis, schedulability testing using various deterministic and
stochastic mixed-criticality schemes, and visualization of the results.

1.1 Motivation

Both MC and stochastic analysis have been the topic of past research, but they
were treated separately for the most part. Only very recently has the idea of
stochastic mixed-criticality analysis emerged. Developing and evaluating differ-
ent methods of doing so is only a secondary aim of this thesis, however. The main
goal is to review past work on both topics, and then compile an overview of the

1



1. Introduction 2

status quo by implementing key concepts in a self-contained software toolbox.
This framework should offer the necessary scripts and functions to perform the
entire workflow of schedulability analysis, meaning the generation of synthetic
task sets, evaluation using different schedulability tests, and visualization of the
results. Every step should be expandable independently from the others, such
that new features like a new schedulability testing scheme can be added with as
little necessary modification as possible.

1.2 Related Work

As a starter on mixed-criticality scheduling, I would like to cite Burns and
Davis’ review paper on the topic [4]. It covers the period after Vestal’s pa-
per published in 2007 [10]. There, Vestal introduced methods to use information
on fixed-priority tasks requiring different levels of assurance to obtain less pes-
simistic schedulability analysis results. These methods were then evaluated using
data from production avionics systems. Two publications by Baruah et al. in
2011 provided different schedulability tests for fixed-priority [2] and dynamic-
priority [1] mixed-criticality systems. Regarding stochastic schedulability analy-
sis, Dı́az et al. published multiple papers in the years from 2001 to 2003 [5, 6, 7],
where they proposed a method of response time analysis for sporadic task sets
with stochastic execution times. Only recently, were both mixed-criticality and
stochastic execution times combined to propose a schedulability test, in a paper
by Maxim et al. in 2016 [8].

On the topic of task set synthesis: Bini et al. published the UUniFast al-
gorithm in 2005 [3], which can be used to generate utilization values that add
up to a given sum. However, only in 2016, a task set generator specifically for
mixed-criticality systems was proposed by Ramanathan et al. [9].

1.3 Report Structure

This report serves two goals; I want to first review both mixed-criticality and
stochastic analysis and extract relevant information, and second, provide insights
and overall explanations of the for the framework and all implemented features
of it. The whole report thus is structured as follows: In chapter 2, the general
model for mixed-criticality systems used in this thesis is introduced. A review
of different schedulability analysis schemes is also provided. Next, in chapter 3,
I talk about the different modules of the framework, giving various technical
details of the actual implementation and my thoughts behind it. In chapter 4,
we leave the realm of mixed-criticality scheduling for a moment and take a look at
scheduling when energy is uncertain, which is an alternative application for some
parts of the toolbox. In chapter 5, we finally run the framework and examine
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its performance and some of its output visualizations. Lastly, chapter 6 tries to
summarize all that the framework achieves, and provides some suggestions to
further improve and expand it in the future.



Chapter 2

System Model

In this chapter I lay out the theoretical foundations used in the framework. In
section 2.1 the individual components of our system model are introduced. I
then talk about different schedulability analysis schemes for non-probabilistic
task sets in section 2.2. Finally, in section 2.3 I look at probabilistic approaches
to schedulability analysis, taking advantage of probability distributions (PD) of
task execution times instead of simple worst case execution times.

2.1 System Components

In the design process for a system, the decision can be made that a whole range
of different tasks should be running on the same shared resource. This may
save reduce cost, energy, and space requirements, but introduces a fundamental
problem: There will always be tasks that are more important or safety-critical
and must be kept running at all costs, while others only relate to quality of
service and can be stopped for a limited time if the need arises. To differentiate
between the two, different criticality levels are associated with them; HI for
safety-critical, LO for quality-of-service tasks. The system, which is assumed
to be a single-core processing unit in this thesis, also keeps a variable for its
current criticality mode L, which can take one of the two possible criticality
levels, LO or HI. The framework will focus on two different levels, even though
an arbitrary number is just as possible ([4] lists some industry standards with up
to five different levels). The system can now apply different scheduling policies
to tasks of each level, depending on the current criticality mode, to ensure every
task meets its criticality-specific requirements.

Traditionally, each task τi is characterized by its period Ti, its worst-case ex-
ecution time (WCET) Ci, and its relative deadline Di. If this deadline coincides
with the period (Ti = Di), it is called an implicit deadline. In mixed-criticality
systems, each task also has the aforementioned fixed criticality level χi. HI-
critical tasks also have different WCET values for each of the system’s criticality
modes, Ci(LO) and Ci(HI), whereas LO-critical tasks only have a Ci(LO) value.

4



2. System Model 5

While multiple different worst-cases may seem odd, they are attained with differ-
ent levels of confidence. For example, Ci(HI) can be obtained with a different,
more pessimistic tool and with a larger margin of safety. This results in:

∀i : Ci(HI)

{
≥ Ci(LO) if χi = HI

undefined otherwise

Finally, each task is assigned a discrete random variable Ci
1 specifying its

execution time, with the corresponding probability mass function (PMF) fCi
(·),

where fCi
(c) = P[Ci = c]. This can be viewed as an extension to Ci(LO) and

Ci(HI), allowing for more differentiated analysis methods as we will see in sec-
tion 2.3.

So, to summarize, we end up with the following definition for a task τi :
(Ti, Di, χi, Ci(LO), Ci(HI),Ci)

A task’s utilization provides a metric for execution time relative to its pe-
riod, and is calculated either by ui(LO) = Ci(LO)/Ti (LO-mode utilization)
or ui(HI) = Ci(HI)/Ti (HI-mode utilization), as well as the average utiliza-
tion ui(avg) = E(Ci)/Ti, in case of probabilistic execution times. The system
utilization values U(LO), U(HI), and U(avg) are then defined as the sum of
corresponding task utilizations of all tasks2 in the task set.

Every task gives rise to a potentially infinite sequence of jobs representing
instances of this task. Jobs are denoted by Γi,j , meaning the j-th instance of
task τi. A job’s release time is denoted by λi,j ; its priority by Pi,j , in the
case of statically assigned priorites. The job-specific subscript j is omitted when
referencing task-level priorities in general: Pi. A job’s response time represents
the system time passed from its release up to its completion. A deadline miss is
the event of a job’s response time extending past its corresponding deadline, and
(in the case of deterministic schemes) implies that the task set is not schedulable.

2.2 Deterministic Schedulability Analysis

There are different fixed and dynamic priority scheduling schemes, which may
have to be analyzed differently each. The following are a few existing determin-
istic schemes to test whether a task set is schedulable or not.

