
Institut für
Technische Informatik und
Kommunikationsnetze

Real-time network functions for the
Internet of Things

Semester Thesis

Fabian Walter

walterf@ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Romain Jacob

Prof. Dr. Lothar Thiele

June 26, 2017

mailto:Fabian Walter<walterf@ethz.ch>

Acknowledgements

I would like to thank Prof. Dr. Thiele and the TEC for enabling this thesis. I
enjoyed the educational environment and was greatly supported in my learning
process. Especially, I would thank my supervisor Romain Jacob. We had many
interesting and helpful discussions and he supported me with great passion. Last
but not least, I would also like to thank Reto Da Forno. He helped me a lot
with his knowledge about LWB, DPP and FlockLab to implement and test the
real-time network functions.

i

Abstract

The Internet of Things is evolving, more and more devices are getting connected,
more data exchanged and increasingly complex tasks are handled by these net-
works. Especially, low-power wireless communication networks are widely used
due to the flexibility and fast deployment with a battery. The networks must
be at low cost and still guarantee a long battery life time and compute a com-
plex task. The goal of this thesis is to evaluate the outsourcing of a potentially
complex task, e.g. real-time scheduling, to another processor and enable a real-
time functionality for the whole network. The goal is a proof of concepts of
the scheduler outsourcing by evaluating the implementation at the system-level,
combining hardware, scheduler and network protocol.

Many algorithms to support real-time functionalities are already developed,
but the implementation for existing low-power systems with a single processor is
difficult [1]. Low power systems with a single core are often resource limited in
memory and computational power. Multiple processors can be used to overcome
this problem, but challenges with the interprocessor communication arises. The
Dual-Processor Platform (DPP) [2] enables a partition of the tasks between a
very low-power communication processor (CP) and more powerful application
processor (AP). The CP will be used to handle wireless communication based
on the Low-power Wireless Bus (LWB) [3], which is a best-effort network pro-
tocol. The Blink scheduler [4] is used to enable the real-time functionality in
the network. The potentially complex and memory demanding Blink scheduler
is outsourced to the AP. Further, the LWB round structure is adapted, which
leverages the DPP platform and allows the computation of the next schedule
on the AP while the communication is ongoing on the CP. Therefore, the delay
for outsourcing the scheduler is becoming neglectable when the wireless network
communication has sufficient many slots per round. In the end, the limitations
like additional interprocessor communication delays are analysed and potential
improvements are evaluated.

ii

Contents

Acknowledgements i

Abstract ii

List of Acronyms vi

1 Introduction 1

2 Background and related work 3

2.1 BOLT . 3

2.2 LWB (Low-power Wireless Bus) 5

2.2.1 LWB is Glossy-based . 5

2.2.2 LWB round structure . 6

2.2.3 Limitations of LWB for real-time functionalities 8

2.3 Blink . 9

2.3.1 Basic stream parameters 9

2.3.2 Blink scheduler steps . 9

3 System design 12

3.1 Task partitioning . 12

3.1.1 Hardware specification . 12

3.1.2 Tasks overview . 14

3.1.3 Partitioning . 16

3.2 Data exchange and overview of phases in a round 18

4 Implementation 20

4.1 Data exchange . 22

4.1.1 Packets structure between CP and scheduler/ AP 22

4.1.2 Packets structure between AP and PC 23

iii

Contents iv

4.1.3 Payload structure . 23

4.2 Communication Processor . 27

4.2.1 Enable scheduling of individual streams with start time
and deadline . 27

4.2.2 Send the Data to the scheduler 29

4.2.3 Receive the Data from the scheduler 31

4.3 Application Processor . 31

4.3.1 Communication from PC to CP via AP and BOLT 32

4.3.2 Communication from CP to PC via AP and BOLT 32

4.4 Scheduler (MATLAB R© on PC) 35

4.4.1 Data structures . 36

4.4.2 Main function . 37

4.4.3 Serial functions . 38

4.4.4 Packet functions . 38

4.4.5 Stream requests . 38

4.4.6 Bucket queue . 39

4.4.7 Detect non-active streams 39

4.4.8 Host stream requests . 39

4.4.9 Timing analysis . 40

4.5 Leveraging the outsourced scheduler on the DPP 40

4.6 Optimise the round duration . 42

4.6.1 Outsourcing the schedule 42

4.6.2 LWB communication phase 43

4.6.3 Summary for constrains on tsched2 44

5 Tests and Evaluation 46

5.1 Evaluate parameters for different number of slots per round . . . 46

5.1.1 Communication between CP and AP 49

5.1.2 Delay for the communication between AP and scheduler
including computing the schedule 50

5.1.3 Handling of host stream requests and detection of non-
active streams . 54

5.1.4 Minimizing tsched2 . 56

Contents v

5.1.5 Minimal round period possible 60

5.2 Flocklab . 60

6 Conclusion and future work 65

6.1 Conclusion . 65

6.2 Future work . 66

Bibliography 67

List of Acronyms

AP Application Processor

CP Communication Processor

DPP Dual-Processor Platform

FIFO First-in First-out (buffer)

IoT Internet of Things

IPI Inter-Packet Interval (packet period)

LSB Least Significant Bit

LWB Low-power Wireless Bus

MSB Most Significant Bit

OS Operating System

PC Personal Computer

RF Radio Frequency

RTT Round-Trip Time

s-ack Stream acknowledgement

TEC Computer engineering group (Lab from ETH Zurich)

vi

List of Figures

2.1 BOLT is connecting the two processors (A and C) with two FIFO
queues.[2] . 4

2.2 Time-triggered operation in LWB. Protocol operation is confined
within communication rounds that repeat with a possibly varying
round period T (A); each round consists of a possibly varying
number of non-overlapping slots (B); each slot corresponds to a
distinct Glossy flood (C)[3]. 6

