
Distributed
 Computing

Online k-Taxi Problem

Theoretical

Patrick Stäuble

patricst@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Georg Bachmeier, Yuyi Wang

Prof. Dr. Roger Wattenhofer

October 3, 2017

Abstract

In the k-server and the k-taxi problem the distance that the entities cover is
the main and sole cost source. However, the time a request is waiting for its
execution is very important as well and is excluded from the current cost model.
In this thesis we propose a new approach that takes both the driving distance as
well as the waiting time into consideration. For this new cost function we will
present an algorithm and discuss its performance.

i

Contents

Abstract i

1 Introduction 1

2 Definition of the Problem 3

2.1 Problem Specification . 3

2.2 Related Work . 5

3 Laziness and Probabilistic Algorithms 7

3.1 The Instability Issue . 7

3.2 Lower Bound . 8

4 Results 11

4.1 Model . 11

4.2 A First Approach . 12

4.3 Online Algorithm . 13

4.4 Competitive Ratio Upper Bound Proof for UNITALG 15

4.5 Competitive Ratio Lower Bound Proof for UNITALG 17

4.6 General Competitive Ratio Lower Bound for UNITALG 18

4.7 Adaption of the Cost Model . 19

5 Conclusion 22

Bibliography 23

ii

Chapter 1

Introduction

Imagine a city with vehicles, pedestrians, roads and street corners. A taxi com-
pany receives requests from customers who want to drive from one corner of
the city to another but, the company has only a finite number of taxis. This
describes the task of the original k-taxi problem, which aims at minimizing the
total distance the taxis travel. It belongs into the category of online problems.
An online algorithm receives its input in chunks of data, parts of the information
needed are not available at the beginning. The algorithm constantly has to react
to new data packages and adapt its decisions accordingly. We use competitive
analysis to compare the performance of different online algorithms, and focus on
how well the algorithms adapt to the input rather than on their runtime. One
of these online problems is the famous k-server problem.
In the k-server problem, an online algorithm has to move k servers to satisfy
requests. The servers are distributed over the vertices of a graph. As input
progresses, requests appear on the vertices of the graph. To satisfy requests an
algorithm has to move the servers along the edges to their locations. The goal
of the k-server problem is to minimize the sum of distances over all servers. The
original k-taxi problem is a generalization of the k-server problem.
In the original k-taxi problem, an algorithm has control over k taxis on the graph
instead of k servers and the requests are customers who want to drive from their
current vertex to another vertex. As new customer requests appear, an algo-
rithm has to schedule the taxis in such a way that every customer gets delivered
to his destination. Similar to the k-server problem, the aim is to minimize the
total driving distance of all taxis.
Figure 1.1 shows an instance of the online 2-taxi problem. At the start we can
see the 2 taxis marked green on the lower 2 vertices. A customer appears on the
middle vertex and wants to drive to the upper left vertex, marked orange. The
algorithm now chooses one of the taxis and the taxi picks up the customer. The
taxi is now occupied, and is not available for another customer. As soon as the
taxi arrives at the destination, the customer request is satisfied and the taxi is
free for a new customer.
In the cost model of the original k-taxi problem, a customer could be waiting a
long time until his request can be scheduled. We want to propose a new cost

1

1. Introduction 2

Figure 1.1: Example of a 2-taxi problem

model which punishes algorithms that keep customers waiting. To achieve this,
we measure the time all taxis spend driving and the time all customers have to
wait instead of calculating the total distance all taxis drive.
We start with the formal description of the problem environment and the cost
model that we will use in this thesis. Then we realize that only the subset of
lazy online algorithms is relevant for this problem, where ”lazy” means that taxis
only move while customers are waiting. Then we present an online algorithm
that runs optimally on a restricted subset of the problem. Finally, we present
results for the general problem.

Chapter 2

Definition of the Problem

2.1 Problem Specification

Definition 2.1. An instance of the k-taxi problem is a tuple (G,L,K). G
is an undirected, connected and weighted graph with a set of vertices V, a
set of edges E and a function w that denotes the weight of an edge:

∀e ∈ E,∃w(e) ∈ R+ (2.1)

L is a customer request list(see Def. 2.3) and K is a list of vertices that holds
the starting positions of the k taxis.