1In general, calligraphic typefaces denote random variables.
2When these are enhanced with the subscripts LO and HI, the utilizations of the corre-

sponding subset are meant, e.g. UHI(LO) is the LO-mode utilization of all HI-tasks.
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2.2.1 Static Mixed Criticality

Static Mixed Criticality (SMC) represents a scheme with fixed (static) priorities
assigned to each task. With this scheme, the system monitors execution times
and kills any job that executes up to its representative time budget without
signalling completion. A job’s representative execution time Ci is the value
corresponding to the task’s criticality level, i.e. Ci(χi). By design, no notion of
different system criticality modes is used here.

To decide whether the task set is schedulable or not, the worst case response
time Ri for each task τi is first computed; in short, the following recurrence
relation has to be solved:

Ri = Ci +
∑

τj : Pj>Pi

⌈
Ri
Tj

⌉
Cj ,

If Ri ≤ Di for all tasks τi, then the task set is schedulable under SMC. For
further reading on SMC, refer to [2].

2.2.2 Adaptive Mixed Criticality

Adaptive Mixed Criticality (AMC) builds on SMC, i.e. priorities are again
assigned statically and execution times are monitored, but now the system’s
criticality mode variable L is introduced: As long as all jobs stay within their
LO-criticality time budget, the system remains in LO-mode. As soon as the
currently-executing job overruns its Ci(LO)-value without signalling completion,
the system switches to HI-mode, and all LO-criticality jobs are descheduled.
Note that this overrun can only happen for HI-tasks, since LO-tasks are killed
when they reach Ci(LO). Additionally, a condition could be defined for switching
back to LO-mode; for instance, if the system is idle at any given point.

We now again have to perform response time analysis for each task to an-
alyze schedulability. This time, however, we have to distinguish three different
situations, namely i) LO-criticality mode, ii) HI-criticality mode, and iii) the
time period immediately following a mode switch. Cases i) and ii) are handled
similarly to SMC:

RLOi = Ci +
∑

τj : Pj>Pi

⌈
RLOi
Tj

⌉
Cj(LO);

and, only defined for HI-critical tasks,

RHIi = Ci +
∑

τj : Pj>Pi

and χj=HI

⌈
RHIi
Tj

⌉
Cj(HI).
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Finally, case iii) is covered by the following recurrence relation, defined again
only for HI-critical tasks:

R∗i = Ci(HI) +
∑

τj : Pj>Pi

and χj=HI

⌈
R∗i
Tj

⌉
Cj(HI) +

∑
τk : Pk>Pi
and χk=LO

⌈
RLOi
Tk

⌉
Ck(LO).

If max
(
RLOi , RHIi , R∗i

)
≤ Di for all tasks τi, then the task set is schedulable

under AMC.

To reiterate, the key difference to SMC is the fact that LO-tasks are no longer
executed if any HI-task overruns its Ci(LO)-value, while with SMC they continue
to be released but may miss their deadlines. Both SMC and AMC guarantee that
HI-tasks meet their deadlines. For further reading on AMC, refer again to [2].

2.2.3 Earliest Deadline First with Virtual Deadlines (EDF-VD)

EDF-VD takes a different approach in that it represents a scheme with dynamic
priority assignment. It initially implies all jobs to have implicit deadlines and
may modify these based on the two following cases:

Case 1. ULO(LO) + UHI(HI) ≤ 1. Apply standard EDF to the unmodified
job deadlines. As soon as any HI-critical task overruns its Ci(LO) budget,
switch to HI-mode, where all pending LO-tasks are killed and not released
anymore.

Case 2. Case 1 does not hold and ULO(LO) + UHI(LO)
1−UHI(HI)

≤ 1. Then, while
the system is running in LO-mode, modify the deadlines of all HI-tasks by
adding T̂i = UHI(LO)

1−ULO(LO)Ti to the release time of each of their jobs. Leave
LO-critical jobs as they are. Apply standard EDF to this task set with
now modified deadlines.

As soon as any HI-critical task overruns its Ci(LO) budget, switch to HI-
mode, kill all LO-tasks and reset all HI-task deadlines by adding Ti to their
job release times; apply standard EDF to these original deadlines.

With this scheme, schedulability can then be decided on the following condition:

ULO(LO) + min

(
UHI(HI),

UHI(LO)

1− UHI(HI)

)
≤ 1

For proof that this condition is in fact sufficient, as well as further details on
EDF-VD, refer to [1].
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2.3 Probabilistic Schedulability Analysis

If we view execution times as independent random variables and know their
probability distributions, we can leverage this additional information to create
less pessimistic models of response times. So, instead of testing a task set for
its worst case and deciding schedulability on a yes/no-basis, stochastic analysis
revolves around a task’s deadline miss probability per time unit (DMP). If it can
be shown that all tasks in the set are ”enough” unlikely to miss their deadline
over a set period of time, then the whole task set can be accepted as schedulable
with a certain level of confidence.

To this end, I first introduce two important operations often used in stochastic
analysis, namely convolution and shrinking [5, 6]. After that, I talk about
probabilistic extensions of our deterministic schemes introduced before. Finally,
I discuss Monte Carlo simulations as another way to derive task DMPs.

2.3.1 Basic Operations

Table 2.1: Example tasks

Task Ci fCi
(·)

τ1 2 {1, 2} with equal probabilities
τ2 3 {1, 2, 3} with probabilities 0.2, 0.5, and 0.3

Convolution

Consider two task instances specified in table 2.1, Γ1 and Γ2, both released at
time t0 = 0. To calculate the combined worst-case response time (WCRT) of
both C1+2, their corresponding task’s WCET have to be added together. That
is:

C1+2 = C1 + C2 = 2 + 3 = 5.

If we want to operate on the probability distributions over their execution
times instead, however, we can convolve their PMFs to obtain a new distribution
over the time needed to complete both, C1+2. Note that the result does not
depend on the order of execution. See fig. 2.1 for visualization:

fC1+2 = convolve(fC1 , fC2) = [0.0, 0.0, 0.1, 0.35, 0.4, 0.15]3

3This corresponds to the distribution over {2, 3, 4, 5} with probabilities 0.1, 0.35, 0.4, 0.15,
correspondingly. I introduce this vector notation for probability distributions in chapter 3.
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(a) fC1
(b) fC2

(c) convolve(fC1
, fC2

)

Figure 2.1: Convolving two job PMFs

Shrinking

Looking at our jobs from above, we now may want to find out how much time is
still left for execution at t = 3. For worst-case purposes the calculation is simple:

C1+2 − (t− t0) = 5− 3 = 2

Again considering the probability distribution of pending workload, the anal-
ogous operation is called shrinking :

shrink(fC1+2 , (t− t0)) = [0.45, 0.4, 0.15]

As one might recognize from this example, shrinking is performed by ”shifting”
the distribution by some amount of time to the left and accumulating all values
shifted to or past 0 in the origin, see fig. 2.2.