2.3 Every LWB communication round is separated in these phases. [3] 7

2.4 Multiple LWB rounds with different round periods (parts of the
figure from [3]). The processor can go into a low-power mode
when not in non-active phase. 7

2.5 LWB is best-effort and does not guarantee real-time, because the
scheduler does not consider the arrival time and deadline and the
nodes send the data packet, which is arrived earlier. 8

2.6 The different steps to compute the next scheduler with Blink [4]. 10

3.1 The outsourcing of the scheduler makes additional communication
between CP and AP necessary. 19

4.1 The scheduling function is further outsourced to a PC, which is
connected with the AP per serial communication. This setup al-
lows more debug possibilities compared to the direct implementa-
tion on the AP. 20

4.2 The packet structure for the communication between scheduler
and the CP. The ”Len” field is the payload length in bytes. . . . 22

4.3 The packet structure for the communication between AP and PC.
F is a ”Framing Byte” to define the beginning and end of a serial
connection. A ”Framing Byte” within the message is sent by
adding a ”Escape Byte” before. 23

4.4 The payload for message type HEADER REQUEST SCHEDULE. 24

4.5 The payload for message type HEADER STREAM REQUEST. . 24

4.6 The payload for message type HEADER SCHEDULE. 25

vii

LIST OF FIGURES viii

4.7 The payload for message type HEADER DELETE STREAM. . . 26

4.8 The payload for message type HEADER UNUSED SLOTS. . . . 26

4.9 The payload for message type HEADER HOST STREAM REQUEST. 27

4.10 The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size for the com-
munication from AP to CP was constant. The message size from
CP to AP was not constant and AP used polling to read BOLT.
The CP used an interrupt to read the message and the reaction
was very predictable and fast. 33

4.11 The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size of the both
communication was constant and the AP used polling to read
BOLT. The CP used an interrupt to read the message. 34

4.12 The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size for both com-
munications were constant and the AP and CP used an interrupt
to read from BOLT. 34

4.13 (a) The standard LWB round structure executed on a single pro-
cessor is sequential. (b) The adapted LWB round structure for
the DPP enables parallel computation of the schedule during the
communication of the network. The parallel execution reduces the
round length (Tl). 42

4.14 The adapted LWB round structure with the parameter names of
the different phases and slots. 43

4.15 The model for the minimum of tsched2. tsched2 min is the maximum
of the delay for the communication slots (blue) and the outsourc-
ing of the schedule (green). 45

5.1 The overall setup when the scheduler is outsourced to MATLAB R©.
The relation from communication slot together with s-ack (yellow
and orange) to the calculate schedule block (violet) is not fixed
and depends on the number of data slots per round. 47

5.2 The BOLT communication delay is measured for different number
of slots per round (see red labels). (Blue): Writing a stream
request by CP and AP reading it (see Fig. 5.1 (1a)). (Orange):
AP writing a schedule and CP reading it (see Fig. 5.1 (1b)). The
delay for the schedule depends on the schedule size, which depends
on the number of slots per round. 50

5.3 RTT of the serial communication with sending an empty schedule.
The delay has a high variance (between 111.897ms and 153.1714ms). 51

LIST OF FIGURES ix

5.4 The time for the serial communication and computation of the
schedule is shown for different number of slots per round. Comput-
ing the schedule includes an admission test for a stream request.
The delay depends on the number of slots per round. The delays
is not well predictable, because the delay has a high variance and
peaks. 52

5.5 Time for the computation of the schedule with an admission test
for a stream request with different number of slots per round. The
(violet) and (green) observations are two identical test with the
same parameters and stream requests. The peaks are at different
rounds and therefore, the peaks are caused by the OS and not by
a complex stream request. 53

5.6 The time needed by the Host CP to make debug outputs, send
the unused slots (here 20 slots), a host stream request, test the
state of one stream and put a message for this stream into the
output buffer. The time is very constant and the slight increase
after 20 rounds caused by the host is reading a data package from
the input buffer. The data packet was not sent before by another
node. 55

5.7 The time between the start of the round and when the schedule is
stored at the CP. This time is the lower bound for the parameter
tsched2. 57

5.8 Time diagram when the communication slots are longer than the
delay for the outsourcing of the scheduler. 57

5.9 The duration for AP writing to BOLT and CP reading the sched-
ule from BOLT during the execution. CP can only read BOLT
after the communication slots are over. Therefore, the values can
be used to estimate how much longer the communication slots are
compared to the delay for outsourcing the schedule, which is the
”included” safety margin for the unpredictable outsourcing of the
schedule. 59

5.10 (Left): One of the used FlockLab nodes with the DPP during
a network test. (Right): The setup on the working desk with
a notebook to flash the program and observe the serial debug
output from the host CP, the DPP host node, which is connected
via serial to the PC, and the PC is running the scheduler. 61

5.11 The value of the LED on different FlockLab nodes over time. The
red line means the LED is on, which signals the RF module is
on. The single on-impulse 0.5 s (is the used tsched2) after the first
impulse is signalling the receiving of the second schedule. All the
nodes are synchronised and participate in the flooding. 62

LIST OF FIGURES x

5.12 The CP of the node with node-ID 10 debug output from the Flock-
Lab test. The node is requesting a stream, gets the s-ack and is
sending the data with the correct IPI of 3 s (important steps
marked in green). The node worked as expected. 63

5.13 The host CP debug output from the FlockLab test. The host
is receiving multiple packets. E.g. packets from node 10 are re-
ceived every 3 s, which is the IPI of the stream from node 10
(marked green). Receiving a packet at the right time guarantees
the functionality of all previous necessary steps like synchronisa-
tion, sending a stream request, receiving a s-ack and sending the
data regarding the schedule. 64

