
SmartCanvas:

a Drawing Assistance Application

for Android Devices

Basile Maret Simon Scherrer

Distributed Systems Lab, Spring Semester 2017

Supervisors:
Pankaj Khanchandani

Prof. Dr. Roger Wattenhofer

Distributed Computing Group
ETH Zurich

July 31, 2017

Abstract

In recent years, modern hand-held devices have begun to offer a wide range
of multi-media applications that have long been deemed computationally too
expensive for such machines. While increasing computation speeds have been
utilized for widely-used entertainment applications of various forms, leveraging
this power for user enhancement remains a challenge and has yet to produce
applications that are similarly popular.

In this project, we devised, implemented, and evaluated an application that
aims to enhance a user’s drawing capabilities. SmartCanvas, as we name the
application, pursues the goal of assisting a user in drawing an arbitrary image
onto an arbitrary medium, e.g., a sheet of paper or a whiteboard. Assistance
shall be provided by overlaying an image on live camera recording. Dynamic
position adjustment of the overlay should then have the effect for the user that
the image appears as being projected to a fixed position on the medium. Given
this illusion, the user can then trace features in the projected image to craft a
drawing.

Numerous challenges had to be overcome in order to make the application us-
able in a simple, efficient, and pleasant manner, most importantly performance
and stability of the camera frame processing. By building on GPU acceleration
and heavily optimized image processing algorithms, however, we achieved to
develop an application that makes the drawing process both faster and more
precise for a user with little experience in drawing.

Contents

1 Introductory remarks 2
1.1 Introduction . 2
1.2 Goals . 3
1.3 Requirements . 4

1.3.1 Usability . 4
1.3.2 Platform compatibility . 4

2 Used technology 6
2.1 OpenCV . 6
2.2 OpenCL . 6
2.3 Java Native Interface (JNI) . 7

3 Application design 8
3.1 Overview . 8
3.2 Image preprocessing . 9

3.2.1 Filters . 9
3.2.2 Segmentation . 10

3.3 Edge detection . 12
3.3.1 HSV color filtering . 12
3.3.2 Hough circle detection . 13

3.4 Edge localization . 15
3.4.1 Edge group clustering . 16
3.4.2 Inter-group sorting . 17
3.4.3 Intra-group sorting . 17
3.4.4 Edge prediction . 19
3.4.5 Motion-aware moving averages 21

3.5 Image overlay . 21

4 Evaluation 24
4.1 Usability . 24
4.2 Platform compatibility . 25
4.3 Example drawings . 25

References 28

1

Chapter 1

Introductory remarks

In this chapter, we present some introductory considerations that were made
in advance to the development of the application. In Section 1.1, we present
the motivation and the general idea behind SmartCanvas. In Section 1.2, the
design goals for the application are outlined. The requirements which have to
be observed in order to achieve these goals are listed in Section 1.3.

1.1 Introduction

In recent years, increasing speeds and decreasing costs in hardware of hand-
held mobile devices have given rise to a wide variety of new applications. Also
tasks that have long been deemed computationally too expensive for mobile
devices can now be carried out by standard applications. This is for example
demonstrated by applications like video live-streaming from a device, off-line
image editing and especially analysis and modification of live camera record-
ing. Regarding the latter functionality, applications like the popular application
Snapchat [7] allow a user to detect features and apply filters on camera frames
in real-time.

It is an interesting and open challenge to use these relatively new capabilities
of mobile devices not only for user entertainment, but also for user enhancement,
i.e., providing assistance to a user who performs tasks in the physical world.
An obvious example of such user enhancement is to support a user in crafting a
product, where the support is offered by displaying visual instructions. Thereby,
precision, proportionality, and plan conformity of the final product should be
improved. Furthermore, the user should also learn from the hints provided by
the application and become better at crafting the product even without the
assistance application.

A possible crafting activity in which an application could assist is given by
drawing, which is also the goal of the application presented here. The following
two sections state more precisely how this assistance should be provided.

2

1.2 Goals

The application developed in this work aims at supporting the user in crafting
a drawing, i.e., an image drawn by hand onto a physical object like a piece of
paper or a whiteboard (in the following called the medium).

By projecting an arbitrary image onto the medium, the application should
allow the user to copy the image. The projection should be performed by over-
laying a semi-transparent version of the image on frames coming from a camera
in real-time. In projection, it is crucial that size, position, and perspective of
the overlay image are continuously adjusted when the user moves the camera.
This dynamic adjustment should create the illusion that the image sits on a
fixed position on the medium (cf. Figure 1). This is necessary such that the
user can resume drawing an image from any perspective.

Medium

Virtual
image

Overlay adjusted in
size, perspective and position

Device

Overlay

Figure 1: Illustration of overlay adjustment in size, position and projection such
that the projection always stays in the same place for the user

The user should be able to mark on the medium where the image should be
projected to, e.g., by marking the corner positions. Given a stable projection
to this position in physical space, the user can then copy the image or certain
of its features by tracing edges of the overlay with a pen. Since the visibility of
the user’s hand and the drawing pen is essential for eye-hand coordination, the
overlay image is semi-transparent.

3

Furthermore, the user should be able to choose an arbitrary image from her
device and preprocess it in a way that simplifies drawing, e.g., by highlighting
edges.

1.3 Requirements

In this section, we outline the requirements with which the application has to
conform in order to provide the functionality described in Section 1.2. The two
main requirements that shaped the design decisions in this work were usability
(Section 1.3.1) and compatibility with widely-used platforms (Section 1.3.2).