(a) fC1+2 (b) shrink(fC1+2 , 3)

Figure 2.2: Shrinking by 3
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2.3.2 Backlog Computation

To make guarantees on job DMPs for a specific schedule, we face the issue of
potentially infinitely many job releases. To address this, we have to make use of
the fact that these releases follow a repeating pattern, defined as the task set’s
hyperperiod. The length of one such hyperperiod, denoted by T , is equal to
the least common multiple over all task periods Ti in the task set. One can easily
validate that job releases will always repeat after T time units, independent of
all other parameters.

A job’s response time depends on three factors, namely a) its own execution
time; b) the jobs preempting it and their execution times; and c) the pending

workload W
Pi,j

λi,j
related to jobs of priority Pi,j and higher at the time of release

λi,j . While the pattern of job releases, i.e. a) and b), is repeated for every
hyperperiod, the pending workload at each job release accumulates from one
hyperperiod to the next, and is thus non-repeating. I will refer to this workload

as the job-level backlog, denoted Vi,j = W
Pi,j

λi,j
. It can be obtained from the

Pi,j-level initial system backlog B
Pi,j

k = W
Pi,j

kT at the beginning of each hyperpe-
riod. Note that these initial backlogs are non-repeating random variables them-
selves; however, it can be shown that their distributions converge to a stationary
steady-state BP

∞ for any P , as long as the total average system utilization is less
than 100% [7]. It is this steady-state that finally allows us to find job response
time distributions without having to consider the infinite sequence of releases.
Since the convergence happens to be monotonically increasing, we can also be
sure to cover the worst-case by assuming steady-state backlog distribution.

Steady-state system backlog

Given the backlog distribution at the start of any hyperperiod, the initial backlog
distribution of the following hyperperiod can always be computed for any priority
level P as follows:

1. Start with backlog BP
k .

2. Shrink the current backlog up to the next job release. Only jobs with
priority P or higher are taken into account.

3. Convolve the current backlog with this job’s execution time PMF.

4. Repeat steps 2 and 3 until there are no more (eligible) job releases in this
hyperperiod.

5. Shrink the current backlog to the end of this hyperperiod.
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Backlog BP
k+1 thus only depends on the preceding backlog BP

k , and the

stochastic process {BP
0 ,B

P
1 , ...,B

P
k , ...} can be proven to be a Markov chain [7].

This gives us a way to find an exact solution for the steady-state in theory, but
it is not well-suited for computation due to many ill-conditioned equations and
prohibitively large computational complexity. For this reason I deemed the an-
alytical solution beyond the scope of this framework; refer again to [7] for more
information. I will instead follow the iterative approach described there as well:

1. Start with the empty backlog BP
0 , i.e. P[BP

0 = 0] = 1.

2. From backlog BP
k , compute backlog BP

k+1 with the method described above.

3. Repeat step 2 until the approximation is ”close enough”.

The condition ”close enough” could be given if the square distance between it-
erations drops below a certain ε, for example. Figure 2.3 illustrates this process
for three different systems. It also shows the influence of a system’s utilization
values: If both maximum and average utilization are less than 1, the iteration
will converge (to an empty backlog if all phases are zero) after only one hyper-
period (fig. 2.3b). If average utilization is less than 1, but maximum utilization
exceeds 1, pending work can start to accumulate at the end of each hyperperiod,
but its distribution will still converge (fig. 2.3c). Only with average utilization
above 100%, the distribution of pending workload grows infinitely with each
hyperperiod (fig. 2.3d).

While this method is preferred for our purposes, I would still like to mention
its drawbacks: a) Since the backlog is monotonically increasing, the approxima-
tion will always be slightly more optimistic than the exact solution, rendering
this method invalid for upper-bound analysis (although the square difference
decreases exponentially), and b) finding the right value for ε is still an open
question, as the speed of convergence depends on task set utilization, and the
number of iterations needed is not known beforehand.

Job-level backlogs

Now, to obtain the job-level backlog for any job Γi,j in a fixed-priority system

is fairly simple: Start from steady-state initial system backlog B
Pi,j
∞ , then work

your way towards the release of Γi,j , while repeatedly shrinking the intermediate
distribution and convolving it with all jobs with equal or higher priority and
released before Γi,j . There exists a similar method for dynamic-priority scheduled
systems [5], but its implementation is left for future work.
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Utilization
System maximum (U(LO)) average (U(avg))

(b) 0.833 0.604
(c) 1.208 0.979
(d) 1.5 1.125

(a) Utilization values for the example systems

(b) U(LO) < 1 (c) U(avg) < 1 < U(LO) (d) U(avg) > 1

Figure 2.3: Evolution of backlog PMFs in the example systems, y-axis log-scaled
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2.3.3 Response time analysis (RTA)

With the job-level backlog we are now ready to find any job’s response time
PMF fRi,j

(·). For job Γi,j we first convolve the job-level backlog PMF fVi,j
(·)

and its execution time PMF fCi
(·). After that, we have to take all jobs that

could preempt Γi,j (i.e. higher-priority jobs released with or after Γi,j), denoted
by Γ′1,Γ

′
2, ...,Γ

′
k, ..., into consideration step-by-step. At each step k, the new

intermediate PMF is calculated by performing the following split-convolve-
merge operation:

1. Split the intermediate PMF from step k − 1 into a tail part ranging from
the release instant of Γ′k, λ

′
k, to ∞ and the remaining head part.

(a) before splitting (b) head part (c) tail part

Figure 2.4: Split for λ′k = 3

2. Convolve only the tail part with the execution time PMF fC′k(·) of Γ′k
since it has no influence on the execution of Γi,j if the latter has already
completed before λ′k.