List of Tables

3.1 The used processor on the DPP board: CP and AP. Additional
information like the different low-power modes between sleep and
active mode can be found in the data sheet(CP[5] and AP[6]). . . 13

4.1 The different payload types for the communication between CP
and scheduler. 24

4.2 An overview of the fields and sizes of a schedule packet when both
s-acks are sent and n slots are allocated. 26

4.3 The set of all active streams is stored in the ”streams” struct with
the shown fields and values for two example streams. 36

4.4 The bucket queue implemented as a matrix with two example
streams. 37

4.5 The different standard parameters for the LWB round structures.
The values are from [3] except the duration of the contention slot
was increased to the same value as the contention slot (see Fig.
4.14 a graphical view of the parameter names). 43

5.1 The number of active streams is depending on the maximum slots
per round. The scheduler is initialised with an empty set of
streams and a stream requests is arriving in every round. The
number of active streams is quickly growing to the shown value
”After initialisation” and afterwards only a few more streams got
accepted until the final value ”After 30 min”. Therefore, the util-
isation was constantly high and the computation of the schedule
was made complex. 49

5.2 Values for tsched2 for different slots per round is estimated by in-
cluding a safety margin for the unpredictable delay for the out-
sourced scheduler. The ”included” safety margin (minimal value
from Fig. 5.9) is considered for the estimation. 59

5.3 The minimal round period possible depending on the number of
slots per round. 60

xi

Chapter 1

Introduction

The Internet of Things (IoT) is one of the technological trends of the last years.
More and more devices are integrated into networks, exchange information and
additional services are enabled by using the collected information. The usability
of IoT is very versatile and therefore the requirements for such network are also
very variable. The focus for this thesis is enabling a real-time functionality in
a low-power wireless network by outsourcing the potentially complex scheduling
task.

Challenges

Low energy consumption is often an important requirement. Battery operation
in combination with wireless communication enables easier deployment and more
flexibility, but has limited capacity. The financial resources might be limited and
a low price is desirable as well. On the other hand, more and more complex tasks
should be executed in these low-power and low-cost networks to enable better and
broader services. Low-power, low-cost, and complex functionality are conflicting
requirements. The major challenge is to find a energy and price efficient solution,
which is still capable to perform complex tasks.

DPP enables new prospects

One possible solution is to use more than one processor. Multiple processors
enable new prospects, but have also some challenges like the exchanging of in-
formation between the processors. Researchers from ETH Zürich developed a
stateful process interconnection called BOLT [2] (see section 2.1). A very low-
power processor with RF (Radio Frequency) is combined with a more powerful
processor to benefit from the symbiosis. The resulting hardware is called the
DPP.

1

1. Introduction 2

Real-time network function on a DPP?

Real-time network functions can become very complex as the tasks must be com-
pleted within a strict deadline. If more tasks must be completed within the same
deadline, an increased complexity must be handled without the increase of avail-
able time. The shorter the deadline, the bigger the computational complexity
per time unit. A real-time network function can for example be the schedul-
ing of task processing or packet sending. Scheduling more tasks/packets and
scheduling faster both increase the complexity of the network functionality. The
Blink scheduler provides real-time guarantees for wireless communication. An
implementation of Blink on a low-power communication processor was realized
by J. Acevedo [1]. However, it was limited to a handful of streams to schedule,
because the memory and computational requirements were to high for such a
low-power and low-price single processor platform. The DPP can be a way to
overcome these limitations.

Thesis outline

Additionally to BOLT and Blink, a communication protocol is needed to en-
able a real-time network functionality. The implementation described later is
strongly based on the LWB (Low-power Wireless Bus) [3], because it is energy
efficient, simple and provides a good base for adaptation. A goal of the the-
sis is to show how the DPP can be leveraged in a low-power wireless network
to enable a real-time functionality and gauge the potential benefits, like faster
computation, energy saving or the parallel execution of tasks. This comes at the
cost of latency for communication between the two processors and an increase
of complexity for the message exchange. The additional inter-processor latency
can be significantly reduced by adapting the LWB round structure. This allows
a parallel computation of the scheduler on the AP while the wireless network
communication is ongoing on the CP. The delay for outsourcing the scheduler is
becoming neglectable when the wireless network communication is longer than
the outsourcing delay. This is possible, because the wireless communication time
is faster increasing with the increase of slots per round than the computation of
the schedule is.

The steps towards the real-time functionality are described thereafter. A
general overview about BOLT, Blink and LWB is given in chapter 2. The system
design is explained in chapter 3. Chapter 4 is used to explain the implementation
of the combination of BOLT, Blink and LWB on the DPP. The evaluation is made
in chapter 5 and the thesis ends with a conclusion and a short discussion about
the future work in chapter 6.

Chapter 2

Background and related work

Real-time functionality in a low-power wireless network requires multiple com-
ponents. This chapter gives an overview about the technologies and methods
this work is based on. First, the Dual-Processor Platform (DPP) with BOLT
is explained to know what the hardware allows us to do. The second section is
about the Blink scheduler and how the scheduler enables a real-time function
by scheduling when data packets are sent. The final section in the chapter ex-
plains the basics of LWB and why it is a reliable and energy efficient protocol
for low-power wireless network.

2.1 BOLT

BOLT is a stateful processor interconnetion that enables the communication be-
tween two arbitrary processors. This section further explains the hardware setup
and is a summary of the publication about BOLT [2].

