
Distributed
 Computing

Building a 3D Indoor Scanner
Semester Thesis

Jonas Bächli

baechlij@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Manuel Eichelberger, Simon Tanner

Prof. Dr. Roger Wattenhofer

June 6, 2017

Acknowledgements

I would like to thank my supervisors Manuel Eichelberger and Simon Tanner for
their inputs in the weekly meetings during the development of the thesis as well
as the constructive criticism concerning this report. I would also like to thank
my family and friends for the feedback and support.

i

Abstract

This thesis dives into still unknown possibilities of virtual reality and explores the
feasibility of using a 3D scanner built into a smartphone to virtually visit remote
locations. It focuses on the reduction of the polygon count required to represent
a scanned scenery in a time and memory efficient way, introducing the developed
algorithms to achieve this and showing how the data is gathered and processed.
Results are displayed and evaluated in terms of quantity and quality, depicting
strengths and limitations of the implementation. Finally, the initial goals are
compared to what was achieved, leading to the outlook of possible additions in
the future.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Contributions . 2

2 Google Tango 3

2.1 Application . 4

3 Method 5

3.1 Polygonal Mesh . 5

3.2 Traversing Google Tango Data 6

3.3 Plane Fitting . 8

3.3.1 Plane Equation . 8

3.3.2 The Growing Algorithm 9

3.4 Replacing the Meshes . 11

4 Results 13

4.1 Evaluation Setup . 13

4.2 Living room . 13

4.2.1 Quantitive Evaluation . 16

4.2.2 Qualitative Evaluation . 18

5 Conclusions and Future Work 20

Bibliography 22

iii

Chapter 1

Introduction

1.1 Motivation

While virtual and augmented reality (VR and AR) are gaining popularity in
niche markets such as gaming or training (flight simulators, surgery simulators,
and more), the public has not yet experienced its capabilities besides some excep-
tions such as Pokémon Go. However, with the emergence of affordable consumer
devices, those technologies will most likely change how we accomplish certain
day-to-day tasks. A conceivable use case is flat or house hunting: the current
owners could scan their home and share this data with possible interested par-
ties. Prospective new tenants on the other hand would then be able to explore
their potential new living space, maybe even try to fit in virtual objects such as
existing furniture.

In this thesis we use a Google Tango enabled smartphone, which features an
easy-to-use 3D scanner, to explore the possibilities of using such a device to vir-
tually visit remote locations, focusing on the handling of the vast amount of data
being produced while scanning a scenery through the means of 3D reconstruc-
tion. One way to reduce the amount of data accumulating in point cloud based
scan is to find context for points, for example whether or not they are part of a
larger surface corresponding to a parametric primitive. This allows to get rid of
data points, since they can easily be replaced by a primitive. This thesis tries to
find plane primitives and uses the resulting limitations applicable to those points
to delete points which do not contribute any geometric value.

1

1. Introduction 2

1.2 Related Work

There is already a lot of existing research in the field of 3D reconstruction, even
some using the Google Tango Platform [1] as well.

An example is [2], this paper explores large scale scene reconstruction, using
a Google Project Tango tablet to gather data interactively. This work focuses on
finding filtering options for outliers, determining the reliability of scanned data.
CHISEL [3], another Google Tango based project, aims to improve memory man-
agement, allowing scans of large areas with high resolutions on a portable device.
This is accomplished by quickly filtering data and throwing away unessential
measurements. In this thesis this task is performed by the use of the Google 3D
Reconstruction Library [4].

The PCL (Point Cloud Library) is introduced in [5], establishing a standard
library for 3D reconstruction from point cloud data. This open source library
collects a multitude of algorithms usable for many different tasks. However due
to incompatibility with the runtime used in this thesis it was decided to implement
an independent solution.

In [6] a framework for the segmentation of point cloud data into surfaces is
presented, fitting in geometric primitives to resolve missing data. And last but
not least, [7] discusses feature extraction from point clouds, focusing on kitchen
environments. This thesis takes a similar approach, using plane primitives to
detect planar surfaces; however rather than using point-clouds as data source it
uses preprocessed data coming from the Google 3D Reconstruction Library [4].

1.3 Contributions

The contributions in this thesis are the following:

• Just-in-time exploration of the data provided by Google Tango, transform-
ing the data into an adequate representation.