(a) tail part (b) fC′
k
(·) (c) after convolving

Figure 2.5: Convolve

3. Merge the two parts back together to obtain the new intermediate PMF.

Note that, although in theory the list of interrupting jobs Γ′k could be in-
finitely long, in practice we only have to consider interruptions up to the deadline
Di of Γi,j if we are interested in deadline miss probabilities, as P[Ri,j > Di] =
1− P[Ri,j ≤ Di].
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(a) head part (b) tail part (c) after merging

Figure 2.6: Merge

2.3.4 Probabilistic Schedulability Schemes

We can now build on our deterministic schemes using the principles introduced
in sections 2.3.1 to 2.3.3. Systems are typically rated based on their DMP per
hour. The new schemes thus will revolve around the idea that all tasks have to
offer a DMP below a certain threshold to be deemed schedulable. For this, we
will, for every task τi, look at all jobs Γi,j in one hyperperiod and calculate the
probability that at least one of them misses their deadline as follows:

DMP per hyperperiod = 1− P[no deadline miss] = 1−
∏
j

P[Ri,j ≤ Di]

First I present a probabilistic variant of our static mixed criticality scheme. Then
I propose a stochastic extension to AMC.

pSMC

This scheme is similar to SMC as again there is no notion of different system
criticality modes used here. For every task τi, its corresponding job DMPs are
calculated using the methods described above. As shown, they can then be
used to find the probability of τi missing a deadline in one hyperperiod. By
using different thresholds, this offers the possibility to judge tasks based on their
criticality, where HI-tasks must fulfill harder requirements than LO-tasks.

pAMC-BB

Extending AMC to a probabilistic scheme can be proposed as follows: Suppose
that the system’s behavior after a switch to HI-mode is unknown, a ”black box”
(BB). We simply assume that this black box will have a fixed duration nHI (e.g.
one full hyperperiod), after which the system is reset back to LO-mode.

This means that only the conditional PMF for LO-mode has to be considered
in the analysis. There are no changes for LO-tasks, since their PMFs only range
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up to Ci(LO) anyways. For HI-tasks, however, we first calculate their probability
of not triggering a mode switch per job release:

P[Ci ≤ Ci(LO)] =

Ci(LO)∑
x=0

fCi
(x) if χi = HI

We then crop their PMF at Ci(LO) and normalize it, defining the conditional
PMF ”given the system stays in LO-mode”:

fLOCi
(x) =

{
1

P[Ci≤Ci(LO)] · fCi
(x) if x ∈ [0, Ci(LO)]

0 otherwise

.

Now, we calculate the probability of a mode switch happening per hyperpe-
riod over all tasks:

pswitch = 1−
∏
i

(P[Ci ≤ Ci(LO)])mi ,

where mi = T
Ti

is the number of instances of task τi per hyperperiod.

With pswitch we can compare the overall times spent in LO-mode and HI-
mode. The expected number of hyperperiods until a switch to HI-mode occurs
amounts to

nLO =
1

pswitch
,

as the sequence of hyperperiods represent Bernoulli trials with failure probability
pswitch, and the probability distribution of the first C(LO) overrun thus is a
geometric one.

Finally, we can find an aggregate DMP for each task:

φi =
nLO

nLO + nHI
· φLOi +

nHI
nLO + nHI

· φHIi

Here, φLOi is the DMP in LO-mode, calculated again by applying the response
time analysis method described above to both LO- and HI-tasks (the latter with
the now adjusted, conditional PMF). φHIi , a task’s DMP for HI-mode, on the
other hand, is given by the black box and defines the penalty for a mode switch;
for instance, assume it to be 1 for LO-tasks (assumed to miss all deadlines) and 0
for HI-tasks (assumed to meet all deadlines). This φi can now again be compared
to criticality-specific thresholds to decide overall schedulability of this task set.

Note that, in contrast to their deterministic counterparts, pAMC-BB does
not subsume pSMC in general and instead tries to offer a model somewhat closer
to realistic applications. Both their results greatly depend on the confidence
values for Ci(LO) and Ci(HI) as well as the chosen acceptance thresholds. For
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the framework I will assume suitable values for these to be given. Finally, I
would like to mention the work of Maxim et al. [8] on a different probabilistic
implementation of SMC and AMC, where they focused more on manipulating
the task set’s execution time PMFs.

2.3.5 Monte Carlo Simulation

Last but not least, another possible way of deciding on schedulability is to just
simulate execution for huge numbers of hyperperiods (≥ 105). This means draw-
ing a random sample from a task’s execution time PMF every time a new job
instance is released, then executing it while respecting the considered scheme’s
priority assignment and other special cases (e.g. mode switches in pAMC). At
the end, every tasks DMP can be estimated by counting deadline misses relative
to all hyperperiods.

This method is called a Monte Carlo Simulation and has the great benefit of
being flexible and simple (no response time analysis needed at all), but its severe
drawbacks are quite obvious, too: Besides being just a sampling approximation,
enormous amounts of simulated hyperperiods are also needed for high resolution.
For instance, with ”only” 104 hyperperiods, the smallest non-zero DMP a task
can have is 10−4, which cannot be compared sensibly to a passing threshold of
10−9. I will return to Monte Carlo simulations for pSMC and pAMC in chapter 5
for comparison, but as a tool for analysis, their theoretical counterpart methods
are generally preferred.



Chapter 3

The Framework

In this chapter, I provide details to the actual implementation of the framework.
In section 3.1 the necessary software requirements are listed and a general top-
level overview is given. The rest of the chapter then describes the individual
components, each related to a separate source file. Note that I focus mainly on
the questions of how and why here; for further information on the exact APIs
and their usage, see the source files and the corresponding docstrings directly.

3.1 Overview

For the implementation of the framework, I chose Python 3, based on its many
advantages:

• Its object-orientation facilitates an understandable, direct implementation
of many components of the proposed system model.

• It proves to be very efficient at handling large amounts of data such as
thousands of probability distributions.

• An abundance of different tool kits enables the broad spectrum of topics
covered, ranging from scientific computation to visualization.

• Python is generally seen as clean and easy to read, and enjoys great pop-
ularity in the academic as well as the industrial community, making it
accessible to many people.

The entire source code is available online1. The Python version used is 3.6.0. A
number of additional packages are necessary, as listed in table 3.1. One often used
Python distribution covering all required tools is the Anaconda Distribution2 for
Python 3, a toolbox commonly used for data science related work. The latest
version at the time of writing is Anaconda 4.4.0.

1https://github.com/luca-stalder/bsc-thesis
2https://www.continuum.io/downloads
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Table 3.1: Python packages used

Package Version

matplotlib 2.0.2
numpy 1.12.1
scipy 0.19.0

3.2 Library Module: lib.py

This file contains basic object definitions as well as common functions used
throughout the framework.