Note that the property connected is just included for simplicity. An instance with
a separated graph can be split up into sub-graphs and solved independently. The
weight of each edge represents the time a taxi needs to travel from one end to
the other. In order to measure the waiting cost any customer might have, we
introduce an additional variable.

Definition 2.2. A time point t ∈ R+
0 represents the time passed after the

start of an algorithm’s execution.

Definition 2.3. A customer request is a tuple c = (varr, vdest, tarr) and
the three components are defined as follows:

varr: The arriving vertex is a vertex in G where the customer will appear
and where the taxi has to drive to and pick him up.

vdest: The destination vertex is a vertex in G which represents the desti-
nation the customer wants to drive to.

3

2. Definition of the Problem 4

tarr: The arrival time is the time point at which the customer request
becomes visible for the algorithm.

The customer request list is the set of all customers, and the cardinality of this
set is n. In the offline problem, the complete customer request list is available to
the algorithm, but in the online problem only the customer requests that have
an arrival time that is smaller or equal to the current time point are visible.

Definition 2.4. A configuration is the state of an algorithm’s execution
on a given instance of the k-taxi problem at a certain time point. A con-
figuration consists of the taxi positions, the information which customer is
currently in which taxi and a list of the satisfied customer requests. The
configuration is called initial configuration if the value of the time point
is 0. If an online algorithm is currently in a configuration with time point t,
the algorithm cannot reach a configuration with a time point value smaller
than t.

If an online algorithm reaches time point t, the algorithm cannot change decisions
made at time points smaller than t, and information given at time point t is not
available at time points smaller than t. If e ∈ E is an edge and e connects the
vertices v1, v2 ∈ V , then w(e) is the time it takes for a taxi to drive from the
vertex v1 to v2 or from the vertex v2 to v1. The problem starts at time point 0.
When a taxi drives on e starting at time point t, then it is going to arrive at v2
at time point t+ w(e).
When executed, an algorithm can control up to k taxis. Every taxi is either on a
vertex or driving on an edge. A taxi is not able to turn on an edge and go back
to the vertex it started from. It has to drive to the end of the edge and there it
is able to turn around if needed.

Definition 2.5. If in the current configuration a taxi carries no customer,
it is called free. If the taxi carries a customer, it is called occupied.

An algorithm executed on an instance of the k-taxi problem can execute the
following commands in any configuration:

Pickup(Taxi): If the taxi from the argument is located on a vertex as well as a customer
this taxi is then occupied by this customer.

Drop(Taxi): If the taxi is occupied and if the customer’s destination is the current
location of the taxi, the taxi has delivered the customer and is now free.

Move(Taxi,Vertex): This sets a destination vertex for the taxi. The taxi now moves to this
vertex, while taking the most efficient path. This command can be used
even when the taxi is moving. In that case the taxi just drives to the new
destination vertex.

2. Definition of the Problem 5

If a taxi does not have active commands, it does not move and stays on its ver-
tex. All these commands, as well as any other calculation the algorithm might
perform, are not a part of the cost model.

Definition 2.6. The costs of an online algorithm execution on an instance
of the online k-taxi problem is defined as the sum of the driving time over
all taxis and the sum of the waiting times over all customers. The waiting
time of a single customer request is the difference between the time point
the customer is picked up by the taxi and tarr of that customer request.

cost :=

k∑
i=1

tdriving +

n∑
j=1

twaiting (2.2)

To compare different online algorithms, we use the concept of competitive ratio.
The competitive ratio compares the cost incurred by a given online algorithm
to the optimal offline cost. An offline algorithm has the complete information
about the incoming customer requests and, with that, it can compute an optimal
solution. The competitive ratio of an online algorithm is the maximal ratio
between the costs of that online algorithm executed on a given instance and the
cost of an optimal solution of that instance. Note that this ratio has to be at
least 1.

Definition 2.7. An online algorithm is called an optimal online algo-
rithm for the k-taxi problem, if the competitive ratio of all online algorithms
is equal or higher.