• Exploring the acquired dataset to find planes using a growing algorithm.

• Using the discovered planes to reduce the amounts of vertices and triangles
necessary to store the 3D data.

Chapter 2

Google Tango

The Google Tango platform [1] enables Android devices to build 3D models of
the environment. This is done using a multitude of sensors, such as wide-angle
cameras, depth-sensing cameras, motion cameras, gyroscopes and accelerome-
ters. Those sensors, combined with a software stack allow applications to gener-
ate point clouds, provide virtual/augmented reality experiences and more. The
software stack behind the scenes implements technologies ranging from computer
vision to SLAM (Simultaneous Localisation and Mapping) to combine the differ-
ent sensor readouts into one consistent representation of the surroundings.

For this thesis, a Lenovo Phab 2 Pro was used. This device offers all the
necessary sensors required by the Google Tango platform and is backed by a
Google Tango optimised processor and 4 GB of RAM.

Figure 2.1: The Lenovo Phab 2 Pro [8]

3

2. Google Tango 4

2.1 Application

Google Tango offers multiple APIs to access its generated 3D data. At the
moment, developers can choose from a C/C++ API, a Java API and an Unity
SDK. As visualised in Figure 2.2, the Google Tango APIs run on top of the
Google Tango Service. This service handles the data collection from the sensors
and serves the user with preprocessed data.

Unity is a popular game engine, offering multi-platform support [9] for most
platforms in use today. It also offers 3D capabilities right out of the box without
the need to rely on a third party 3D engine, which led to the decision to use the
Unity SDK for this thesis instead of using the C or Java API.

The application built in this thesis makes use of the 3D Reconstruction Li-
brary [4] [10]. This C library is exposed through the Unity SDK and provides
mesh representations of the environment, created from the point cloud. Those
meshes already offer an estimation of the surfaces and can be configured to in-
clude additional data, for example colours and normals. The environment is
divided into voxels, which, similar to pixels in 2D images refer to a single value
in a 3D environment, arranged in a regular three dimensional grid. To access
those voxels, one uses the so called GridIndex, a struct designating a cube of 16
x 16 x 16 voxels in the volume grid, where the referenced unit is defined by the
set resolution of the Google Tango framework.

Furthermore, Math.NET Numerics [11], an open source C# numerical library
was used to solve linear equations.

Figure 2.2: Overview of the Google Tango development stack [12]

Chapter 3

Method

This chapter introduces the algorithms used to process the Google Tango 3D
data, find planes in this data and finally replace those planes with size-optimised
meshes.

3.1 Polygonal Mesh

The term mesh used throughout this thesis refers the so-called polygonal mesh, a
data structure used in 3D modelling to represent surfaces, consisting of vertices,
edges and faces. The faces are usually triangles, as there is a large amount of
existing graphics hardware specifically optimised to handle this shape. Figure 3.1
shows an example mesh, also displaying the boundary edge, the set of edges
belonging to exactly one triangle. Additional data, such as colour information,
normal vectors, texture mappings and more might be stored together to represent
a 3D surface.

Vertex

Edge

Face

Boundary Edge

Figure 3.1: A simple example mesh

5

3. Method 6

3.2 Traversing Google Tango Data

As mentioned above, the data retrieved from Google Tango is divided into in-
dividual meshes, each spanning the detected surface in the volume of one cube,
called a GridIndex. The application keeps track of the processed GridIndices by
storing the meshes in a hash table, mapping the GridIndices to the respective
mesh.

The most important fields of the mesh representation in Unity are vertices,
triangles and colours. The vertices on their own just define a point in space, while
triangles, referencing these vertices, form the surface. Colour data is used to shade
the resulting surface. Between vertices the rendered colour is interpolated from
the vertices around it. The triangles are also used to relate vertices to each other,
building neighbourships by adding each one of the three vertices of a triangle as
a neighbour of the other two vertices. This is a simple and fast algorithm, but it
is limited to neighbours inside of one mesh only.