1.3.1 Usability

In order to helpfully support the user in drawing, usability is essential. There-
fore, the usability of the application is also the central objective that was pursued
in the development of SmartCanvas. In this context, an application is usable if
it can be used in a simple, efficient and pleasant manner. The following sub-
requirements have to be respected in order to enable trouble-free utilization of
the application

• Real-time frame processing: In image projection, it is of paramount
importance that the modified camera recording can be displayed smoothly.
For this to hold, the number of frames per second must be high enough
such that the human eye can not distinguish individual frames. The com-
putation per frame must thus be performed as efficiently as possible, which
has implications for both the amount (minimal) and the mode (by means
of specialized hardware architectures like a GPU) of frame processing.

• Stability of projection: In order to help the user improve her precision
in drawing, the application itself has to be precise in projection. The limit-
ing corners for the image have to be localized reliably such that the overlay
image is always projected to the same position on the medium. If preci-
sion and continuity of edge detection are guaranteed, the user can change
perspective without provoking distortions or flickering in the image.

• Simplicity: Since the goal of the application is to simplify drawing, learn-
ing to operate the application itself should be as simple as possible. Both
picking the overlay image and retracing the image edges should be feasible
intuitively. A potential source of operating complexity could stem from
the problem that the drawing hand may cover the limiting corners of the
projected image, thus making the projection less stable. Allowing the user
to cover edges improves simplicity.

1.3.2 Platform compatibility

A secondary requirement that influenced the design of SmartCanvas deals with
the question of the platform on which the application should be available. In-

4

spired by the numerous similar applications available for standard smartphones,
we also developed the application at hand for the very widely-used Android
platform. Special devices like devices with Tango enhancements [6] might of-
fer helpful functionality for building the application. However, such devices
are not widespread consumer products and thus not desirable according to our
requirement.

5

Chapter 2

Used technology

In this chapter, we mention the technology components upon which the devel-
oped application builds. Technology components here mean libraries, imple-
mentation techniques and frameworks that we used for SmartCanvas without
developing them ourselves. To summarize, the frame processing logic of Smart-
Canvas builds heavily on the OpenCV library (Section 2.1), into which GPU
acceleration of the OpenCL framework (Section 2.2) was integrated. The frame
processing was embedded into the application through the Java Native Interface
(JNI, Section 2.3).

2.1 OpenCV

OpenCV (Open Source Computer Vision Library, [9]) is an open-source project
which contains over 2500 algorithms for computer vision and image processing.
It has interfaces to numerous programming languages, amongst others also C++
and Java, which were used in the development of the application at hand.

OpenCV represents images as matrices with color values as matrix entries
(potentially multi-dimensional). We apply feature detection algorithms (see
Section 3.3), image processing operations (see Sections 3.2 and 3.5) and matrix
transformations (see Section 3.5), which are offered by the OpenCV library and
take such image matrices as inputs.

2.2 OpenCL

By default, OpenCV performs matrix operations by means of the CPU. How-
ever, regarding speed, especially image processing operations can profit mas-
sively from highly fine-grained parallelization as it is done in a Graphical Pro-
cessing Unit (GPU). Matrix addition can serve as an illustration: theoretically,
all element-wise additions can be executed at the same time due to the lack of
result interdependence.

6

Programming a GPU to absorb such inherently parallelizable workloads can
be done by means of OpenCL (Open Computing Language, [3]). OpenCL per-
ceives the GPU as a collection of multiple processing elements (PEs), each of
which have local memory and can execute a kernel independently from other
PEs. By writing appropriate kernels and performing data assignment to PEs,
substantial speed-up can be obtained via OpenCL.

OpenCV provides a Transparent API (T-API) to OpenCL, meaning that
GPU acceleration through OpenCL is automatically used if enabled and avail-
able. Enabling is necessary for the following reason: Although OpenCV im-
plements numerous OpenCL kernels that achieve GPU acceleration of its algo-
rithms, these kernels are not part of the OpenCV library by default. Instead,
the OpenCV library with OpenCL kernels has to be compiled manually with an
additional compiling flag set.

Further requirements have to be observed such that the transparent API to
OpenCL can be used:
• OpenCL library: The device-specific OpenCL library (libOpenCL.so,

usually located in /system/vendor/lib/ on the device) has to be linked
to the application.

• Matrix data type: A special matrix data type has to be used in code
(cv::UMat instead of cv::Mat).

• GLES and EGL: If OpenCL should have access to the graphics subsys-
tem of Android, both the Android rendering library OpenGL for Embed-
ded Systems (GLES, [4]) and the EGL API to the Android windowing
system [2] have to be linked to the application. Furthermore, an OpenCL
context has to be initialized (cf. app/src/main/cpp/CLprocessor.cpp in
project code). In the application, this so-called CL-GL sharing is used to
obtain the current camera frame in an efficient manner.

2.3 Java Native Interface (JNI)

Since the OpenCV library is written in C and C++, there have to exist C bind-
ings for a command when using OpenCV in Java, which is the main language in
application development for Android. As OpenCL functionality is not included
in OpenCV by default, there are no interfaces that would enable using OpenCL
from Java code. All parts of the code for which GPU acceleration was desirable
thus have to be written in C++ itself.

Source code in C or C++ can be integrated into an Android Java application
via the Java Native Interface (JNI, [8]). For every Java method specified as na-
tive, a C++ method with a matching name has to be implemented. A library can
then be built from the C++ source code by means of the CMake build tool (inte-
grated in Android Studio). This library then has to be loaded in the Java code at
runtime such that the native C++ methods are found. In the project code, the
relevant files on both sides of the interface are app/src/main/cpp/jni.c and
app/src/main/java/ch/ethz/dslfs17/smartcanvasocl/NativePart.java.