2.2 Related Work

Sleator and Tarjan[1] suggested to compare online algorithms to an offline algo-
rithm. This was the beginning of a systematic analysis of online problems. One
of the basic problems in competitive analysis is the k-server problem, which was
proposed by Manasse[2]. Another important problem is the paging problem[1],
where we have a fixed number of fast-memory pages to hold data, and we have
to decide in an online fashion which pages to keep there.
The k-taxi problem was originally proposed by Xu and Wang[3], and some im-
portant results have already been shown. Additionally a lot of papers suggested
variations of the k-taxi problem. The k-taxi problem on a real line[4] restricts
the graph to one line, pictured as a very busy main street. The weighted k-taxi
problem[5] is based on the weighted k-server problem, where each server has an
additional weight. In the weighted k-taxi problem, the taxis have different costs
for moving.

2. Definition of the Problem 6

The k-truck[6] is a different generalization of the k-server problem and originally
presented by Ma,Xu,Wang. In this problem trucks move on a graph, and similar
to the k-taxi problem, deliver load from point a to b. Additionally, the weights
of the loads are different and have an impact on the cost function. Many other
variations of the k-server problem can be found in the literature (for an overview,
see [7]).

Chapter 3

Laziness and Probabilistic
Algorithms

3.1 The Instability Issue

Example 3.1 shows how unstable the instances of the online k-taxi problem can
be. A small addition to the customer request list can change the complete
optimal solution.

Example 3.1. Figure 3.1 displays two instances of the k-taxi problem.
Again the taxis are marked in a green tone and the customers in orange.
We additionally marked the first step of the optimal solution with a green
arrow. All the edges to the top node of the graph have high cost to make
sure the taxis do not drive unnecessarily through the top vertex. The main
difference between the two instances is the customer request appearing at
the right node. In the first instance the best possible solution is to assign
every taxi with the customer that appears at its left node. In this instance
the left most taxi is not assigned to any customer, because there is one more
customer than taxis in this first instance. If we include the customer on the
right end of the graph, as in the second graph, we end up with a completely
different assignment. In this instance, the taxis deliver the customers that
are to their right, because this assignment has lower costs than just assigning
the taxi on the left with the customer on the right.

7

3. Laziness and Probabilistic Algorithms 8

100 100
100

5 1 2 1 2

100 100
100

5 1 2 1 2

Figure 3.1: The unstable 3-taxi problem.

Note that this graph can be extended for much larger graphs with more
taxis and customers. For each additional customer request over a new 100
cost edge we add a node for an additional taxi and connect with edges
accordingly.

3.2 Lower Bound

In this thesis we only consider lazy algorithms for the online problem.

Definition 3.2. Lazy algorithms are algorithms that only move taxis while
there are active requests.

Theorem 3.3. Lazy algorithms have a competitive ratio of at least 2.

Proof. We prove Theorem 3.3 by constructing a problem instance that shows a
competitive ratio of at least 2 for all lazy algorithms. In Figure 3.2 the single
customer request marked orange appears at time point 1, therefore in the offline
solution it is possible to move to the customer with the taxi marked green in
time and deliver him right away.

1 ε

Figure 3.2: Lower Bound for all online algorithms; 0 < ε� 1.

3. Laziness and Probabilistic Algorithms 9

Because we only consider lazy algorithms, all online algorithms will not move
their taxis until time point 1. The best an online algorithm ALG can do is to
pick up the customer with the taxi.

competitiveratio ≥
tdrivingALG

+ twaitingALG

tdrivingOPT
+ twaitingOPT

=
(1 + ε) + 1

(1 + ε) + 0
(3.1)

Looking at the proof of Theorem 3.2 one could argue that an algorithm that
moves the taxi to the middle of the graph and violating the lazy restriction can
achieve better results.

Theorem 3.4. An online algorithm either controls the taxis like a lazy on-
line algorithm or the online algorithm has a competitive ratio of at least
4.

Proof. We observe the behavior of the taxi in Figure 3.2 until the first time point.
An online algorithm either moves the taxi to the middle vertex or not. If the
taxi does not move until the customer request appears, then the behavior of the
online algorithm is lazy. If the online algorithm moves the taxi, we change the
customer request list that the customer request arrives at the left vertex. Figure
3.3 shows the graph at the time point the taxi arrives at the middle vertex and
the customer request appears.