To be able to overcome this limitation, a struct GlobalVertex was introduced
(Listing 3.1). This struct specifies one vertex in one mesh, therefore making it
possible to differentiate every existing vertex. This allows a vertex A in GridIndex
giA to reference a vertex B in GridIndex giB, hence enabling neighbourships
across the GridIndex border. The GlobalVertex also keeps references to its mesh
and its absolute position, making it one of the most essential datatypes used,
allowing easy mappings between the Google Tango given representation and the
global view over the entire 3D model.

Listing 3.1: GlobalVertex struct
pub l i c s t r u c t GlobalVertex
{

pub l i c Tango3DReconstruction . GridIndex gr id Index ;
pub l i c i n t vertexIndexInMesh ;
pub l i c Mesh mesh ;
pub l i c Vector3 actua lVertex ;

}

To discover neighbours between adjacent GridIndices (Algorithm 1), we first
create a list of non-empty GridIndices, adjacent to the current GridIndex. For
each adjacent GridIndex, we try to find a common plane between the current
GridIndex and the adjacent GridIndex. This is achieved through the use of
BorderBoxes, which define the minimum and maximum value of the x, y and z
coordinate values in each mesh. If two adjacent GridIndices giA and giB share a
common border across one axis, we are able to easily define a plane between giA
and giB. Iterating through the vertices in giA and giB and checking the distance
to the newly created plane allows us to build two sets with vertices in those two
GridIndices that are in close proximity to the other GridIndex. By finding pairs

3. Method 7

of vertices in those two sets that are very close to each other, we can add those
vertices as their respective neighbours, closing the gap between GridIndices.

input: GridIndex giA
input: GridIndex giB
bbA = BorderBox (giA);
bbB = BorderBox (giB);
find common plane p between giA and giB using the border boxes;
for each vertex v in giA do

if distance (p,v) < margin then
add to planeA;

end
end
for each vertex v in giB do

if distance (p,v) < margin then
add to planeB;

end
end
for each vertex vA in planeA do

for each vertex vB in planeB do
if distance (vA, vB) < margin then

add vA as a neighbour of vB;
add vB as a neighbour of vA;

end
end

end
Algorithm 1: Finding neighbours across GridIndices

Establishing neighbourships on a per GridIndex base allows us to parse this
data just-in-time, or more precisely when a vertex inside of a new GridIndex
is added to a plane set (see below). This potentially decreases processing time
since unused GridIndices are never parsed and leads to earlier visible results;
being able to use the established relationships required to find planes without
having to wait for the parsing of the entire data. It also makes it possible to
change the environment during runtime without having to re-parse the whole
mesh.

Neighbours are stored using a hash table, having a GlobalVertex as the key
and a list of GlobalVertices as its neighbours.

3. Method 8

3.3 Plane Fitting

3.3.1 Plane Equation

The main equation used is the well known plane equation Equation (3.1), rewrit-
ten as Equation (3.2).

ax+ by + cz + d = 0 (3.1)

ax

c
+

by

c
+

d

c
= −z (3.2)

This allows us to do a simple least square approach to solve the linear equation

Ax = ~c

where A corresponds to a matrix with n rows containing (xi yi 1), with n being
the total amount of vertices currently in the data set and i specifying one vertex
in the set with it’s coordinates xi, yi, zi. The vector ~c contains n rows of −zi.

Solving this equation leads to the values for a′ = a
c , b

′ = b
c , c

′ = 1, d′ = d
c ,

defining the plane a′x + b′y + c′z + d′ = 0 with normal vector Equation (3.3).
This plane equation is then normalised: with d′′ scaled d′′ = d′

|~n| , and a′′, b′′ and
c′′, the respective members of the normalised vector ~nu = ~n

|~n| , therefore giving us
the normalised plane equation a′′x+ b′′y + c′′z + d′′ = 0.

~n =

a
c
b
c
1

 =

a′

b′

c′

 (3.3)

The error of a point is defined as the distance D from the plane, given by
Equation (3.4). Since the normal vector ~nu is normalised, D can be simplified to
Equation (3.5).

D =
|a′′x+ b′′y + c′′z + d′′|√

a′′2 + b′′2 + c′′2
(3.4)

D = |a′′x+ b′′y + c′′z + d′′| (3.5)

Therefore the total error E across the entire plane can easily be calculated
by using Equation (3.6).

E =

n∑
i=1

∣∣a′′xi + b′′yi + c′′zi + d′′
∣∣ (3.6)

3. Method 9

3.3.2 The Growing Algorithm

With the Google Tango data parsed into a more suitable representation, we are
now able to find planes in our data sets.