7

Chapter 3

Application design

In this chapter, we describe the design of our application in detail. Each of
the following sections will focus on a set of design decisions that were taken
to solve aspects of the problem at hand. Section 3.1 will give an overview
of the application workflow and its structure. Section 3.2 will describe which
kind of preprocessing is necessary for the user-chosen image. Section 3.3 aims at
explaining the algorithms for detecting the edges, which are then later structured
by a process that we call ’edge localization’ (Section 3.4). Finally, Section 3.5
concludes the chapter by presenting the programming logic needed to overlay
the image on the frame.

3.1 Overview

Figure 2 displays the workflow of SmartCanvas. The application starts with
a plain Android main activity, which conveys the user to an activity where
the image to draw can be selected. In that activity, the images that have been
previously selected by the user are displayed and can thus be reselected directly.
If the user wants to select a new image, she can do so from various sources like
the device camera, the file system, a cloud, and more.

After selecting the image, the user can crop and rotate it. This is helpful if
the user only wants to draw a certain part of the original image.

In a next step, the user can then apply different filters on the image. The im-
age filters, which are borrowed from the Android GPUImage library [1], include
cartoonization and edge-highlighting filters. These filters all aim at simplify-
ing the image and thus the drawing process. The filters are described more
extensively in Section 3.2.1.

Since the image may be rich in detail and contain fine-grained structures, it
makes sense to focus only on parts of the image at a time. This can be achieved
by segmenting the image, which can be done in the subsequent step of the
workflow. The user can arbitrarily split the image into segments with image-
spanning lines in horizontal and vertical orientation. Section 3.2.2 explains this

8

Choose
Image

Crop &
Rotate

Apply
Filters

Define
Segments

Draw
Edges

Draw
Image

2

2

1 1

1

Figure 2: Illustration of application workflow

segmentation process in closer detail.
The image with applied modifications is then saved to a folder for the re-

cently used images. This persistence enables the re-use of previously selected
images, as is mentioned above. This functionality is useful when a user wants to
continue drawing an image that she started drawing in a previous execution of
the application. In order to avoid distortions in the drawn image, the image has
to be exactly the same in both executions. Saving the modified image ensures
this equality.

After defining image segments, the preparation of the image is concluded.
However, the medium also has to be prepared: The edge points of all image
segments have to be marked. The instruction step of the work-flow helps in
this preparation: It presents the constellation of the edge points to be drawn,
especially the distances between them.

In the final and most important step of the work-flow, the actual projection
of the image onto the medium is performed. This projection is based on the
repeated execution of edge detection (Section 3.3), edge localization (Section
3.4) and image overlay (Section 3.5).

3.2 Image preprocessing

In this section, we explain how the non-trivial parts of image preprocessing are
implemented, i.e., image filters (Section 3.2.1) and image segmentation (Section
3.2.2), as opposed to image cropping and rotation, which have a straightforward
implementation.

3.2.1 Filters

When drawing, it is often difficult to know which edge or which line to draw,
since many images rather consist of shades and gradients than lines. This ob-
servation is particularly true for photographs. In order to help the user, Smart-
Canvas offers a set of filters that simplify the image by emphasizing edges. The
available filters are Sketch, Toon, and Smooth Toon. All of them use a Sobel

9

operator to highlight edges in an image. The Sobel operator performs two spa-
tial gradient measurements on the image to detect the changes in intensity. A
measurement Gx measures the changes on the horizontal axis, the other mea-
surement Gy measures them on the vertical axis. The gradient measurements
Gx and Gy are each performed by convolving a 3 × 3 kernels with the original
image:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗A
Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗A,

where A is the original image and ∗ is the convolution operation. The two
gradient measurements can then be combined into a gradient magnitude G =√

G2
x + G2

y which measures the change in intensity in both directions.

The Sketch filter replaces the colors of the source image with the value of the
gradient magnitude at each pixel, ranging from black for a magnitude of 0 to
white for the highest magnitude of the image, in a grayscale. The colors of the
resulting image are then inverted for the edges to be black and the background
to be white.

The Toon filter works similarly to the Sketch filter but colors the pixels either
in black or white instead of a grayscale. The filter uses a threshold to make the
decision for the gray pixels. Once the edges are black and the background is
white, the filter fills the white spaces between the edges with a quantized set of
colors from the original image.

The Smooth Toon filter is the same as the Toon filter but a Gaussian blur
is applied before the filter.

All of these filters use the implementations from the GPUImage library [1].

3.2.2 Segmentation

In order to simplify and improve the sketching of the image, conducting a seg-
mentation can help in two major aspects. First, if the image is split into seg-
ments and these segments can be used individually, the user only has to focus
on a single image part at a time. Second, if only a single image segment is
displayed, the details in that segment can be represented in a larger fashion,
making it easier to trace them. This is especially relevant in the face of our
usage requirement that the edges have to be visible while drawing: Fitting a
large image into a single set of edges may result in projected image features that
are too fine to trace.

In image segmentation, the challenge arises that there is no single best seg-
mentation for all images. Which segmentation is suitable for an image depends
heavily on the desired quantity of detail in every segment and the presence of
contiguous image features, which should not be spread over multiple segments.