3.2.1 Container Classes

Task is our basic task object. It contains all necessary attributes as fields. In the
entire framework, I assume period, deadline, C(LO), and C(HI) to be integer
values. A task’s execution time PMF is stored as an array. The entry on index
k corresponds to the probability for an instance of this task to run for k time
units:

task i.c pmf[k] == P [Ci = k]

TaskSet then is a closed set of multiple Task objects. It offers multiple
functions to get the different system utilization values, as well as a method to
display the set’s description and its visual representation.

When initializing a new task set, a timeline of Job objects within one hyper-
period is built, if possible. This class will later be used to store another PMF
as a vector, namely the job’s response time PMF Ri,j . This PMF does not nec-
essarily have to be complete (i.e. sum up to 1), as the values up to the job’s
deadline are sufficient to find the jobs DMP.

3.2.2 Common Functions

convolve rescale pmf(a, b, percentile) implements the convolution oper-
ation described in section 2.3.1 as follows: The actual convolution of the two
arrays is done by scipy’s convolve(). Depending on the input size, this method
derives the result either directly from the sums, or via Fast Fourier Transform,
which performs faster for large input arrays. As a second step, we then drop
all values past at a certain percentile, given as parameter, and normalize the
final result so that it sums up to 1 again. This cropping is necessary, as without
it, the arrays representing PMFs would grow larger and larger with repeated
convolutions. It is a trade-off, but with a small cutoff percentile (10−14) little
precision is lost in this process.
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shrink() represents the shrink operation introduced in section 2.3.1, and
split convolve merge() is an implementation of the algorithm with the same
name described in section 2.3.3. Both implementations are trivial.

3.2.3 Probability Distribution Classes

The classes defined here are used by the generation module to define execution
time PMFs for newly generated tasks. Further distributions can be defined, as
long as they implement a) from percentile(x lo, p lo, x hi, p hi), a con-
structor method creating a distribution object with x lo and x hi at percentile
values p lo and p hi, respectively; and b) discrete pmf(cutoff), a function
returning a discretized approximation of its PMF as an array. The cutoff pa-
rameter defines again the upper limit, after which the approximation shall be
cropped, to avoid unbounded arrays. See the following section for more on the
individual distributions included here.

3.3 Task Set Synthesis: synthesis.py

Although evaluating different ways of generating synthetic task sets is not the
main focus of this framework, the generation itself still plays a major role, as
proper schedulability test analysis would not be possible without. This module
deals with our need to generate such task sets. To do so, I have split up the
process into two distinct problems: First, generate a set of tasks with just their
deterministic parameters such as period and C(LO/HI) values (section 3.3.1);
then fit a probability distribution to each task, such that its C(LO/HI) values
lie at set percentiles (section 3.3.2). Different solutions for each of these sub-
problems should be interchangeable. See section 3.3.3 for examples for some
possible combinations.

3.3.1 Task Set Parameters

SimpleGen

Many papers on the subject of mixed-criticality systems such as [2] use an
enhanced version of the UUniFast algorithm [3], which was designed to find
utilization values adding up to a certain sum in general, and not with mixed-
criticality in mind. Following their example, I implemented the synthesis method
I call simplegen() as follows:

1. For a given system utilization, generate a set of n tasks LO-mode task
utilizations using UUnifast. Since UUnifast was designed with system uti-
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lizations of at most 1 in mind, call UUnifast multiple times with fractions
of the desired u lo, if necessary.

2. For each task, uniformly draw a period out of the set periods = [5, 10,

20, 25, 50, 100]. Although these values may be chosen a bit arbitrary,
they ensure a manageable hyperperiod of length 100, while still providing
enough spread between the smallest and largest values. Multiply the pe-
riod with time granularity to reduce discretization error from rounding
values.

3. Assign each task either HI- or LO-criticality, based on cp, the chance of
being HI-critical.

4. Define c lo based on the product of task utilization and period; round up
the result to avoid c lo == 0.

5. For HI-critical tasks, define c hi as a constant multiple cf of c lo; again
round up to avoid c lo == c hi.

6. If desired (implicit deadlines == False), uniformly draw a random
deadline from the range [cf*c lo, period], else set the deadline equal to
the period.

MC-FairGen

Another algorithm was recently developed by Ramanathan et al. [9] and poses a
more sophisticated approach to generate mixed-criticality task sets. It respects
several fairness properties defined there, introduces parameters for minimum and
maximum per-task utilization, and also supports multi-core systems. Although
single core systems are considered here, we can still exploit this feature to gen-
erate task sets with utilizations above 100%. My implementation mc fairgen()

generally follows their proposal while making a few adjustments:

• Execution times, periods, and deadlines are again rounded to integers.

• Periods are chosen out of the set [5, 10, 20, 25, 50, 100] instead of
the entire uniform distribution from 5 to 100. This is again to keep hyper-
periods small.

• I again discretize all final values and introduce the time granularity pa-
rameter as a multiplier to reduce rounding errors.
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3.3.2 Execution Time Distributions

Exponential Exceedance Functions

To now add execution time PMFs to these tasks, we can use synth c pmf() with
the ExpExceedDist class as parameter. Maxim et al. [8] suggested generating
such a distribution based on the 1-CDF (Complementary Cumulative Distribu-
tion Function or exceedance function) of the task’s execution time PMF. On
this exceedance function, the following requirements are imposed:

• It is represented by a straight line on a graph with exceedance probabilities
given on a log scale. For instance, this is the case for a function of the form:

1-CDF: ex(x) = a · exp(b · x) (3.1)

• C(LO) and C(HI) values lie on fixed exceedance probabilities exLO and
exHI .

• It is only defined in the range [C(min), C(HI)], with ex(C(min))
!

= 1. If
the task is LO-critical, C(HI) is substitued with CP · C(LO), where CP
is again a constant criticality factor (e.g. CP = 1.5).

Solving the first two constraints as well as ex(C(min)) = 1 yields the following
expressions for a, b, and C(min):

a =
exLO

exp(b · C(LO))
, b =

ln(exHI)− ln(exLO)

C(HI)− C(LO)
, C(min) = − ln(a)

b
(3.2)

Furthermore, we can derive the probability density function from eq. (3.1):

PDF : f(x) = −a · b · exp(b · x), for x ≥ C(min) (3.3)

Using the expressions from eq. (3.2), a distribution can thus be fitted to each
task with the constructor method from percentile(). The ExpExceedDist

object’s discrete pmf() then returns a discrete approximation (section 3.2.3).