The process is initiated by setting a starting point, either a randomly selected
vertex or a chosen vertex. Then a seed is built by directly adding vertices from
the neighbouring set to the plane set without any checks, until we reach a certain
size, currently set to 10 vertices. As soon as the start seed size is reached, we
calculate the first plane parameter estimation as explained above.

Having acquired the first plane estimation, we can now try to grow the plane,
according to Algorithm 2. Every plane set member is either in the bounding
box set, so potentially still has neighbours not yet in the set that might fit the
plane estimation; or they belong to the implied inside set, where every neighbour
already belongs to the plane; or it has an error big enough to eliminate it from
further consideration and therefore belongs to an out-of-bounds set.

Iterating through the neighbours in the bounding box set yields a set of
potential new vertices to add to the plane set. In the same step we can also
lazily update the bounding box set by keeping track of how many neighbours
of a vertex we are able to add to the potential new vertices set; if there are no
neighbours added at all, we can safely remove this vertex from the bounding box
set, since all of its neighbours either belong to the plane set or the out-of-bounds
set.

In a next step the vertices in the potential new vertices set are rated according
to their error/distance D from the plane and those ratings are then sorted in
ascending order. In a last step the decision on which vertices to add to the
plane set, which to keep active for later consideration and which to add to the
out-of-bounds set is made. In one grow-step only a limited amount of vertices
can be added to the plane, given by Equation (3.7). This limits the amount of
vertices added due to a bad estimation. The plane estimation is updated after
each grow-step to make sure the estimation is as accurate as possible.

lowerGrowSize = max(#verticesInP lane/10,minGrowSize)

growSize = min(lowerGrowSize,maxGrowSize)
(3.7)

The plane keeps growing until either the total error E exceeds a threshold
Emax = #verticesInP lane · allowedErrorPerV ertice, in which case the plane
is rejected, or no more vertices are found that match the criterion to be added
to the plane, which results in a valid plane. After growing, the algorithm decides
whether or not the plane is worth keeping. This is decided based on the quantity
of the included vertices; if the plane contains 1000 vertices or more, it is considered
worthwhile to optimise its vertex and triangle count, otherwise it is rejected.

3. Method 10

Function GetNeighboursOfBoundingBox():
for each vertex v in BoundingBox do

for each neighbour n of v do
if (n not in Plane) and (n not in OutOfBounds) then

set flag that v still has neighbours to potentially grow to;
add to list PotentialNewVertices;

end
end
if v has no more vertices to grow to then

remove v from BoundingBox;
end

end
return PotentialNewVertices

end
Function ChooseKBestVerticesFromList(k, PotentialNewVertices):

for each vertex v in PotentialNewVertices do
calculate error D for v;
rate v by D and add to list Rated;

end
sort Rated ascending;
for each vertex v in Rated do

if (rating(v) < allowable error) and (less than k vertices added)
then

add v to the Plane;
end
else if rating(v) > throw away boundary then

add v to OutOfBounds;
end

end
end
Function Grow(k):

PotentialNewVertices = GetNeighboursOfBoundingBox ();
ChooseKBestVerticesFromList (k, PotentialNewVertices);

end
Algorithm 2: Description of the growing step

3. Method 11

3.4 Replacing the Meshes

After finding a suitable plane, the compiled set is once again converted, this time
into a representation adequate for reduction. The main difference is that triangles
are now instances, holding references to its vertices and vice versa. However,
due to the isolated nature of the meshes acquired from Google Tango and the
requirements of the polygon reduction algorithm needing an uniform mesh, the
vertex pairs found in Algorithm 1 have to be merged into one vertex, combining
the meshes from multiple GridIndices into one consistent mesh.