10

Figure 3: Screenshot of the application’s segment definition functionality (left:
default, right: arbitrary segmentation achievable by line dragging)

The application thus offers the possibility to perform an arbitrary segmen-
tation of the image by means of image-spanning horizontal and vertical lines.
These splitting lines can be defined by the user in SegmentDefinitionActivity.
As perceivable in Figure 3 on the left, this activity first gives the user a choice
by how many lines each dimension should be split. The application then places
these lines on the image in equal distance from each other. To further customize
the segmentation, the user can then drag these lines to the desired position (as
on the right in Figure 3). The offsets of these lines are then saved and propa-
gated to subsequent steps in the application workflow.

One such subsequent step is the InstructionActivity, which instructs the
user how to draw the edge points onto the medium. The user can prepare the
medium by copying the required formation of edge points. In order to guarantee
correct ratios between segment sizes, the side lengths of segments are displayed
as part of the formation. These side lengths, given in centimeters, are calculated
on the basis of the image’s larger side length, chosen by the user (cf. Figure 4
on the left).

As soon as the application starts its drawing mode, the image is split ac-
cording to the line offsets. The produced sub-images are then kept in memory.
In drawing mode, the user can pick the segment that she wants to draw next by
tapping on the appropriate segment on the segment panel (highlighted in Fig-
ure 4 on the right). This segment panel can be made visible through a setting’s
option and disappears five seconds after it was last touched.

11

Figure 4: Screenshot of the InstructionActivity (left, with the edge point
formation defined by segmentation) and drawing mode (right, with highlighted
segment panel)

3.3 Edge detection

The following section will elucidate the process by which the edge points in
the camera frame image are detected. This process is based on two major
components, namely HSV color filtering (explained in Section 3.3.1) and Hough
circle detection (explained in Section 3.3.2). The goal of the edge detection
process is to produce a complete and sound list of all edge points in the frame
image, given by their coordinates. These points are then structured and sorted
by the process of edge localization (see Section 3.4 below).

3.3.1 HSV color filtering

False positives are a substantial challenge in edge detection: A simple detec-
tion algorithm could mistake numerous features in the frame image for an edge
point. Examples include features of the partially drawn image itself or features
on the user’s hand. Furthermore, even if false positives could be reduced by
some algorithm, the respective algorithm would have to judge every edge point
candidate, which makes per-frame processing computationally more expensive
and decreases the smoothness of the camera preview.

In order to avoid slow or even incorrect edge detection, one partial solution
is to give a suitably preprocessed input to the edge detection process itself. HSV
color filtering is such a suitable method, which builds on the assumption that
the user marks the edge points in a distinct color, i.e., a color different from

12

Figure 5: Effect of the HSV color filtering: A frame image with many distracting
elements (left) can be translated into a simplified image with far more easily
detectable edge points (right)

colors in the image itself, on the user’s hand, and on other distracting elements.
The general idea of HSV color filtering is to detect all pixels in the frame that

are reasonably similar to a certain color, i.e., within a certain distance in the
HSV color space. These pixels can then be set to white, whereas all other pixels
are set to black. Figure 5 serves as an example. Then feeding this simplified
image to Hough circle detection (see next section) makes the edge detection
process both faster and more precise.

The target color can be defined by the user through the application settings.
As every color in the HSV color space, it is determined by the following three
parameters: first, a hue parameter, which identifies a certain combination of
three primary colors (red, green, blue); second, a saturation value, which iden-
tifies a combination of the hue with white; and third, a value parameter, which
identifies a combination of the hue-saturation color with black.

In the implementation, the OpenCV method inRange() is used to detect all
pixels with a color between (Hmin, S, V) and (Hmax, 255, 255), where Hmin, S,
V and Hmax are selected by the user. Intuitively, this range corresponds to the
space between a color mixed from primary colors and a less intense and darker
version of this color.

3.3.2 Hough circle detection

Similar to edge points having a specific color, it is advantageous in edge detection
if edge points have a specific shape. If the edge points are restricted to a certain

13

0 1 2 3 4

x

0

1

2

3

4

5
y

p1

p2

p3

p4

(1)

0 1 2 3 4

a

0

1

2

3

4

5

b

(2)

C: (x− 2.0)2 + (y − 3.0)2 = r2

c1: (1.1− a)2 + (3.3− b)2 = r2

c2: (1.8− a)2 + (2.0− b)2 = r2

c3: (2.3− a)2 + (4.0− b)2 = r2

c4: (2.9− a)2 + (2.6− b)2 = r2

0 1 2 3 4

a

0

1

2

3

4

5

b

(3)

Figure 6: Visualization of Hough circle transform

shape, the edge detection can avoid using generic feature detection algorithms,
e.g., SIFT or SURF. Both these algorithms have major drawbacks concerning
our performance requirement. The SIFT algorithm is not even designed to run
in real-time, as in live per-frame processing. SURF, in fact, is meant to deliver
good results in real-time. However, it is not available in the GPU-optimized
version of OpenCV due to patent protection, which blocks a valuable option for
optimization.

Instead of using generic feature detection algorithms, we can resort to shape-
oriented detection algorithms. Such algorithms exist for almost every simple
shape, are usually provided by OpenCV in a heavily optimized form, and thus
have a runtime that fits the real-time requirement well. We decided to use
circles as a simple shape that is suitable for edge points. The application can
detect these circular edge points by the highly efficient Hough circle transform,
which we will briefly illustrate by means of Figure 6.