BOLT is a processor on its own that provides the functionality of exchang-
ing data. BOLT is the interconnection between processor A and C (depicted in
Fig. 2.1). Two virtual FIFO (First-In First-Out) queues are emulated in non-
volatile memory to store the data packets. The output FIFO buffer of A is the
Input buffer of C and vice-versa. Each processor has an BOLT API (Applica-
tion programming interface) to control the message exchange with the following
functions:

• wtest(): The write-test function returns true when the queue is not full
and a write is possible. wtest() is handled by the Message Controller of
BOLT.

• write(): The write function writes the message into the queue when not
already full.

3

2. Background and related work 4

• rtest(): The test-read function returns true when the buffer is not empty
and a message can be read. rtest() is handled by the Message Controller
only.

• read(): The read function requests the oldest message from the input-
buffer from the Message Controller. The data is afterwards read from the
data line.

• flush(): The flush functions gives the Message Controller the task to
empty the input-buffer, which can be used to prevent a buffer overflow.

Figure 2.1: BOLT is connecting the two processors (A and C) with two FIFO
queues.[2]

The whole communication can be completely decoupled in time as the com-
munication is asynchronous and the two processors can have different clock
speeds. Further more, a processor can write into the queue (when not full)
even when the other processor is in sleep mode or busy. A processor can pe-
riodically check for a new message and sleep in between to reduce the power
consumption. Additionally, a non-empty FIFO buffer is signalled with a control
line to be high. This control line can also be used to trigger an interrupt when
data is available.

BOLT is a general concept and the two processors can be chosen regarding
the application specific requirements. The later used hardware with the major
specification is shown in Tab. 3.1. The chosen processor combination has the
following benefits:

• An extremely low power-processor with a radio to handle the wireless
communication and some basic computations efficiently. This processor
is called CP (Communication Processor).

• A less energy efficient processor with more computational power and mem-
ory resources. This processor is called AP (Application Processor). AP is
used for the more complex tasks.

2. Background and related work 5

• The energy consumption can be minimised by letting the currently unused
processor(s) sleep.

• AP enables the node to execute complex tasks, which would not be possible
on the low-power CP.

• BOLT functions are time-bound and enable a deterministic communica-
tion.

More details about BOLT, an analysis of the timing and the proof of the
functional correctness can be found in [2].

2.2 LWB (Low-power Wireless Bus)

LWB is a time-triggered best-effort communication protocol to handle wireless
communication efficiently in low-power networks. LWB is stream-based and
globally schedules the streams. Each stream represents a data packet, which is
sent with a period defined by the IPI (Inter-Packet interval). The LWB was
already implemented on a CC430 (with a MSP430 processor) node and the code
is publicly available on GitHub1. The code on GitHub is the basic for the im-
plementation explained in chapter 4 and is also used to understand the commu-
nication protocol. The informations about LWB are from [3].

2.2.1 LWB is Glossy-based

LWB is a based on Glossy [7]. Glossy is flooding-based and enables a multi-hop
communication. If a node receives a packet, it checks the receiver of the packet
in the header and has multiple options to do:

• If the destination-ID is the node-ID, put the message into the input buffer.
The message can be used in the application routine of the node by reading
the buffer.

• If the node is not the sole destination and the data packet has not had the
maximum number of hops, send the message to all neighbours by broad-
casting it.

It is called a flooding protocol, because the data packets ”flood” the network
in hopes and waves (see Fig. 2.2 (C)). The flooding mechanism is the opposite of
routing, because data packets are sent to all neighbours. Glossy is highly reliable
and flexible, because when a route is in the network, the packet will be received

1www.github.com/ETHZ-TEC/LWB

www.github.com/ETHZ-TEC/LWB

2. Background and related work 6

Figure 2.2: Time-triggered operation in LWB. Protocol operation is confined
within communication rounds that repeat with a possibly varying round period
T (A); each round consists of a possibly varying number of non-overlapping slots
(B); each slot corresponds to a distinct Glossy flood (C)[3].

by the receiver. Additionally, the protocol makes it needless to send routing
information and detect link or node failures. The nodes are also synchronised
and therefore the packet reception rate is further increased, because the same
data packet might be sent by multiple nodes at the same time and positive
interference increases the Signal-to-noise ratio (SNR). Additionally, the protocol
is less complex as no routing information have to be sent and stored. Glossy also
allows multiple traffic pattern like one-to-one, one-to-many or many-to-one and
many-to-many as eventually every packet is flooded in the whole network. LWB
is as a consequence like a bus for the application running on the processor.

2.2.2 LWB round structure

LWB communication is based on a structure with rounds and phases. The com-
munication rounds have different round periods. An example of multiple com-
munication rounds is shown in Fig. 2.2 (A). A round has multiple data slots
(depicted in Fig. 2.2 (B)). One data packet is sent in every slot and the data
packet floods the whole network during this slot (see Fig. 2.2 (C)).

The communication is globally scheduled by the host node and distributed
at the beginning of a round (see Fig. 2.3). The host node and (source) nodes
can communicate with each other. The different phases are shown in Fig. 2.3.

The round can have different round periods and number of data slots. The
nodes usually are in sleep mode from the end of round k until the beginning of
the execution of the round k (see Fig. 2.4).

2. Background and related work 7

Figure 2.3: Every LWB communication round is separated in these phases. [3]

Figure 2.4: Multiple LWB rounds with different round periods (parts of the figure
from [3]). The processor can go into a low-power mode when not in non-active
phase.

The different phases and functionalities are:

• Schedule: The current schedule is sent by the host to allocate the data
slots to the nodes. The schedule is also used to synchronise the whole
network and give the round period.

• Data: The node checks if the current slot is assigned to its node-ID and
sends its packet from the output buffer if so. Otherwise, the nodes follows
the Glossy rules and helps to flood the packets.