1 ε

Figure 3.3: Adapted version of Figure 3.2; 0 < ε� 1.

competitiveratio ≥
tdrivingALG

+ twaitingALG

tdrivingOPT
+ twaitingOPT

=
3 + 1

1 + 0
(3.2)

A different approach to achieve a better lower bound could be to make the
algorithm probabilistic. Instead of the decisions in the previous examples, in this
chapter, the algorithm stays or moves according to a probability distribution.

Theorem 3.5. The probability, that a probabilistic algorithm has lower costs
than a lazy algorithm, is arbitrarily low.

Proof. To show Theorem 3.5 we will construct a class of instances with decreasing
probability of success for a probabilistic algorithm. Figure 3.2 is the first instance

3. Laziness and Probabilistic Algorithms 10

of the class and Figure 3.4 shows the fifth instance of the class. We just add
another graph piece to the existing one and end up with a higher instance.

1 ε

1

ε

1

ε

1ε

1

ε

Figure 3.4: Adapted version for probabilistic algorithms; 0 < ε� 1.

If there are more options to move the taxi at time point 0, then the probability
that the taxi is moved to the correct vertex is smaller.

Chapter 4

Results

In this chapter we first take a closer look at a slightly adapted version of the
problem model and present an online algorithm.

4.1 Model

We look at a restricted case by adapting the model in the following way. The
graph is new completely connected and every edge has the same weight:

Definition 4.1. An instance of the unit distance k-taxi problem is a
tuple (G,L,K). G is a undirected, connected and weighted graph with a set
of vertices V, a set of edges E and the function w that denotes the weight
of an edge. The following holds for all graphs:

∀v1, v2 ∈ V : {v1, v2} =: e ∈ E,w(e) = 1 (4.1)

L is a customer request list and K is a list of vertices that holds the starting
positions of the k taxis.

In Figure 4.1 we show an example of this restricted k-taxi problem with 5 vertices.

1

1
1

1

1
1

1

1

11

Figure 4.1: A unit distance 2-taxi problem with 5 nodes and 1 customer.

11

4. Results 12

4.2 A First Approach

Let us consider the following first-in-first-out or short FIFO algorithm:

Input: Graph G and the initial configuration of the taxis K as well
as the list L of customer requests.

Output: Commands where the taxis should drive.
while True do

for Taxi t do
if t.isFree() then

Choose remaining customer c with smallest arrival time,
break ties arbitrarily

move(t,c.varr)
pickup(t)
move(t,c.vdest)
drop(t)

end

end

end
Algorithm 1: Pseudo-code of FIFO Algorithm

The above described FIFO algorithm seems to be a good first approach, but
Theorem 4.2 shows that the lower bound of the competitive ratio grows with the
number of customers.

Theorem 4.2. The FIFO algorithm executed on any instance of the unit
distance k-taxi problem has at least a competitive ratio of n

2 .

Proof. We prove Theorem 4.2 by constructing an example and show that the
FIFO algorithm has a competitive ration of n

2 :
The graph shown in Figure 4.2 has four nodes, two of them are painted blue and
the other two are painted red. One of the taxis starts at the first blue node B1
and one taxi at the first red node R1, both are marked green.
The adversary places the taxis such that the optimal solution can pick up the
customers on the blue nodes with one taxi and the customers on the red nodes
with the other. In contrast the FIFO algorithm has to switch taxis between the
blue nodes and the red nodes. We construct the following family of instances:
∀n = 4 ∗ i, i ∈ N we have four groups of customers:

• (A) Customer# 1 + i∗4: Arrives at B2 and wants to drive to B1. Appears
at time stamp i ∗ 2 + 1.

• (B) Customer# 2 + i∗4: Arrives at R2 and wants to drive to R1. Appears
at time stamp i ∗ 2 + 1 + ε.

4. Results 13

• (C) Customer# 3 + i∗4: Arrives at R1 and wants to drive to R2. Appears
at time stamp i ∗ 2 + 2.

• (D) Customer# 4 + i∗4: Arrives at B1 and wants to drive to B2. Appears
at time stamp i ∗ 2 + 2 + ε.

1

1

1

11

1

B1

R1

R2

B2

Figure 4.2: Competitive ratio lower bound for the FIFO algorithm.