We assume that a circle C, as given in subplot (1) of Figure 6, is to be
detected. Furthermore, we assume that the radius of C is known to be r. With
C formalized as

C(x, y) : (x− aC)2 + (y − bC)2 = r2, (1)

,
the Hough transform has to find the center (aC , bC) of C.
The Hough transform starts by picking random points pi, i ∈ N, from the

circle edge, which can be found on the basis of color differences. The coordinate
pairs (xi, yi) of all pi satisfy Equation 1. Replacing the unknowns aC and bC
then by variables, every point p1 defines a circle in the parameter space of

14

Equation 1, given by

ci(a, b) : (xi − a)2 + (yi − b)2 = r2. (2)

These circles ci are depicted in subplot (2) of Figure 6. As can be noticed
from this subplot, the intersection of all circles ci represents the desired circle
center (aC , bC), since this is the only point that is in distance r of more than
two arbitrarily chosen points on the circle.

This intersection is then found by splitting the parameter space into accumu-
lator cells, as shown in subplot (3) of Figure 6. Every circle with a line passing
through a specific accumulator cell contributes to that accumulator cell. In (3),
the red-intensity of a cell represents the value of the local accumulator cell.
The accumulator cell with the maximum value is then the cell which contains
(aC , bC). In the numerical example of Figure 6, this is the cell at position (2,3),
which is also the center point of circle C in subplot (1). We thus detected circle
C correctly.

If r is not known, the Hough transform can be easily extended to include r
as an additional dimension in the parameter space. Instead of circles, the points
pi then define cones with an intersection to be found. The OpenCV function
cv::HoughCircles(), upon which SmartCanvas builds, expects a minimum
and maximum radius, thus constraining the radius dimension of the parameter
space.

In a frame image that is color-filtered according to Section 3.3.1 and scaled
down to a smaller size, the circular edge points can be detected within 20-40 mil-
liseconds. This time complexity does not destroy the smoothness of the camera
frame sequence and thus conforms to the performance requirement. As output
of edge detection, the application produces a list of circle center coordinates.
These coordinates are then interpreted by the process of edge localization, which
is explained in the following section.

3.4 Edge localization

In this section, we describe how the detected edge points are interpreted by
the application. Interpretation is here understood as finding out how an edge
point should influence the image projection. The function of an edge point is
determined by its location in the frame image. For example, if an edge point
is classified as the upper left edge, its function is to indicate where the upper
left corner of the overlay image should be projected to. Since determining
the relative locations of all edge points is key to interpretation, this process is
henceforth referred to as edge localization. The goal of edge localization is to
discover the upper left edge, the upper right edge, the lower left edge, and the
lower right edge, even in the presence of detection errors and invisibility of edge
points.

In the following subsections, we refer to the edge locations, e.g., upper left,
as ordinal directions, a term borrowed from geography where it denotes the
compass points northwest, northeast, southwest, and southeast.

15

(b) (c) (d) (e)(a)

UL

LL LR

UR

Figure 7: Stages of the edge localization process

Figure 7 shows the stages the designed edge localization process. In stage
(a), the initial stage of the process, only the coordinates of the edge points
are known. These edge points, which were found in the edge detection process
(cf. Section 3.3), are then divided into groups by the subprocess of edge group
clustering (Section 3.4.1). In a next step, the produced edge groups in stage (b)
are locationally sorted both among each other (inter-group sorting, stage (c),
Section 3.4.2) and within edge groups (intra-group sorting, stage (d), Section
3.4.3). The goal of inter-group sorting is to distinguish edge groups into the
ordinal directions, e.g., upper left. In contrast, the goal of intra-group sorting is
to distinguish different types of edge points within an edge group. If stage (d)
can be reached for three edge groups but fails for the last one, the fourth edge can
be predicted as visualized in stage (e) and described in Section 3.4.4. Finally,
the new edge positions are computed as a weighted average of previous and
current positions, where the respective weights depend on the camera motion
(cf. Section 3.4.5).

3.4.1 Edge group clustering

In order to divide edge points into groups, a clustering algorithm in the form of
the k-Means algorithm [5] is sufficient. The k-Means algorithm clusters elements
together on the basis of Euclidean distance between them. Edge points with a
similar location are thus perceived as belonging to one edge group, which is a
reasonable assumption.

The general idea behind the algorithm is straightforward. The algorithm is
initialized with a number k of clusters (here, k = 4) and a set of data elements
(here, edge points). The cluster centers are initialized randomly. Then, the
algorithm fits the clusters to the data by alternating between the assignment
step and the adjustment step. In the assignment step, all data elements are
assigned to the cluster with the nearest center. In the adjustment step, every
cluster center is recomputed as the mean of all data elements that are assigned
to the respective cluster. This alternation stops if assignments do not change
anymore or if a fixed maximum number of iterations is reached. Part (a) of
Figure 8 illustrates an example run of the k-Means algorithm.

OpenCV implements the k-Means algorithm in the method cv::kMeans().
This method returns both the cluster centers as coordinates and the cluster
labels for all input points.

Since the number of clusters k has to be defined in advance, a problem as

16

⋆⋆
⋆

⋆ ⋆

⋆

⋆
⋆

⋆ ⋆⋆
⋆

⋆
⋆

⋆ ⋆

⋆
⋆

⋆ ⋆

⋆

(a) (b)

⋆ ⋆

⋆

Figure 8:
(a) Example illustration of k-Means algorithm convergence
(b) Algorithm-specific problem arising if an edge group is invisible

depicted in part (b) of Figure 8 arises if an edge group is not visible: The
algorithm then splits the actually existing three edge groups into four clusters.
The application solves this problem by merging a collapsed cluster (a cluster
with at most 1 assigned edge point) into the nearest other cluster if the other
cluster is within a certain short distance.

3.4.2 Inter-group sorting

Once the edge group clustering process as described in the previous section
has produced the edge groups, these edge groups need to be localized. The
application has to find a bijection between detected edge groups and ordinal
directions. We refer to this process as inter-group sorting.