• Contention: The contention slot is used to send stream requests and
register new streams. It is random access and multiple stream requests
from different node are possible to collide, but the Capture Effect[8] makes
it very likely that one of the requests are received by the host.

• Computation of new schedule: The schedule is computed at the host
by considering all registered streams and the potentially new arrived stream
request.

• New schedule: The newly calculated schedule is sent at the end of the
round. Afterwards, the node can go into sleep mode until the execution of
the round starts.

The schedule of round k is sent at the end of round k − 1 and at the beginning
of round k. This redundancy is applied, because it is fundamental important to
synchronise the network with the scheduler packet and an unreceived scheduler
would lead to a node not participating in the round and goes in the unsynchro-
nized state.

2. Background and related work 8

Energy consumption A node initialized into the unsynchronized state after
start up or goes into the unsynchronized state after a schedule packet miss. The
radio is kept on to get the next scheduler packet, which is sent at an unknown
time. Such a wait for a scheduler is energy inefficient as the radio must be on
until a maximum waiting time is over. Every schedule is sent twice to avoid such
a scenario.

The maximum number of data slots per LWB round is a fixed parameter and
the radio active time per round is independent of the round duration. Reducing
the energy consumption is therefore achieved by setting the round periods as
high as possible without violating the allocation streams according to the round
times of the streams.

2.2.3 Limitations of LWB for real-time functionalities

The standard LWB scheduler is trading complexity, latency and low-power and
schedules the streams periodically. Although, only the period of a stream is de-
fined with the IPI (Inter-packet interval) and used for the scheduling of streams.
If multiple data packets are available on a node, the earliest one in the FIFO out-
put buffer is sent at the next slot assigned to the node. As an example (see Fig.
2.5): A stream r allows a high latency at the receiver and arrives at Tr. Another
stream g has a smaller allowed latency and the stream arrives at Tg. The node
gets a slot assigned at time T . The packet of the stream r is sent in a scenario,
where Tr < Tg < T . The stream g has to be sent at the next assigned slot and
might have a too high latency while the stream r could have afforded a longer
latency. Therefore, the LWB by itself does not provide a real-time functionality
and another scheduling technique is needed.

Figure 2.5: LWB is best-effort and does not guarantee real-time, because the
scheduler does not consider the arrival time and deadline and the nodes send the
data packet, which is arrived earlier.

2. Background and related work 9

2.3 Blink

The standard LWB scheduler is limited and does not enable a real-time func-
tionality. Therefore, Blink is used to schedule the wireless communication of
data packets and enable a real-time functionality with deadlines. Blink is also
very adaptive to traffic demands changing over time and new streams can be
requested. This section is based on the explaination and evaluation from [4].

2.3.1 Basic stream parameters

Every node can register multiple streams by sending a stream request to the
scheduler. Each stream has the following properties that are used to schedule
the stream:

• IPI: Inter-packet interval is the period of the stream.

• Arrival-time: The arrival-time defines when a packet is available to send.
The arrival time can be defined as relative or absolute.

• Deadline: The deadline defines the time when the data packet must be
received by the receiver. The deadline can be defined relative or absolute.

• Node-ID: The node-ID is globally unique and specifies each device.

• Stream-ID: The Stream-ID is given by the node itself. The Node-ID and
the Stream-ID are both used to uniquely define a stream.

Mind that the scheduler does not have to care about which node is the
receiver, because LWB is based on Glossy and just floods the packet with the
receiver-ID in the header of the packet. The receiver(s) can just read the header
and put the packet into the input buffer or flood it further.

2.3.2 Blink scheduler steps

The goal of Blink is to fulfil all deadlines and doing so as energy efficient as
possible. The computation of the schedule is done in multiple phases, which are
depicted in Fig. 2.6 and explained in the following subsections.

If not a new stream request arrived at the host, the first two steps can be
bypassed as the synchronous busy period stays the same and no stream must be
tested for admission. The information in the next sections is just for an overview
and more detailed information can be found in [4].

2. Background and related work 10

Figure 2.6: The different steps to compute the next scheduler with Blink [4].

Compute synchronous busy period

The synchronous busy period is the time from when all streams get active in the
same moment until no stream has to be handled. It defines the time a scheduler
must look into the future to test if the requested stream does not lead to deadline
misses. The synchronous busy time can be computed with the formulas 2.1 to 2.3

Variable definition: n is the number of tasks, Ci is the time to handle task i
(considering Blink: it is one slot for every task/data packet) and Ti is the period
(IPI) of task i.

T
(0)
b =

n∑
i=1

Ci (2.1)

T
(i+1)
b = W (T

(i)
b) (2.2)

W (t) =
n∑

i=1

d t
Ti
eCi (2.3)

First, all streams are active and the time T
(0)
b is calculated, which is the time

to serve all streams once. Some streams might have become (multiple times)

active again, because there period (IPI) is shorter than T
(i)
b . All these reactive

streams must be handled again and T
(i)
b gets updated until T

(i)
b = T

(i+1)
b . This

time is the synchronous busy time. The synchronous busy time is in other words
the time until no task has to be handled after all task arrived at the same time.[9]

Admission test

The admission test controls if all streams are still schedulable when the new
stream request is accepted. It has to be checked that at every time until the
synchronous busy time, all required streams can be allocated without a deadline
miss. If the admission fails, the stream will be dropped.

2. Background and related work 11

Compute start of next round

The next round should start as late as possible, because the processor can sleep
until the execution of the next round starts. Multiple ways to schedule the
streams are possible. It was proven that a Lazy scheduler is optimal regarding
the energy consumption in [4]. The Lazy scheduler allocates the streams as late
as possible and the time before can be used to sleep by the processor. Although,
the time can not be too late, because the future stream deadlines must be fulfilled
as well.