Since the mesh we want to simplify is a planar surface, but probably has an
irregular edge, we keep the boundary edge as it is. Therefore we have to identify
the boundary of our mesh. This task is accomplished by Algorithm 3, using the
fact that a boundary edge is part of exactly one triangle, as defined in Section 3.1.

for each triangle in Triangle do
increase edge count for each included edge;

end
add every edge with count 1 to the boundary set;

Algorithm 3: Boundary detection algorithm

The algorithm used to reduce the polygon count is loosely based on [13], a
standard algorithm for polygon reduction. It requires each edge of the mesh to
have an assigned weight, defining the cost of collapsing it, allowing it to decide
which edges to collapse and merge its vertices into one. Merging two vertices u
and v hereby means to move vertex u to vertex v, thus allowing the algorithm
to move the inside vertices outwards, while the edge vertices remain in place.
Due to the fact that the mesh to be reduced is a flat plane, we can simplify the
cost function used to determine the cost of merging vertex u into vertex v to
Equation (3.8).

cost(u, v) =

{
maxCost u ∈ Boundary

distance(u, v) otherwise
(3.8)

With established weights for each edge the only thing remaining is to actually
merge the vertices according to Algorithm 4. While the desired vertex count is
not reached, the edge uv with the lowest weight assigned to it is found, then
the vertices u and v are merged together. Here we make use of the fact that
triangles and vertices reference each other, allowing us to quickly find the triangles
containing u. If a triangle contains the edge uv, it is removed as there would only
be two vertices remaining. Otherwise the vertex u is replaced with v. Vertex u
can now be removed from the dataset and the former neighbours of u are now
updated to be neighbours of v.

3. Method 12

while reduction possible do
find edge uv with lowest cost;
Merge (u,v);

end
Function Merge(u,v):

store neighbours of u;
for each triangle adjacent to u do

if triangle contains v as well then
remove triangle;

end
else

replace u with v in triangle;
end
remove u;
restore neighbour relationship between neighbours of u and v;
update edge costs;

end
end

Algorithm 4: Reducing the polygon count

Chapter 4

Results

This chapter shows the results obtained by running the implementation on a
laptop computer, due to the fact that the code has not yet been ported to the
Android app. The laptop has a 2.5 GHz Intel Core i7 processor, 16 GB of RAM
and provides a NVIDIA GeForce GT 750M as a graphics card.

4.1 Evaluation Setup

The data was gathered using a slightly modified version of the MeshBuilderWith-
Color example [14] app provided by Google, improving its exporting capabilities.
After scanning, the data is exported to a Wavefront .obj file [15], a simple, text-
based 3D file format. This file is then imported into the Unity desktop app,
restoring the representation used in the smartphone app to enable code sharing
over multiple platforms. Finally, the implementation is run according to Chap-
ter 3, choosing random starting points until no more planes are found during 30
seconds.

4.2 Living room

The scene explored is a living room as depicted in Figure 4.1 and Figure 4.2,
showing a photo of the scene as well as a shaded wireframe render of a similar
view in the Unity Editor. Also visible in the wireframe renders is that Google
Tango struggles with reflective and/or black surfaces such as the window, the
chairs or the table in the example.

13

4. Results 14

Figure 4.1: The living room, view 1

4. Results 15

Figure 4.2: The living room, view 2

4. Results 16

4.2.1 Quantitive Evaluation

On the smartphone, the scan process took 1:56 minutes, exporting it as an .obj
file took 3:12 minutes. The resulting file contained a total of 171,286 vertices and
845,775 triangles.

After importing the geometry into the desktop app, the algorithm detected
and reduceed planes. The results displayed in Figure 4.3 and Table 4.1. 27 planes
were detected and reduced, resulting in a reduction of 64.4 % for vertices and
78 % for triangles. The processing took 215.53 seconds or about 3 minutes and
35 seconds. Table 4.2 shows how the total time is shared between the different
processes. Note that 26.1 % of the total time is spent by the Unity runtime; a
process we have little influence on. The surprisingly long time needed to delete
vertices is explained through the fact that each GridIndex touched by the result-
ing plane needs to be visited, the corresponding vertices removed and the whole
mesh updated without destroying existing relations.

In terms of file size, before reduction the .obj file was 26996208 bytes or 25.746
MiB. After reduction the size shrank to 7027509 bytes respectively 6.702 MiB, a
73.969 % reduction in file size.