Inter-group sorting is performed by running a simple scanline algorithm over
the detected cluster centers. For every ordinal direction, the cluster center with
a minimal approximate distance to the respective corner is found, as depicted in
part (a) of Figure 9. The approximate distance between the cluster center and
the frame corner is computed as the sum of distances in both dimensions, i.e.,
the distance from the lower left corner at (0, 0) is x + y, whereas the distance
from the upper left corner at (0, hframe) is x + (hframe − y), and so forth.

Similar to edge group clustering (3.4.1), a problem arises if a whole edge
group is not visible. The problem is illustrated in part (b) of Figure 9. In the
figure, one cluster center is assigned to two ordinal directions due to one edge
group missing. If these assignments were adopted, the upper left and the lower
left edge of the overlay image would be wrongly projected to the same location.

The application prevents such double assignments as follows. Each pair of
ordinal directions is checked on whether they reference the same cluster center.
If a double assignment exists, the assignment is only kept at the ordinal direction
for which the cluster center is more typical, i.e., closer to the respective frame
corner. In the example above, the cluster center would be assigned to the upper
left ordinal direction.

3.4.3 Intra-group sorting

When entering the intra-group sorting step of the edge localization process, the
application has already found groups of edge points and assigned these groups

17

(a) (b)

⋆

⋆

⋆⋆

⋆
⋆

⋆

Figure 9:
(a) Illustration of scanline algorithm to find the minimal edge in all ordinal
directions
(b) Algorithm-specific problem arising if an edge group is invisible

to the ordinal directions, e.g., one edge group may be ’upper left’.
In order to help with prediction of invisible edges, each such edge group

does not only consist of one edge point (main edge point), but also has multi-
ple orientation edge points in both the horizontal and vertical dimension. As
described below in Section 3.4.4, the combination of the main edge point and
a certain orientation point defines a line that can be used for prediction. The
goal of intra-group sorting then is to discover the internal structure of an edge
group. This goal is not trivial: an edge group consists of up to 5 edge points (cf.
the internal edge in the edge point pattern of Figure 4 on page 12), of which
not all may be even relevant for the current image segment. A multiple scanline
algorithm thus has to be applied to classify all edge points according to their
function.

We will now illustrate this within-group sorting process at the example in
Figure 10 on the next page. It is assumed, without loss of generality, that
the displayed edge group was assigned to the upper left ordinal direction. The
displayed edge group consist of a main edge point em, a horizontal orientation
point eh, a vertical orientation point ev, and two irrelevant orientation points
ei. Because of the classification as upper-left, we know that the edge point with
the maximal x-coordinate is the horizontal orientation point and that the edge
point with the minimal y-coordinate is the vertical orientation point. In step
(b), these two points can thus be found by straightforward coordinate sorting.
As to find the main edge point, the already localized orientation points have
then to be ignored and a diagonal-scanline approach has to be applied, similar as
in inter-group sorting. However, contrarily to inter-group sorting, the scanline
now has to find the point which is closest to the corner of the opposite ordinal
direction, i.e., here lower right. Step (c) thus delivers the main edge point. All
remaining edge points can be ignored; they are guaranteed to be irrelevant. In
step (d), the edge group thus can be reconstituted with all relevant edge points
and their function.

18

(a) (b) (c) (d)

upper
left

x
y

em eh

ev

ei

ei

em eh

ev

ei

ei

em eh

ev

ei

ei

em eh

ev

ei

ei

Figure 10: Illustration of intra-group sorting process

Note that it depends on the ordinal direction which horizontal, vertical and
diagonal scanlines to use. These variations are analogous to the example pre-
sented in the previous paragraph.

3.4.4 Edge prediction

In edge detection, it may happen that an edge group is not detected, for several
reasons: the edge group may be covered by the user’s hand, it may be out of the
frame, or it may simply not have been detected due to instability of the Hough
circle detection (Section 3.3.2).

In these cases, it is necessary to predict the missing edge, i.e., to make an
educated guess on where the missing edge is located, relying on other edge
information from current and previous frames. Such information has to be
provided in sufficient form. For example, the application is only capable of
predicting one edge at a time. Three edge groups thus have to be completely
detected and localized in order to predict a fourth one. However, if this condition
holds, the requested edge group structure ensures that prediction is possible and
accurate most of the time.

There are two base cases in the edge prediction algorithm of the applica-
tion. We will now illustrate them by means of the example in Figure 11 on the
following page. In the example, the missing main edge urm of the upper right
corner has to be predicted.

In case (a) of Figure 11, not a single edge point of the upper right edge
group has been detected. The missing edge point urm thus has to be predicted
on the basis of neighbor edge groups. From the known fact that the missing edge
is at the upper right corner, we get the upper left edge group as its horizontal
neighbor and the lower right edge group as its vertical neighbor. Both these edge
groups then define vectors. The intersection of these vectors is the prediction.
In the horizontal neighbor group, the main edge and the horizontal orientation
point define a horizontal orientation vector ~oh. In the vertical neighbor group,
the main edge and the vertical orientation point define a vertical orientation
vector ~ov. The goal is then to find t, s ∈ R such that:

~oh =
−−−−→
ulmulh ~ov =

−−−−→
lrmlrv t · ~oh = s · ~ov (3)

However, as the user does not necessarily arrange the edge points in a strictly

19

ulh

lrv

oh

ov

oh

ov

ulm

ulv

llm llh

llv

lrmlrh

urv

urh

(a) (b)

urm
urmulm ulh

ulv

llm llh

llv

lrmlrh

lrv

Figure 11: Illustration of the two base cases for edge prediction

rectangular fashion, the prediction in case (a) may not be optimally accurate.
Due to the heavy stretching of the vectors, even a small angular deviation in
the neighboring edge groups translates into a large deviation at the intersection.
Both if the orientation points are inaccurately drawn or detected, these errors
are multiplied.