Slot allocation

Allocating the slots is rather easy after the starting time is calculated. Slot
allocation is done with EDF (earliest deadline first) prioritization. EDF is proven
to be real-time optimal. Additionally, as many streams as possible are allocated.
This means a stream is allocated if it is released and no more slots are assigned
as the maximum slots per round. Not assigning a slot, when active streams are
available, can make the next round start sooner and wastes resources.

Efficient software implementation

All the streams are located in a bucket queue with size twice the longest period.
The streams are sorted by increasing deadline. The next deadline can efficiently
found by looking at the first stream in the queue, which has the earliest deadline.

Chapter 3

System design

The Dual-Processor Platform (DPP) with BOLT as an interconnection enables
different possibility to partition the tasks between the processors. This chapter
explains why it is reasonable to outsource the scheduling task to a processor
with more memory and computational resources. The outsourcing of the tasks
makes it necessary to send the network information to the scheduler and the
schedule from the scheduler back to the network. This chapter also discusses
what information must be exchanged and when.

3.1 Task partitioning

BOLT enables a task partitioning between two processors with arbitrary different
specifications. The TEC lab, from ETH Zürich, developed the DPP with a very
general suitable CP and AP and connecting the two processors with BOLT. First,
the available hardware is analysed and the possibilities of each processor are
evaluated. As a second step, the requirements of the different tasks are observed.
Afterwards, the information of the tasks and hardware is used to partition the
individual tasks onto the two processors. It is important to consider and weight
the introduced latency and complexity by the interprocessor communication with
the benefits of the outsourcing.

3.1.1 Hardware specification

An overview about the possibilities of the three hardware units CP, AP and
BOLT is given in this section. The overview is later used to evaluate which
processor is most suitable for which tasks.

Communication Processor The specifications for the CP is shown in Tab.
3.1. The available memory resources of the processor can be limiting for memory
hungry applications. The processor is actually a System-on-Chip (SoC) and has

12

3. System design 13

CP AP

Processor Name CC430F5147 SoC with RF MSP432P401R

Max frequency 20 MHz 48 MHz

SRAM 4 kB 64 kB

Flash 32 kB 256 kB

Processor Typ ARM 16 Bit ARM 32 Bit
Cortex M0 (RISC) Cortex M4F

Active energy 160 pA/MHz 80 pA/MHz
consumption

Sleep mode 1 pA 25 nA

Timers 2 2

System-on-Chip with
Additional low-power wireless Floating point unit (FPU),
features communication, multiple low energy

multiple low energy consumption levels
consumption levels

Table 3.1: The used processor on the DPP board: CP and AP. Additional
information like the different low-power modes between sleep and active mode
can be found in the data sheet(CP[5] and AP[6]).

a radio frequency (RF) interface for wireless communication directly integrated.
The chip has also multiple energy consumption levels between active and sleep
mode and can switch during the rounds to safe energy.

Application Processor The specifications of the AP is shown in Tab. 3.1.
The memory and computational resources are less limiting and the AP can be
used for more complex tasks. The AP has also multiple energy consumption
levels between the active and sleep mode and can switch during the rounds to
safe energy.

BOLT processor BOLT has evaluated maximal delays for read only, write
only and read&write. The timing for this implementation will be tested in chap-
ter 5. The maximum size of a single message can be chosen by the programmer.
As an example, each buffer can store 148 messages when the maximum message
size is 128 B. The energy consumption when active is lower than the sleep energy
consumption of the AP. Additional information about timing, energy consump-
tion and the available slots depending on the maximum messages sizes can be
found in [2].

3. System design 14

3.1.2 Tasks overview

An overview about the different tasks, regarding how complex in the sense of
computational and storage demand, is given in this section. The information is
used to make the task partitioning in 3.1.3.

Network protocol and communication The network protocol of LWB is
already implemented on the CC430 (see 2.2) and the computational and mem-
ory demand can be estimated directly from the code. Although some changes
to the protocol are necessary (see chapter 4). The changes should not increase
the complexity significantly. The protocol itself handles the preparation of the
messages, sending via the RF interface, receiving messages and handle the re-
ceived stream requests. The program has a linear flow and before every slot, the
processor has to wait until the specific slot begins and sends/receives the packet
at time specified by the scheduler. The following tasks must be handled by the
host:

• Sending the schedule: The schedule must be received from the scheduler
(AP), encoded and sent. The length of the schedule is upper-bounded by
the maximum number of data slots per round.

• Sending and receiving data: The LWB protocol handles the commu-
nication and sends packets from a buffer when the communication slot is
assigned to the host. Otherwise, the host participates in the flooding of
received data following the Glossy rules.

• Receiving stream requests in the contention slot: At most one
stream request is received during the contention slot. The message is short
(IPI, start-time, deadline, Node-ID and Stream-ID). The stream request
must be forwarded to the scheduler (AP) when scheduling in not done by
the host (CP).

The source nodes have similar tasks:

• Receiving the schedule: The schedule must be received, stored and
the times must be used to start sending/receiving data at the right times.
The maximum storage needed is limited, because the slots per round are
bounded.

• Sending and receiving data: The sending and receiving of the data is
exactly the same as for the host.

• Preparing and sending stream requests in contention slot: The re-
quest are only a few bytes (IPI, start-time, deadline, Node-ID and Stream-
ID) and can be encoded quickly.

3. System design 15

Generally, the communication protocol needs only a low amount of memory
and computational resources. The memory requirements are growing with the
streams, which the node wants to send and receive. All the other network traffic
is just received and forwarded. Therefore, even for a large network with many
streams, the memory needed is limited. The computational resources are also
limited, because the sending/receiving of a single data packets has always the
same duration. This means if 10 times as much streams are sent, 10 times as much
time is available for the sending of the data by the RF chip and the processor
has more time to process the buffers. Additionally, the final protocol will be very
similar to LWB, which is already implemented on the CC430 with very limited
resources. Furthermore, the standard LWB does handle the network protocol
and even a very basic scheduler on the host. The tasks should be executable on
the CP (also a CC430).