Weibull Distributions

The Weibull distribution can be another well-suited tool to generate execution
time PMFs. This heavy-tailed distribution is defined by the density function

PDF 3 : f(x) =
k

β
·
(
x

β

)k−1
· exp

(
−
(
x

β

)k)
. (3.4)

3Since these functions are used as execution times, we only consider the positive part of
them here.
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The class WeibullDist can also be passed to synth c pmf and sets up instances
of this distribution as follows:

• Uniformly draw a value between 1.5 and 3.0 for its shape parameter k.
The shape of the distribution’s density function depends on k; only values
k > 1 yield the bell-like curves I deemed characteristic for task execution
time distributions (fig. 3.2).

• Next, from its cumulative distribution function

CDF : F (x) = 1− exp

(
−
(
x

β

)k)
(3.5)

and the given values for C(LO) and its percentile pLO, derive the following
expression for its scale parameter β:

β =
C(LO)

(−ln(1− pLO))
1
k

(3.6)

• Finally, initialize the object with k and beta and compute the discrete
approximation again by calling its discrete pmf() function (section 3.2.3).

3.3.3 Examples

Figure 3.1 shows a first example task set which was generated using simplegen()

and the ExpExceedDist class. Parameters were chosen as follows: u lo=0.8,
cf=1.5, cp=0.5, n tasks=10, implicit deadlines=False, and percentile val-
ues c lo percent=1-1e-5 and c hi percent=1-1e-9.

Another example is shown in Figure 3.2, representing mc fairgen() in combi-
nation with Weibull distributions. Parameters were chosen as follows: u lo=0.8,
implicit deadlines=False, and the percentile values c lo percent=1-1e-5

and c hi percent=1-1e-9.
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Figure 3.1: UUniFast with ExpExceedDist, log-scaled y-axis, orange and red
lines corresponding to C(LO) and C(HI) values
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Figure 3.2: MC-FairGen with Weibull Distributions, linear y-scale, orange and
red lines corresponding to C(LO) and C(HI) values
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3.4 Schedulability Tests: analysis.py

This module revolves around response time and schedulability analysis, i.e. the
concepts introduced in section 2.2 and section 2.3.

3.4.1 Response Time Analysis Tools

The BacklogSim object is the main container for iterative convolving and shrink-
ing of backlogs. It is initialized with a given task set and a set p level. Its
step(dt, mode) function will simulate a dt unit time step in the system, in-
cluding newly reached job releases and the convolution of their execution time,
shrinking the current backlog on the way to the next release, as well as wrapping
around if the end of the current hyperperiod is reached in the process. This ob-
ject is used both for finding stationary backlog and individual job-level response
time PMFs. For visualization, see the animation module in section 3.7.

stationary backlog iter() is used to determine a task set’s steady-state
backlog at a desired p level. It first checks the sets average utilization; if
above 100%, then the backlog will not converge. Otherwise it instantiates a
BacklogSim object and performs simulation steps of one full hyperperiod at a
time. Every backlog at time t == 0 is compared with the last, measuring the
quadratic difference between the two arrays. As soon as this difference drops
below the threshold epsilon, or max iter iterations have been performed, the
loop is stopped and the result is returned.

rta fp() calculates all job-level response time PMFs in a fixed-priority sched-
uled task set. First, for each priority level the steady-state backlog is calculated
using stationary backlog iter(). Using these initial backlogs, every job’s
individual backlog is found by iterative convolution and shrinking up to its re-
lease. Finally, the job response time distribution is obtained using the split-
convolve-merge operation described in section 2.3. This distribution is attached
as response to every Job object in the task set.

3.4.2 Deterministic Schedulability Tests

The methods d smc, d amc, and d edf vd defined in this section implement de-
terministic analysis tools for the schemes listed in section 2.2. They all take
a TaskSet object as an input, and return True iff the task set is schedulable
using the corresponding scheme. For d smc and d amc, tasks need to have fixed
priorities assigned (see generation module).
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3.4.3 Probabilistic Schedulability Tests

p smc and p amc bb are the implementation of section 2.3.4. Both take threshold
parameters in addition to a task set, and use rta fp() to find each job’s response
time PMF. p smc directly compares the resulting task per-hyperperiod deadline
miss probabilities to the thresholds thresh lo and thresh hi, depending on the
task’s criticality. p amc bb first finds the probability of a mode switch, adjusts
the HI-tasks’ execution time PMFs as described, and then applies rta fp() to
these. Finally, the combined LO- and HI-mode DMP is evaluated. Both method
return True iff all tasks pass the threshold.

3.4.4 Monte Carlo Schedulability Tests

Finally, these methods represent the Monte Carlo Simulations described in sec-
tion 2.3.5: p smc monte carlo and p amc bb monte carlo. While their API
is very similar, their implementations differ fundamentally from their analytic
counterparts. They will actually run the task set for a number of hyperperiods
(nhyperperiods), drawing an execution time value at each job release and count-
ing every hyperperiod a deadline miss occurred for each task. If at one point
this number grows too big, the simulation is stopped and False is returned.
With p amc bb, execution times are also monitored; if a mode switch occurs, the
simulation clears its backlog and skips hi mode duration hyperperiods ahead,
counting the skipped hyperperiods as failed for all LO-tasks. Since the resolution
of these resulting deadline miss probabilities depends on nhyperperiods, and in-
creasing this number becomes very expensive quickly, these methods generally
have to be run with more generous thresholds to yield meaningful results.

3.5 Evaluation: evaluation.py

This module contains a collection of scripts applying the various synthesis and
analysis methods defined in the other parts of the framework. Scripts in the
synthesis section will generate task sets for different utilization values, defined by
the utils parameter. Different schedulability test schemes are then performed in
the next section of the module. All task sets as well as the resulting schedulability
rates for every scheme are stored on disk, using the pickle module, such that
they may be reused at a later time. Finally, the resulting schedulability rates
can be plotted against their corresponding task set’s u lo value. The resulting
plots will be discussed in greater detail in chapter 5.

A note about performance: Stochastic schedulability tests generally come
with high computational cost, mainly stemming from steady-state backlog com-
putation. To alleviate this, all schedulability test scripts use the Python library
multiprocessing to spawn a pool of worker processes. Input task sets are
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then distributed evenly across these processes. The reason for multiple processes
rather than threads is the Python Global Interpreter Lock (GIL)4, which pro-
hibits parallel execution of multiple threads. See section 5.2 for a list of speedups
this implementation achieves.

3.6 Energy Module: energy.py

This module is an implementation for chapter 4. Note that all probability mass
functions are again stored as arrays, i.e. the value at index i stands for the
probability of energy and/or time equalling to i. The main function will produce
fig. 4.1.