Whenever possible, case (b) in Figure 11 should thus be applied in order
to achieve better accuracy and stability of the prediction. Case (b) tries to
avoid the source of this imprecision, namely the stretching of the vectors by
large values for t and s. This large scaling can be avoided if the missing edge
group is partially detected, i.e., orientation points have been detected, but not
the main edge. If any orientation points of the missing edge group have been
localized, the orientation vectors for the intersection are defined differently to
case (a). The horizontal orientation vector ~oh is defined by the main edge of the
horizontal neighbor group and the horizontal orientation point of the missing
edge group. The vertical orientation vector is spanned by the main edge of the
vertical neighbor group and the vertical orientation point of the missing edge
group. Now t, s ∈ R have to be found in the following setting:

~oh =
−−−−−→
ulmurh ~ov =

−−−−→
lrmurv t · ~oh = s · ~ov (4)

Base cases (a) and (b) can also be combined when only one orientation point
in the missing edge group has been localized. The orientation vectors are then
defined differently, each according the base case which is feasible.

However, inaccurate edge point detection can also in case (b) lead to un-
acceptably large prediction errors: If edge point detection is unstable, the pre-
dicted edge may move around erratically, distort the image repeatedly, and
therefore severely impede the drawing process.

In order to avoid this volatility problem, the predicted edge coordinates are
never fully adopted. Instead, a moving average is computed for the predicted
edge: The new edge position is determined by a weighted average of the old edge

20

position and the prediction. This measure has the following two advantages.
First, if the respective edge has once been detected, the known edge position
still influences the new edge position and likely makes it more accurate. Second,
since detection errors are random, averaging tends to cancel them out.

3.4.5 Motion-aware moving averages

The same reasoning that makes the case for applying moving averages in edge
prediction also justifies the application of moving averages for all edge positions:
The instability of edge detection can lead to volatile edge positions, which would
translate into a flickering projection image. Therefore, the application computes
a moving average for every edge point position, which is a weighted average of
the current edge position and the position of the corresponding edge point in
the last frame. Note that this moving average can only be done at the end of
the edge localization process; otherwise, finding the corresponding edge point
from the last frame would not be possible.

If the device is stationary above the drawing, this moving average can com-
pensate for unstable edge detection and trembling of the user’s hand, which is
desirable. However, when the device moves, applying a moving average can slow
down the adjustment of the edge positions, which is undesirable. Hence, the
application has to be aware of device motion in order to decide how the moving
average should be applied. We thus call the mechanism by which edge positions
are smoothed over time motion-aware moving averages.

Technically, this motion-awareness is implemented by listening to the accel-
erator, a device component that captures the device movement in space and
is usable through a simple interface in Android. From the movement intensity,
the weighted average coefficients are determined: If the movement is small, then
large weight is placed on the old edge point position; if it is large, then the cur-
rent edge position is integrated into the average with a larger weight. Through
this mechanism, edge positions can be stabilized during stationary periods and
quickly adjusted during device dislocation periods.

3.5 Image overlay

This section aims at explaining the process of overlaying the image on the camera
frame, given the positions of four edge points. Since this overlay constitutes
an image processing operation, it is the most expensive step in the per-frame
operation pipeline and the limiting factor of the frame-processing speed in the
application. Thus, special attention has to be turned to the efficiency of the
image overlay.

In Figure 12, the image overlay process is illustrated. The process starts
by obtaining edge positions from the edge localization process (Section 3.4 on
page 15) and an image to overlay, which is the current image segment. From the
edge positions, the application finds the limiting rectangle in the frame, which
is defined by minimum and maximum edge point values in both dimensions.

21

Edge positions

Input image Output template

Perspective

transform

Overlay image

Addition

Overlay image limits Processed frame

+

Figure 12: Illustration of the image overlay process

Figure 13: Illustration: Cropping the overlay image when predicted edge is
outside of frame

The edge position values are then recomputed to match the coordinate system
given by the frame sub-image.

The adjusted edge points then form the output template, meaning a set of
points to which the corresponding image corners have to be mapped. This map-
ping is performed by finding a perspective transformation between the origin and
the destination points (OpenCV method cv::getPerspectiveTransform())
and applying it (OpenCV method cv::warpPerspective()). The transformed
image can be overlaid on the frame at the position of the previously found
limiting rectangle (OpenCV method cv::add()).

Extracting the limiting rectangle from the frame is crucial, because working
on a smaller sub-image speeds up the image overlay considerably. The image
overlay works by plain matrix addition. If the overlay image had the same
size as the frame image, two larger matrices would have to be added, which
would be computationally more complex. Furthermore, doing so would serve
no purpose, since the overlay image matrix would contribute a summand of 0 at
many indices. Additional optimization is achieved by preprocessing the image
in a way that makes it look semi-transparent when overlaid. This preprocessing
saves the complexity of multiplying the overlay image by an opacity factor in
every frame (as in OpenCV method cv::addWeighted()).

One more intricacy of the overlaying process consists in the handling of edge
points that are outside of the frame image. Such edge points are always the
result of an edge prediction (see Section 3.4.4 on page 19). Given such an

22

out-of-frame edge, simple addition to a submatrix of the frame image matrix is
infeasible: The out-of-frame edge point would result in an invalid row or column
range for the submatrix. However, the solution to this problem is straightfor-
ward: If the limiting rectangle overshoots the frame image, both the limiting
rectangle and the overlay image are cropped such that they fit into the frame
image (cf. Figure 13).