The optimal path to deliver the customer request groups A to D is to schedule
the taxi that starts on B1 with the customers A and D. The taxi picks up A as
soon as D is delivered and picks up D after finishing A. The taxi that starts on
R1 takes the customers B and C accordingly. This leaves us with 2 + n driving
costs and n/2 ∗ ε of waiting costs, where n is the number of customers.
The path of the FIFO algorithm is not nearly as efficient as the optimal solution.
For each taxi we just execute the customer who arrives first. This means that
the taxi starting on B1 executes customer groups A and C and the taxi starting
on R1 executes customer groups B and D. This leads us to a total driving cost
of 2 ∗ n. The waiting cost accumulates as more customers appear. The first 2
customers wait 1 time unit, the second 2 customers wait 2 time units and the j’th
2 customers wait j time units. This results in a waiting cost of (n∗(n+2))

2 . All of
these costs leave us with a lower bound of the competitive ratio of approximately
n
2 , for a small ε.

4.3 Online Algorithm

Algorithm 2 is the pseudo-code of our algorithm UNITALG. UNITALG is de-
signed to calculate the best possible solution with the available information and
controls the taxis according to this solution. If UNITALG receives additional
customer requests, the solution is recalculated and the taxis receive new desti-
nations.

4. Results 14

Input: Graph G and the initial configuration of the taxis K as well
as the list L of customer requests.

Output: Commands where the taxis should drive.
while True do

if new customer requests are visible to UNITALG or a taxi
finishes a customer request then

solution = calculateBestSolution(input)
// In the following we execute the calculated

solution:

for Taxi t do
move(t,solution[t].varr)
pickup(t)
move(t,solution[t].vdest)
drop(t)

end

end

end
Algorithm 2: Pseudo-code of UNITALG

UNITALG is designed in a way that every time the customer request list L
changes, which means that there is a new customer request visible to UNITALG,
or if any taxi finishes a customer request the algorithm changes the destination
of each taxi. Whenever one of these conditions are true the algorithm executes
the following steps:

• In the first step the algorithm calculates the best result from the input
that is currently available. The best result is the most cost efficient and
optimal solution without considering future requests. If there are multiple
optimal solutions the algorithm outputs the first calculated.

• In the second step the algorithm executes the calculated solution until the
input changes such that the execution order could change. This is only
possible, if a new customer appears, so we execute until a new customer
request arrives.

Especially the calculation of the best solution with the current input is very
inefficient with a large number of customers and taxis, but in this thesis we
focus on the cost efficiency of the solution and not on runtime.

4. Results 15

4.4 Competitive Ratio Upper Bound Proof for UNI-
TALG

Theorem 4.3. The UNITALG algorithm executed on any instance of the
unit distance k-taxi problem has at most a competitive ratio of 3.

Proof. The idea of the proof is to reduce the problem space to a simplified one.
For these instances we prove the competitive ratio of 3 and finally we generalize
back to the unit distance k-taxi problem model.
There exist instances of the unit distance k-taxi problem where the optimal
solution has waiting costs. For example there is a graph with 4 nodes. Two
customers arrive at 2 different nodes and want to drive to the other 2 nodes.
The 2 customers arrive both at time point 0. This input can’t be executed by
one taxi without generating waiting costs.
In this proof, instead of looking at all instances, we first consider only instances
where the optimal solution has no waiting costs. Any unit distance problem
instance can be transformed into the simplified instance with the following steps:

• First we calculate how the optimal solution of the instance. This optimal
solution might have waiting costs.

• In the second step we change the customers arriving times such that the
optimal solution has no waiting costs. For every customer that waits, we
delay the arriving time tarr to the time point the optimal solution reaches
the customer.

The optimal solution does not change, when we delay the arriving of the cus-
tomer requests, because any other execution would have waiting costs.
Now we show that this reduced input space has an upper bound on the compet-
itive ratio for UNITALG. First we look at the case with only 1 taxi. Note that
in all of these cases we are at most one time unit behind the optimal solution.

• The customer appears at the node where the optimal solution already has a
taxi: In this case the optimal algorithm has cost 1. UNITALG has different
costs depending on the situation:

– It is the startpoint of the taxi: In this case UNITALG schedules the
customer immediately, because there is no other customer, and UNI-
TALG has cost 1.