3.7 Animation: backlog animation.py

This module offers a comprehensive demonstration for the iterative application
of convolution and shrinking during steady-state backlog analysis, making use
of the animation object contained in matplotlib. The example task set is
generated at the top of the module; this can also be changed to other synthesis
methods.

4https://wiki.python.org/moin/GlobalInterpreterLock

https://wiki.python.org/moin/GlobalInterpreterLock


Chapter 4

Energy Uncertainty

In this chapter, I want to show that parts of the framework, especially the
components manipulating PMFs, can be applied to other topics with minimal
adjustments as well. For this purpose, we leave the world of mixed-criticality
task sets and turn to scheduling when available energy is uncertain for a moment.
First, I introduce the basic system model and basic operations, then look at an
implementation thereof, and finally show some small examples of running these.

4.1 System Model

There are many different system models containing energy harvesting, but for
this example let us consider the case of a single-core transient system. The first
component of such a system is the energy management unit (EMU), collecting
at the beginning of each discrete unit time interval a discrete amount of energy,
determined by a random variable with the PMF h(x), from an energy harvester.
The EMU stores this energy in a small buffer with capacity B and provides it
to the processor (CPU) in the form of energy bursts of size B whenever the
buffer reaches full charge. B is assumed to be orders of magnitude smaller than
the power dissipation of any task, i.e. job response time depends primarily on
its energy consumption, and not on execution time. We also define (·)∗n the
operation of convolving a PMF n with itself.

Since the amount of collected energy per time unit is a random variable, so
is the inter-arrival time of subsequent energy bursts; we denote its PMF with
i(x). The corresponding cumulative distribution function is

I(y) =
∑
x≥B

h(x)∗y (4.1)

In words, I(y) yields the probability that it will take at most y time units to
completely fill the buffer, causing the next energy burst. The PMF

i(y) = I(y)− I(y − 1) (4.2)

28
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then yields the probability that it will take exactly y time units for the next
burst, giving us the desired inter-arrival time PMF.

Finally, let job Γ have an execution time of C and a power dissipation of P
per time unit. The response time PMF fR(·) of Γ can then be computed as:

fR(x) = i(x)∗
⌈

C·P
B

⌉
⊗ δC(l)1 (4.3)

where l =

{
B/P if (C · P ) mod B = 0
(C·P ) mod B

P otherwise

4.2 Examples

Running the energy module lets us examine a few examples, shown in fig. 4.1.

Every subfigure is generated from a different input, and consists of three
plots, to be interpreted as follows: The top plot shows the distribution PMF
for energy collected per time unit, with energy on the x- and probability on the
y-axis. The center plot shows the distribution PMF for time in between energy
bursts, with time on the x- and probability on the y-axis. The bottom plot
finally shows the job response time distribution’s PMF, with response time on
the x- and again probability on the y-axis.

The difference between fig. 4.1a and fig. 4.1b lies in B, the size of the system’s
energy buffer and bursts: Increasing B from 5 to 50 improves the job’s response
time by roughly 100 time units in our example. This demonstrates the fact that
all harvested energy exceeding the buffer’s capacity ”spills over” and is lost in
this system model; a larger buffer makes this effect happen less frequently.

Meanwhile, fig. 4.1c and fig. 4.1d demonstrate the influence of a more reliable
energy source: Although both energy harvesters provide the same amount of
energy on average, the one in fig. 4.1d does this over a narrower range, resulting
in a narrower range for burst inter-arrival time and job response time as well.

1δC(x) denotes the discrete delta function, equal to 1 for x = C, and 0 otherwise.
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(a) (b)

(c) (d)

Figure 4.1: Different transient systems



Chapter 5

Evaluation

In this chapter I finally put all introduced concepts together and evaluate the
visualized results. In section 5.1 I compare different schemes for schedulability
testing. Afterwards, in section 5.2, I talk about some measurements on frame-
work performance.

5.1 Comparison of Test Schemes

5.1.1 Deterministic vs. Stochastic Test Schemes

Visualization

Figure 5.1 displays the resulting plots after running the schemes presented for
two different synthesis methods. We can now compare the different schedula-
bility tests while making some observations about the framework’s capabilities
and limitations at the same time. For both plots, 1000 task sets were generated
and assessed per data point. The x- and y-axes represent the synthesis input
parameter u lo and the percentage of task sets that were deemed schedulable,
respectively. Task sets were generated with the following methods and parame-
ters:

• Figure 5.1a

– Task set parameters by simplegen()

– cf=1.5 (factor for C(HI) values)

– cp=0.5 (chance for HI task criticality)

– n tasks=10

– implicit deadlines=False

– Execution time distributions by ExpExceedDist

– c lo percent=1-1e-5 (percentile for C(LO))

31
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– c hi percent=1-1e-9 (percentile for C(HI))

• Figure 5.1b

– implicit deadlines=False

– distribution cls=WeibullDist

– c lo percent=1-1e-5 (percentile for C(LO))

– c hi percent=1-1e-9 (percentile for C(HI))

On these task sets, we now run the following schedulability testing schemes:

• dSMC
See section 2.2.1.

• dAMC
See section 2.2.2.

• EDF-VD
See section 2.2.3.

• pSMC
See section 2.3.4. Threshold deadline miss probabilites are chosen at 10−4

and 10−9 for LO- and HI-critical tasks, respectively.

• pAMC-BB
See section 2.3.4. The duration of the black box state here is assumed to be
one full hyperperiod. During this time, all LO-critical tasks are assumed
to miss their deadlines. Threshold DMPs are chosen at 10−4 and 10−9 for
LO- and HI-critical tasks, respectively.

• pAMC-BB+
This is an alternative version of pAMC-BB, with the difference that the LO-
task deadline misses during the black box state are ignored (i.e. φHIi = 0
for all tasks τi). Black box duration is again one hyperperiod, and threshold
deadline miss probabilites are chosen at 10−4 and 10−9 for LO- and HI-
critical tasks, respectively.