Scheduling The different scheduling subtasks use different information from
the network and need a different amount of computational and memory resources.
The different subtasks are analysed in this section.

The Blink scheduler was already implemented on MATLAB R© for simulation
only. The code was analysed and the following perceptions can be made:

• The storage requirements for the streams is growing with the number of
streams in the network.

• The allocation of the streams in the scheduled round is very efficient with
the bucket queue. Especially, the computational demands are low. The
accessing of memory to get the bucket queue information might become
problematic for a big set of streams.

• Calculating the synchronous busy time is becoming more complex when the
number of streams is increasing. The synchronous busy time is calculated
with the formulas 2.1 to 2.3. The synchronous busy time increases in steps
when a stream is added to the existing set of streams. The increase of the
synchronous busy time depends on the existing set of streams and the new
stream request. A prediction of the complexity is difficult to make, because
the formula is iterative. Therefore, it is also difficult to upper-bound the
complexity.1

• The admission test needs the synchronous busy time and checks if the new
set of streams is still schedulable. The admission test has to check for
deadline misses up to the synchronous busy time plus the maximum round

1The computation of the synchronous busy time can be influenced by setting the maximum
utilisation lower.

3. System design 16

period.2 The complexity increases with the increase of the synchronous
busy time, which is iteratively computed.

• The scheduler complexity is depending on the maximum round period, the
maximum number of slots per round and the maximum number of streams
in the network (maximum number of nodes in the network multiplied with
the maximum number of streams per node). Generally, the allocation of
the slots for a round can be done computationally efficient with the bucket
queue.

The LWB code has already a very basic scheduler. The scheduler has additional
functions to make the protocol more efficient and reliable.

• The scheduler also detects streams, which do not use there allocated com-
munication slots, and removes these streams from the set of all active
streams. Non-active streams can happen when for example a node’s bat-
tery is empty or the node is moved out of the networks reachability. The
implementation in LWB counts the unused slots in a row and deletes the
stream when the number is above a specified threshold.

• The source nodes compete for a single contention slot per round and multi-
ple source nodes might send a stream request to the host/scheduler. Mul-
tiple source nodes might not know if there stream request was received and
if there stream request was accepted. Therefore, LWB sends a stream ac-
knowledgement (s-ack) when a stream passes the admission tests and will
be scheduled in the future rounds.

3.1.3 Partitioning

The goal of the partitioning is to find an allocation of the task to the processors,
which allows a small latency for new streams, small IPI, short deadlines and is
still suitable for a low-power wireless network.

RF Communication The RF communication tasks must be handled by the
CP, because CP is a SoC with RF capabilities. The sending and receiving of
packets are already implemented for the CC430 and it should not be necessary
to adapt the low-level part.

2The maximum round period is used to limit the clock drift during waiting in the non-active
part of the round.

3. System design 17

Scheduling The schedule can become potentially very complex. Especially,
the admission test and the calculation of the synchronous busy time with the
formulas 2.1 to 2.3. The work done by J. Acevedo [1] shows how complex the
scheduling can become for a low-power platform. He was able to schedule a
handful of streams. He proposed techniques to improve the memory access and
enable the scheduling of more streams, but was not able to test it. This limita-
tions can be overcome by outsourcing the scheduling to the more powerful AP.
The outsourcing leads to additional interprocessor communication. The sched-
uler (AP) has to send the schedule to the CP and is also responsible to send the
s-ack to the CP, which sends the s-ack into the network.

The detection of non-active streams is a task with low computational de-
mands, but the counters for the unused slots must be stored. The whole set of
streams are stored on the AP. If the CP would detect the unused slots, CP must
store a counter for each stream and send a message to the scheduler (AP) when
one counter reached the threshold. Outsourcing the non-active stream detection
would further relieve the CP and the AP can easily handle the counting directly
where the streams are stored. The additional communication needed is regarded
a small overhead compared with the CP must have to store information about
all the streams in the network. Therefore, the outsourcing of the detection of
non-active streams was chosen.

Communication Protocol (adapted LWB) The protocol was already im-
plemented on a CC430 processor and the CP is capable to handle the protocol.
The LWB protocol will be changed, but a drastic increase in complexity is not ex-
pected. The question is: Would it be possible and reasonable to outsource (parts
of) the protocol to the AP and can it improve the overall performance? AP would
be capable to execute the protocol faster, but the sending is time-triggered and
an outsourcing would only lead to an increase in interprocessor communication,
which can be slow. There is no benefit of outsourcing it, because the communi-
cation protocol is mostly only waiting for a slot to start and reading or writing
buffers from/to the wireless communication chip. The read and writes would
only take longer when the interprocessor communication is needed. Therefore,
there is no benefit in outsourcing the communication protocol to the AP. The
protocol is directly executed on the energy efficient CP.

Summary of partition The evaluation of task complexity and hardware ca-
pabilities showed the outsourcing of the scheduling is necessary and very rea-
sonable. This was already expected at the beginning, but considering multiple
possibilities was needed to find the drawbacks of the different choices, see the
additional interprocessor communication demands (in section 3.2) and the po-
tential problems of the implementation (in chapter 4). Generally, everything,

3. System design 18

which is considering the storage of streams, acceptance of new streams, deleting
of non-active streams and the computation of the schedule is outsourced to the
AP. Additionally, the outsourcing enables new prospects to use parallel execu-
tion, which can be used to reduce the minimum achievable round period or at
least overcome the communication delays (see chapter 4 for the implementation
and 5 for the evaluation).