– It is the destination vertex of a different customer request: Then
UNITALG either has already executed that customer and is at the
same vertex and UNITALG has cost 1 or UNITALG is delivering
this other customer, therefore UNITALG has at most cost 2, because
UNITALG can only be 1 time unit behind the optimal solution.

4. Results 16

• The customer appears at a node, where the optimal algorithm has to drive
1 edge to get to the start point. OPT has therefore cost 2. In this case
UNITALG has no information about the customer until he appears, so
UNITALG does not move the taxi and OPT does in the first time unit. In
the second the customer appears and UNITALG schedules the customer.
Now UNITALG is 1 time unit behind OPT. Note that it could be that
UNITALG has to finish another customer in the first time unit, but this
takes at most 1 time unit, since UNITALG can only be 1 time unit behind
OPT.

This concludes the case distinction for 1 taxi and shows that the upper bound of
3 holds for the 1 taxi case. But we want to show that this also holds for k taxi.
In the k taxi case we assign every UNITALG taxi with an OPT taxi. If there
is no difference in the execution we can refer to the simple 1 taxi case and have
proven the competitive ratio of 3. But what if one of the UNITALG taxis decides
to deliver a customer on the route of an OPT taxi that is not assigned to it. This
can only happen in one specific scenario:
2 customer appear at the same time and the optimal algorithm has two OPT
taxis standing there, because of the restricted problem. 2 UNITALG taxis are 1
time unit behind the OPT taxis(the ones assigned to them). If they are less than
1 time unit behind OPT the algorithm decides to not switch the taxis, because it
takes more cost. In this situation it is possible that taxis can switch assignments,
but this is not a problem, since the cost stays in the competitive ratio of 3. This
switch of taxis can also be extended to l ≤ k taxis that interchange, but here as
well the cost is in the boundaries. This proves that UNITALG has competitive
ratio at most 3 for the simplified input as well as for the original input.
In order to generalize back to the unit distance problem we change the arriving
times back one customer after another. This adds cost to the optimal solution,
as well as to the solution of UNITALG. If a customer request new arrives earlier
than a different customer request, it could be possible that the order of the
UNITALG solution changes. This adds additional costs for each customer that
follows. In the unit distance problem model this can be at most 3, 1 for driving
to the customer, 1 for delivering the customer and 1 until UNITALG is back
at the arriving vertex of the next customer. So for each customer a customer
request skips, because of the generalization, the optimal solution pays cost of at
least 1 and UNITALG of at most 3. This does not effect the competitive ratio
and the upper bound also holds for the unit distance problem.

4. Results 17

4.5 Competitive Ratio Lower Bound Proof for UNI-
TALG

Theorem 4.4. The UNITALG algorithm executed on any instance of the
unit distance k-taxi problem has at least a competitive ratio of 3.

Proof. In order to prove Theorem 4.4 we will construct an instance of the unit
distance problem and show that the optimal solution is more cost efficient than
the UNITALG solution by a factor of 3.
Given graph G with k taxis and k + 2 nodes {v1, v2, v3, ..., vk+2} that is fully
connected with unit distance d = 1. The initial configuration K for the taxis is
[v1, v2, v3, ..., vk]. We now define the customer request list L such that:

• The first customer request arrives at time point t1 = 1 on vertex vk+1

with destination vertex vk+2. Now UNITALG calculates the best possible
solution to pick up that customer. There are k possible solutions, because
the graph is unit distance every taxi can pick up the customer. W.l.o.g.,
we assume that the taxi on v1 processes this customer.

• The second customer request arrives at time point t2 = 3, just after UNI-
TALG delivered the first customer request. This customer request arrives
at v1 and wants to drive to the arriving point of the first customer request
vk+1. UNITALG again calculates the best possible solution and ends up
with k possible ones. Again w.l.o.g., we assume the taxi at v2 picks up the
second customer.

• For i ∈ {3, ..., k}, customer i arrives at vi−1 with destination vi at time
ti = 2 ∗ i− 1

Before we take a look at the costs we show how an optimal solution OPT moves
the taxis:

• In the first time unit OPT moves the taxi that is touched last by UNITALG,
which would be vk to the vertex vk+1.