Name Before After % Reduction
Vertices 171,286 60,905 64.443 %
Triangles 845,775 185,685 78.046 %
Planes 0 27 n/a

Table 4.1: The removed vertices and triangles in numbers

Process Seconds % of Total Time
Importing geometry 4.955 2.299
Finding start vertices 0.556 0.258
Parsing Google Tango Data 38.867 18.033
Growing planes 42.569 19.751
Reducing polygon count 49.404 22.922
Deleting the original meshes 22.673 10.520
Inserting the reduced meshes 0.259 0.120
Other (Unity) 56.246 26.097

Table 4.2: Time used by the processes

4. Results 17

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

1

2

3

4

5

6

7

8
C

o
u

n
t

10
5

0

5

10

15

20

25

R
e

d
u

c
e

d
 P

la
n

e
 C

o
u

n
t

Vertex and Triangle Count Versus Reduced Plane Count over Time

Vertices

Triangles

Planes

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

10

20

30

40

50

60

70

80

90

100

C
o

u
n

t
in

%

0

5

10

15

20

25

R
e

d
u

c
e

d
 P

la
n

e
 C

o
u

n
t

Relative Vertex and Triangle Count Versus Reduced Plane Count over Time

Vertices

Triangles

Planes

Figure 4.3: Plots displaying vertex, triangle and reduced surface count over time,
the upper in absolute numbers and the lower relative to the starting count.

4. Results 18

4.2.2 Qualitative Evaluation

Figure 4.4 and Figure 4.5 show the scenery after reduction. The vertices and
triangles belonging to a recognised plane are removed and replaced with a re-
duced version, coloured uniformly across the entire plane. Most of the time the
algorithm reliably recognises planes and reduces their polygon count, however
the algorithm does not always work as expected: the door (the sea-green surface
in Figure 4.4) grew across the floor, along the plane defined by the door, thus not
only inaccurately detecting the door but also preventing the floor to be identified
as a connected surface.

Figure 4.4: The living room after reduction, view 1

4. Results 19

Figure 4.5: The living room after reduction, view 2

Chapter 5

Conclusions and Future Work

This thesis lays the foundation on reaching its eventual goal, creating an app to
easily scan an indoor environment and share the collected data. Even though this
goal has not been met in the sense that there is now an existing app, a lot progress
has been made regardlessly. The data exposed by Google Tango is acquired in an
Android app, exported to a file and imported on a desktop machine, where it is
then processed to reduce the total vertex and triangle count required to represent
a given indoor scene through the use of a set of developed algorithms.

However, there is still a lot to be done to get closer to the initial goal, in-
cluding the porting of the desktop code to the Android platform. Another task
is performance optimisation; it should be possible to use one data representation
for all the steps implemented, getting rid of the time needed to translate between
different data representations. However, with potential realtime applications in
mind, this is quite a challenge due to the fact that new, updated Google Tango
data should still be included, even if the GridIndex has already been reduced.
Furthermore, improving the used algorithms would also be worthwhile, for exam-
ple to include normal vectors to define planes to counteract misbehaviours such
as the door plane extending across the floor in Figure 4.4 or reducing shorter
boundary edge subsets which form a line into bigger edges using an improved
cost function. And finally, as this is a seed based algorithm, it suffers from the
same drawback as pretty much every other seed based algorithm: If the seed is
bad, the outcome might not be what you would expect, thus one might try to
optimise the chosen seeds or reject certain seeds.

Feature-wise there are also quite a few possible enhancements:

• Textures and UV-mapping: At the moment, the colour information ob-
tained from Google Tango is completely tied to the vertex data. Therefore,
reducing vertex count also reduces the colour information density. Using
separate textures (either acquired directly from the camera / Google Tango
framework or projected using the vertex colour information) and a corre-
sponding UV-mapping would allow the user to keep details like wallpapers
while still reducing the vertex count.

20

5. Conclusions and Future Work 21

• Normal and bump mapping: This technique allows keeping a higher level
of detail with a lower polygon count, since finer details are displayed using
special textures, in which instead of colour geometry (normal vectors or
heightmaps) is stored and then rendered by the GPU. This might allow to
depict details such as clocks or framings while keeping the polygon count
low.

• Room detection: Another potential feature would be to detect rooms. This
would not only enhance the user experience since this is how we as users
relate to rooms but also open potential optimisations, because it would
allow the app to only keep parts of the scanned geometry in memory while
currently unused parts would be loaded as needed.