Interpretation

There are a few observations to make in fig. 5.1:

• Comparing deterministic schemes to stochastic ones demonstrates the im-
plications of pessimistic worst-case analysis inherent to deterministic schedu-
lability tests. Whereas their schedulability rates start to drop as the system
utilization approches 100% (C(LO) values considered), their probabilistic
counterparts use the additional information about execution times and
continue to return positive test results well beyond that boundary.
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• pAMC-BB exhibits a somewhat peculiar line of schedulability rates. There
are multiple factors at work here: It turns out, that the assumptions we
are making in section 2.3.4 about the black box pose a severe penalty for
switching to HI-mode; so much so, that it causes schedulability rates for
lower values of U(LO) to be strictly dominated by the probability of a mode
switch to occur in the first place. In fact, almost all task sets in the lower
U(LO) ranges that were not schedulable with pAMC-BB had exclusively
LO-task DMPs exceed the threshold. This also explains the constant rates
for all U(LO) ≤ 1, as mode switch probability only depends on the number
of tasks and the percentile of C(LO) values, but not system utilization.
Only when going beyond 100% utilization, schedulability rates decline;
the instant drop there is caused by both synthesis methods doubling the
number of tasks when generating U(LO) > 1. It is clear that the shape of
this curve greatly depends on the task sets analysed. To include a version
of pAMC-BB that is more comparable to other methods, pAMC-BB+
has been introduced, which, everything else remaining equal, removes the
penalty for switching to HI-mode. As expected, this results in rates a bit
higher than for pSMC, in a similar way the curves for their deterministic
counterparts, dSMC and dAMC, lie in relation to each other.

• For MC-Fairgen, some task sets at 100% utilization are still schedulable for
deterministic task sets. Note that the values on the x-axis are only the in-
puts for the synthesis; MC-FairGen has to round C values during discretiza-
tion, which results in task sets sometimes ending up with U(LO) < 100%.
SimpleGen on the other hand rounds up, as to avoid tasks with C(LO) = 0.
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(a)

(b)

Figure 5.1
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5.1.2 Monte Carlo Test Schemes

We also can compare the Monte-Carlo-based schemes to their theoretical coun-
terparts. Figure 5.2 displays the resulting rates. Again, the same 1000 task sets
from fig. 5.1b were tested for each data point. As described in section 2.3.5, lower
DMP thresholds have to be applied for comparable results; they were chosen at
10−3 and 10−4 for LO- and HI-critical tasks, respectively. Both Monte-Carlo
methods simulated 10’000 hyperperiods for every task set. Duration of the black
box state was again assumed to be one hyperperiod.

Both Monte-Carlo schemes matched the results of their counterpart fairly
closely. However, their computation is far more expensive (section 5.2), thus
they serve more as proof of concept.

Figure 5.2
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5.2 Performance

5.2.1 Computation Times

Table 5.1 shows time measurements for computations performed in section 5.1.
These measurements were taken on an Intel i5-7600K, 4 cores @ 3.80 GHz, with
16 GB of RAM.

Table 5.1: Computation times, number of tasks = 1000

Plot Method Average time measured [s]

fig. 5.1a Task Set Synthesis 35.765
dSMC 18.066
dAMC 18.117
EDF-VD 17.957
pSMC 2354.446 (39min 14s)
pAMC-BB 2012.072 (33min 32s)
pAMC-BB+ 2098.982 (34min 59s)

fig. 5.1b Task Set Synthesis 41.546
dSMC 10.994
dAMC 11.038
EDF-VD 10.922
pSMC 1884.353 (31min 24s)
pAMC-BB 1477.216 (24min 37s)
pAMC-BB+ 1494.017 (24min 54s)

fig. 5.2 pSMC 1623.465 (27min 3s)
pSMC (Monte Carlo) 37305.045 (10h 21min 45s)
pAMC-BB 1482.949 (24min 43s)
pAMC-BB (Monte Carlo) 43601.306 (12h 6min 41s)

5.2.2 Multiprocessing

As described in section 3.5, all schedulability test scripts make use of Python’s
multiprocessing library. See table 5.2 for the speedups gained using multiple
processes. Note that parallelization actually has a negative impact for the lighter-
weight deterministic tests. For the other, more complex tests, however, speedup
scales quite well with the number of cores. Since the problem set can be split
up in fairly fine-grained parts (up to a single task set being tested), this should
also scale well with larger architectures.
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Table 5.2: Speedups achieved with multiprocessing (4 cores)

Method Sequential time t1 Parallel time t4 Speedup t1
t4

dSMC 1.590s 30.900s 0.051
dAMC 1.971s 25.169s 0.078
EDF-VD 0.318s 25.909s 0.012
pSMC 5903.575s 1646.722s 3.585
pAMC-BB 5370.185s 1503.402s 3.572
pAMC-BB+ 5376.428s 1515.235s 3.548
Total 16654.066s 4747.436s 3.508



Chapter 6

Conclusion

In this chapter, I revisit the framework’s main attributes to conclude on this
thesis, and outline some possibilities for its future.

6.1 Summary

The main goal of this thesis was more about reviewing and compiling existing
work and then integrating it into a common platform, and less about assessing
and comparing different synthesis methods or schedulability tests in detail. The
resulting framework’s objects, scripts, and functions provide a skeleton, with
which new ideas can quickly be implemented and evaluated. My focus was to
write code that is a) well documented, so other people can understand and use
it quickly, b) extensible, so future work can be integrated without having to
overhaul a majority of the existing code base, and c) fast, producing meaningful
results in little time by fully utilizing all available CPU cores.

6.2 Future Work

Although I have tried to implement a wide spectrum of different test schemes and
even explored possibilities beyond mixed-criticality scheduling, this framework is
still only at its very beginning. What follows are some ideas for future expansions.

• Fair stochastic task sets: Our method of combining deterministic mixed-
criticality task sets and random probability distributions may be too sim-
ple. The fairness properties presented in [9] may also have to cover task
execution time distributions to be applicable in stochastic analysis.

• Real task sets: Task sets from the ”real world” could be investigated
further, either directly parsing them for schedulability testing (building a
task set ”library”), or also creating a new synthesis heuristic based on their
features.

38



6. Conclusion 39

• Response time analysis for dynamic-priority systems: Similar to
my response time analysis implementation (section 2.3.2) for fixed-priority
scheduling, there exists a variation designed for dynamic priorities as well,
described in [6].

• Probabilistic HI-mode analysis: In the probabilistic schemes presented
here, HI-mode has been replaced by a black box or not considered at all.
More sophisticated schedulability schemes that also analyze HI-mode need
to be developed and possibly implemented here.

• Arbitrary criticality levels: The framework and all synthesis and anal-
ysis schemes could be enhanced to support n different criticality levels as
opposed to only LO and HI.

• Related topics: Chapter 4 provides an entry point to a related topic
just as diverse as mixed-criticality. The energy module is only thought
as a teaser and would probably be worth an entire thesis in itself, when
expanded. Besides that, applications in other topics for parts of the frame-
work such as convolution and shrinking could be explored.
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Appendix C

Codebase

All source code files as well as other documents and data involved in this thesis are
available online under https://github.com/luca-stalder/bsc-thesis. See
the read-me file contained there for further details.
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