• At the time this first taxi arrives at node vk+1 the customer request appears
and can directly be delivered. However, UNITALG has to move the taxi
from v1.

• At the time point t2 arrives a customer request at v1 and for UNTIALG
there is no taxi there, but OPT has moved a different taxi for the first
customer request. So in OPT the taxi just delivers the customer right
away.

• At time point ti the customer request at vi−1 arrives and OPT delivers the
customer with the taxi on vertex vi−1

4. Results 18

After that last customer request, the taxi positions of the solution of UNITALG
and OPT are equal. We can also see that the above described solution is optimal.
Every customer request is delivered immediately without any waiting and there
is only the additional cost of 1 that is necessary anyway.
We calculate the costs by summing up the cost of each individual customer.

UNITALG: UNITALG has costs of 3 for each customer. UNITALG has to drive to the
customer, which takes d = 1 and an additional 1 for the waiting time of
the customer and finally an additional 1 to deliver the customer. If the
algorithm uses every taxi once, we have a total cost of: k ∗ 3 for k > 1

OPT: OPT has costs of 1 to get to the initial configuration and after that, for all
the customers OPT only has 1, no waiting cost and no driving cost to the
customer request, resulting in a total cost of: (k) ∗ 1 + 1 for k > 1.

This results in an approximate competitive ratio of 3 for a large number of taxis k:

cr =
cdriving(UNITALG) + cwaiting(UNITALG)

cdriving(OPT) + cwaiting(OPT)
=

3 ∗ k
1 ∗ k + 1

(4.2)

4.6 General Competitive Ratio Lower Bound for UNI-
TALG

In this chapter we introduced an adapted version of the problem in Definition
4.1 and proved competitive ratio bounds for UNITALG, but how well performs
UNITALG with the original problem(see Definition 2.1)?

Theorem 4.5. The UNITALG algorithm executed on any instance of the
general k-taxi problem has at least a competitive ratio of n+ 1.

Proof. We prove Theorem 4.5 by constructing an instance of the general k-Taxi
problem according to Definition 2.1 and show that UNITALG generates a solu-
tion n+ 1 time the cost of the optimal solution.

1 ε ε ε

Figure 4.3: Competitive ratio lower bound for UNITALG; 0 < ε� 1.

Again ε ∈ R+, taxi painted green and customers painted orange. Also note
that we still only look at lazy algorithms that only move when there is a customer

4. Results 19

request. The customers arriving times are defined as follows when the leftmost
customer is customer 1 and from left to right an increment of 1. For customer i
tarr = 1 + ε ∗ (i− 1).
The optimal solution is that in the first time unit the taxi moves from the left-
most node to the first customer request start position. The customer request
then all arrive such that the taxi can drive and pick up without generating any
waiting costs. The total costs of the optimal solution are c(OPT) = 1 + ε ∗ n.
UNITALG waits until the first customer appears and then picks up every cus-
tomer from left to right. Therefore UNITALG has costs of c(UNITALG) =
(1 + ε ∗ n) + (1 ∗ n).
This results in a competitive ratio of 1 + n for a large number of customers and
an ε that goes faster to zero than 1/n. After this presentation one might argue
that the competitive ratio is not dependent on the number of customers, but
on the size of the graph. Figure 4.4 is an adapted version of the example on a
constant size graph:

1 ε

Figure 4.4: Competitive ratio lower bound for the FIFO algorithm.

In this graph there are 2 groups of customers:

• The uneven customers (i = 1, 3, 5, 7...) arrive at the middle vertex and
want to drive to the right vertex.

• The even customers(i = 2, 4, 6, 8...) arrive at the right vertex and want to
drive to the middle node.

• For all customers the following holds: tarri = 1 + ε ∗ (i− 1)

After the first pickup the offline solution assigns the taxi such that it drives
between the middle and the right node. UNITALG does the same, but with
a delay of 1. The cost calculation is analogous to the first and has the same
result.

4.7 Adaption of the Cost Model

In definition 2.6 the driving cost of the taxi is weighted the same as the waiting
cost. The total cost is the sum of these two costs. In this chapter we add
variables to the cost function and show a more general competitive ratio for that
function. Take a look at the following definition of the cost function with these
4 new variables.