• Measurements: As an addition to the last feature, it would be nice to get
room measurements directly, allowing users to relate the virtual world with
real life distances. As a supplement, it might be possible to scan existing
furniture and try to fit it in virtual reality to see whether or not something
would fit into a certain spot.

Bibliography

[1] Google: Tango developer overview. https://developers.google.com/
tango/developer-overview [Online; accessed 25-May-2017].

[2] Schöps, T., Sattler, T., Häne, C., Pollefeys, M.: 3d modeling on the go:
Interactive 3d reconstruction of large-scale scenes on mobile devices. In: 3D
Vision (3DV), 2015 International Conference on, IEEE (2015) 291–299

[3] Klingensmith, M., Dryanovski, I., Srinivasa, S., Xiao, J.: Chisel: Real time
large scale 3d reconstruction onboard a mobile device using spatially hashed
signed distance fields. In: Robotics: Science and Systems. (2015)

[4] Google: Tango 3d reconstruction library c api reference. https:
//developers.google.com/tango/apis/c/reconstruction/reference/
[Online; accessed 25-May-2017].

[5] Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: Robotics
and Automation (ICRA), 2011 IEEE International Conference on, IEEE
(2011) 1–4

[6] Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene segmen-
tation and reconstruction of 3d point cloud maps for mobile manipulation
in domestic environments. In: Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, IEEE (2009) 1–6

[7] Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d
point cloud based object maps for household environments. Robotics and
Autonomous Systems 56(11) (2008) 927–941

[8] Lenovo: Lenovophab2pro. http://shop.lenovo.com/ISS_Static/WW/
campaigns/2016/tango/images/Phab2-pic5-big.jpg [Online; accessed
25-May-2017].

[9] Unity: Unity multiplatform. https://unity3d.com/unity/multiplatform
[Online; accessed 26-May-2017].

[10] Google: Tango.tango3dreconstruction. https://developers.google.com/
tango/apis/unity/reference/class/tango/tango3-d-reconstruction
[Online; accessed 25-May-2017].

[11] Math.NET: Math.net numerics. https://github.com/mathnet/
mathnet-numerics [Online; accessed 06-June-2017].

22

https://developers.google.com/tango/developer-overview
https://developers.google.com/tango/developer-overview
https://developers.google.com/tango/apis/c/reconstruction/reference/
https://developers.google.com/tango/apis/c/reconstruction/reference/
http://shop.lenovo.com/ISS_Static/WW/campaigns/2016/tango/images/Phab2-pic5-big.jpg
http://shop.lenovo.com/ISS_Static/WW/campaigns/2016/tango/images/Phab2-pic5-big.jpg
https://unity3d.com/unity/multiplatform
https://developers.google.com/tango/apis/unity/reference/class/tango/tango3-d-reconstruction
https://developers.google.com/tango/apis/unity/reference/class/tango/tango3-d-reconstruction
https://github.com/mathnet/mathnet-numerics
https://github.com/mathnet/mathnet-numerics

Bibliography 23

[12] Google: Tango api diagram. https://developers.google.com/tango/
images/apis/APIDiagram.png [Online; accessed 25-May-2017].

[13] Melax, S.: A simple, fast, and effective polygon reduction algorithm. Game
Developer 11 (1998) 44–49

[14] Google: Project tango unitysdk examples. https://github.com/
googlesamples/tango-examples-unity [Online; accessed 06-June-2017].

[15] Wavefront: Object files (.obj). http://www.martinreddy.net/gfx/3d/
OBJ.spec [Online; accessed 06-June-2017].

https://developers.google.com/tango/images/apis/APIDiagram.png
https://developers.google.com/tango/images/apis/APIDiagram.png
https://github.com/googlesamples/tango-examples-unity
https://github.com/googlesamples/tango-examples-unity
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.martinreddy.net/gfx/3d/OBJ.spec

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Google Tango
	2.1 Application

	3 Method
	3.1 Polygonal Mesh
	3.2 Traversing Google Tango Data
	3.3 Plane Fitting
	3.3.1 Plane Equation
	3.3.2 The Growing Algorithm

	3.4 Replacing the Meshes

	4 Results
	4.1 Evaluation Setup
	4.2 Living room
	4.2.1 Quantitive Evaluation
	4.2.2 Qualitative Evaluation

	5 Conclusions and Future Work
	Bibliography