Finally, it is possible that in a single frame, edges can not be localized.
However, simply abstaining from image overlay in these cases would lead to
unpleasant flickering of the projection. In order to smooth the projection display,
the last transformed image is thus overlaid even if no edges have been localized.
The cached transformed image is projected to the last known position until (1)
new valid edges are found, (2) no valid edges have been found for a certain
number of frames, or (3) the user clears the cache by tapping on the device
screen.

23

Chapter 4

Evaluation

In this chapter, we will evaluate the application in its final state according to
the requirements outlined in Section 1.3, namely usability and its sub-aspects
(cf. Section 4.1) and compability with widely-used platforms (cf. Section 4.2).
In Section 4.3, we will present examples of drawings which have been produced
with the aid of SmartCanvas.

4.1 Usability

It is central that the application can be used in simple, efficient, and pleasant
manner. Multiple sub-requirements had to be observed in order to provide
good usability. In the following, we will briefly state if and how each of these
sub-requirements has been fulfilled.

• Real-time frame processing: Thanks to highly optimized algorithm
both in OpenCV and our application code as well as GPU hardware ac-
celeration by means of OpenCL , the application achieves to display 11-14
frames per second. This frame rate is sufficient to make the processed
camera recording look smooth.

• Stability of projection: There are numerous challenges in guarantee-
ing guarantee a stable projection of the image onto the medium. These
challenges include unstable edge detection, distracting influences in the
frame, trembling of the user’s hand, and edge points moving out of the
frame. By applying a bundle of measures, however, these challenges could
be overcome in a satisfactory manner: Distracting influences can be neu-
tralized using HSV color filtering (Section 3.3.1), unstable edge detection
and hand trembling can be compensated for with motion-aware moving
averages (Section 3.4.5), and the problem of edges moving out of the frame
can be addressed by predicting edges (Section 3.4.4). Given that corner
points have been arranged in the required formation, we consider the im-
age projection stable enough to trace lines in the image.

24

• Simplicity: Operating the application is simple in the sense that picking
and preprocessing the image are intuitively feasible (Section 3.2). From
our own experience, however, we believe that a certain amount of practice
is required to craft satisfactory drawings with the application. The user
has to learn how to perform an appropriate segmentation of the image,
how to draw corner points in an exact fashion, and how to avoid covering
multiple corner points while drawing. In order to reduce operating com-
plexity, future work on the application should address these complications.

4.2 Platform compatibility

With the requirement of compatibility with widely-used platforms, we formu-
lated a desire to avoid basing our application on special hardware architectures
and special devices (cf. Section 1.3.2). Instead, we wanted SmartCanvas to be
usable on every device that is capable of running the Android OS and possesses
a camera.

To run the application at a pleasant performance, the device has to include a
GPU which can be programmed using the OpenCL framework. Since all mobile
processors to our knowledge offer this possibility, we consider this requirement
fulfilled.

4.3 Example drawings

In this section, we present Figure 14, Figure 15, and Figure 16 as proof of the
drawing capability enhancement through SmartCanvas. The example drawings
show that both cartoon and photo portraits can be drawn with the assistance
of the application. Table 1 presents details about the individual drawings.

Figure Motif Format on medium Drawing time

Figure 14 Donald Duck 20cm × 14cm 30 min

Figure 15 Autoportrait 9cm × 6cm 20 min

Figure 16 Lino Guzzella 15cm × 11.7cm 40 min

Table 1: Details about example drawings

25

Figure 14: Cartoon picture drawn with the aid of SmartCanvas

Figure 15: Autoportrait drawn with the aid of SmartCanvas

26

Figure 16: Photo portrait drawn with the aid of SmartCanvas

27

References

[1] CyberAgent. GPUImage for Android. URL: https://github.com/

CyberAgent/android-gpuimage.

[2] Khronos Group. EGL (Native Platform Interface). URL: https://www.

khronos.org/egl/.

[3] Khronos Group. OpenCL. URL: https://www.khronos.org/opencl/.

[4] Khronos Group. OpenGL for Embedded Systems (GLES). URL: https:
//www.khronos.org/opengles/.

[5] John A Hartigan and JA Hartigan. Clustering algorithms, volume 209. Wiley
New York, 1975.

[6] Google Inc. Project Tango. URL: https://developers.google.com/

tango/.

[7] Snap Inc. Snapchat. URL: https://www.snapchat.com/.

[8] Oracle Inc. Java Native Interface - Specification. URL: http://docs.

oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html.

[9] OpenCV team. OpenCV. URL: http://opencv.org/.

28

https://github.com/CyberAgent/android-gpuimage
https://github.com/CyberAgent/android-gpuimage
https://www.khronos.org/egl/
https://www.khronos.org/egl/
https://www.khronos.org/opencl/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://developers.google.com/tango/
https://developers.google.com/tango/
https://www.snapchat.com/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://opencv.org/

	Introductory remarks
	Introduction
	Goals
	Requirements
	Usability
	Platform compatibility

	Used technology
	OpenCV
	OpenCL
	Java Native Interface (JNI)

	Application design
	Overview
	Image preprocessing
	Filters
	Segmentation

	Edge detection
	HSV color filtering
	Hough circle detection

	Edge localization
	Edge group clustering
	Inter-group sorting
	Intra-group sorting
	Edge prediction
	Motion-aware moving averages

	Image overlay

	Evaluation
	Usability
	Platform compatibility
	Example drawings

	References