4. Results 20

Definition 4.6. The costs of an online algorithm execution on an instance
of the online k-taxi problem is defined as follows with x, y, v, w ∈ R:

cost := x(
k∑

i=1

tdriving)v + y(
n∑

j=1

twaiting)w (4.3)

Now we show how this new cost function influences the previous results.

Theorem 4.7. The competitive ratio upper bound of 3 for the UNITALG
algorithm proven in Theorem 4.3 changes with the additions from Definition
4.6 to:

2v +
ynw

xnv
(4.4)

Proof. In order to prove Theorem 4.7 we need an additional variable that we call
awt. awt represents additional waiting cost that appear, when we transfer from
the simplified problem to the unit distance problem(see proof of Theorem 4.3).
But they are actually irrelevant, because we can upper bound them.

x ∗ (2 ∗ n)v + y ∗ ((awt+ 1) ∗ n)w

x ∗ nv + y ∗ (awt ∗ n)w
6 2v +

ynw

xnv
(4.5)

Theorem 4.8. The competitive ratio lower bound of 3 for the UNITALG
algorithm proven in Theorem 4.4 changes with the additions from Definition
4.6 to:

2v +
ynw

xnv
(4.6)

Proof. We fill in the values from Theorem 4.4 and end up with the same result
as in Theorem 4.7.

x ∗ (2 ∗ n)v + y ∗ (1 ∗ n)w

x ∗ nv + 0
⇒ 2v +

ynw

xnv
(4.7)

4. Results 21

Theorem 4.9. The general competitive ratio lower bound of 3 for the UNI-
TALG algorithm proven in Theorem changes with the additions from Defi-
nition 4.6 to:

1 +
ynw

x2v
(4.8)

Proof. The values according to the example in the proof from Theorem 4.5.

x ∗ 2v + y ∗ nw

x ∗ 2v + 0
⇒ 1 +

ynw

x2v
(4.9)

Chapter 5

Conclusion

In this thesis we introduced a new cost model for the existing k-taxi problem.
For this new problem, we developed an algorithm with a constant competitive
ratio on a restricted subset. We also showed how the algorithm would perform in
the general problem. However, there is no upper bound proof for UNITALG in
the general case. It might be possible to adapt the proof structure from Theorem
4.3 to achieve a general upper bound for the competitive ratio for UNITALG.
An additional goal could be to observe the effects the new cost model has on the
various k-taxi adaption stated in the community.

22

Bibliography

[1] Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging
rules. Communications of the ACM 28(2) (feb 1985) 202–208

[2] Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for
server problems. Journal of Algorithms 11(2) (jun 1990) 208–230

[3] Xu, Y., Wang, K.: Scheduling for on-line taxi problem and competitive
algorithms. Journal of Xi’an Jiao Tong University (1997)

[4] Chun-lin Xin, Wei-min Ma: Scheduling for on-line taxi problem on a real line
and competitive algorithms. In: Proceedings of 2004 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), IEEE 3078–
3083

[5] Ma, W., Wang, K.: On the On-Line Weighted k-Taxi Problem. In: Combina-
torics, Algorithms, Probabilistic and Experimental Methodologies. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007) 152–162

[6] Ma, W., Xu, Y., Wang, K.: On-line k-Truck Problem and Its Competitive
Algorithms. Journal of Global Optimization 21(1) (2001) 15–25

[7] Koutsoupias, E., Taylor, D.S.: The CNN Problem and Other k-Server Vari-
ants. Springer, Berlin, Heidelberg (2000) 581–592

23

	Abstract
	1 Introduction
	2 Definition of the Problem
	2.1 Problem Specification
	2.2 Related Work

	3 Laziness and Probabilistic Algorithms
	3.1 The Instability Issue
	3.2 Lower Bound

	4 Results
	4.1 Model
	4.2 A First Approach
	4.3 Online Algorithm
	4.4 Competitive Ratio Upper Bound Proof for UNITALG
	4.5 Competitive Ratio Lower Bound Proof for UNITALG
	4.6 General Competitive Ratio Lower Bound for UNITALG
	4.7 Adaption of the Cost Model

	5 Conclusion
	Bibliography