3.2 Data exchange and overview of phases in a round

The outsourcing of the scheduling task makes it necessary to distinguish the
CP and the AP from the host. CPHost and APHost are now together the
host and incorporate to deliver the host network functions. The CP sends the
stream/schedule request to the AP and AP sends the computed schedule to CP.

The round structure is still the same as in LWB, but additional exchange of
information is necessary. The round structure with the passing of messages is
depicted in Fig. 3.1. The schedule and s-ack, which are sent at the beginning of
round k, were computed in round k − 1. The schedule of the current round and
the s-ack for the stream request from the last round are sent from the CP and
floods the network. Afterwards, the nodes and the host can send data when they
get slots assigned by the scheduler. The contention slot is used to send stream
requests. CPHost has to forward the stream request and the APHost makes the
admission test, updates the stream list, manages the bucket list, computes the
schedule and sends the schedule to the CPHost. The new schedule (k+1) is send
at the end of the round.

The theory about the LWB does not include a ”Manage streams” phase in
the LWB round (shown in blue in Fig. 3.1). All the slots and phases of the LWB
round are strictly time-driven and there is no time for checking the state of a
stream and putting messages into the output buffer for active streams, because
this would delay the timing. Checking the state of the streams and putting
messages into the output buffer is done in the ”Manage streams” phase by all
nodes. Additionally, the CPHost uses this time to send a message with all un-
used communication slots, which are used to detect non active streams by the
scheduler. The CPHost can also directly send a host stream request in this phase.

It is fundamental to ensure the start of the next round is on time and the
execution of the managing stream functions is finished, because the node will
lose synchronisation with the network otherwise.

3. System design 19

Figure 3.1: The outsourcing of the scheduler makes additional communication
between CP and AP necessary.

Chapter 4

Implementation

After the partitioning and the evaluation of the interprocessor message exchange
in the previous chapter, the tasks have to be implemented. Many functions are
already available as for example the LWB code and the basic Blink for simula-
tions on MATLAB R©, but some fundamental changes are necessary. Each section
in this chapter is considering the implementations for one processor. The sched-
uler is first implemented on a personal computer (PC) in MATLAB R© to show
the feasibility of the outsourcing and use the wide debug and testing possibilities.
The schedule is sent from the PC with serial to the AP and the AP sends it to
the CP via BOLT. The schedule/stream requests are sent from the scheduler to
the CP via AP and BOLT. The setup with CP, BOLT, AP and PC is shown in
Fig. 4.1.

Figure 4.1: The scheduling function is further outsourced to a PC, which is
connected with the AP per serial communication. This setup allows more debug
possibilities compared to the direct implementation on the AP.

This chapter also focuses on the debugging and testing of specific function-
alities. The existing code is distributed over tens of sources files and multiple
thousand lines of code. Changing and adding code must be verified well be-
fore the next functionality is implemented, because searching a bug on multiple
platforms with each tens of source files can be very tedious. The code is tested
with some mini-software testbed or by setting up scenarios and observe the serial

20

4. Implementation 21

outputs.

Additionally, the LWB is time triggered and the executed commands between
the phases can not have a longer execution time than defined in the configuration.
The implementations in this chapters are tested with a standard setup, which
has enough spare time. This enables the separation of checking the functionality
and optimising the parameters (see also chapter 5 for the different parameters
evaluated).

An overview about the implemented functions is given in the next sections
and more details can be found in the project repository with the source files and
comments. The most changes and implementations have been done for the CP
code. The most important source files for the CP are:

• core/net/scheduler/sched outsource.c The most scheduling related
functions are implemented in this file. The functions are used to out-
source the scheduler by sending the network information to the scheduler
and receiving the schedule from the scheduler.

• core/net/scheduler/lwb.c The LWB round structure is implemented in
this file. The functions and Macros for the wireless communication are
implemented in this file and its header file. ”wait until” functions are used
to wait until the next slot or LWB round phase start and used to trigger
the functions to send or receive data. This file includes a separate function
for the host and source nodes.

• apps/sched outsource/config.h Most of the LWB protocol related def-
initions and parameters are defined in this file.

• apps/sched outsource/defines outsource sched.h This header file was
added to have a central header file with all definitions and parameters con-
sidering the outsourcing of the schedule. Many code structure were imple-
mented to switch between different implementations by using defines and
”#if”. E.g. the LWB round structure can be changed by changing the
boolean value of the define
”CONTENTION BEFORE COMMUNICATION AND SACK”. Other de-
fines can turn of the detection of unused slots or enable a debug mode,
which emulates stream requests without a connection to source nodes.

First, the information needed by the scheduler is analysed to define the com-
munication packets and interfaces of each task. Afterwards, the changes in the
LWB protocols are explained. The next section is about the tasks of the AP
and afterwards, the changes on the Blink scheduler simulation on MATLAB R©

software is explained. Finally, all individual implementations are considered to
find methods, which leverage the outsourcing of the scheduling task.

4. Implementation 22

4.1 Data exchange

The data is exchanged over BOLT or the a serial connection. Both connections
have different characteristics and need different packet structures, which are
explained in this section.

4.1.1 Packets structure between CP and scheduler/ AP

CP and AP communicate over the highly reliable BOLT. A very short and effi-
cient packet is implemented (shown in Fig. 4.2). The first field is the Source-ID
of the sender. Currently, it is not checked, but the AP could also get data
packet from another node in the network when additional functionalities are im-
plemented. BOLT can not give an exact length of the packet1 and a field with
the payload length in bytes must be specified (shown as ”Len” in the Fig. 4.2).
The field ”Type” is used to define the payload. Potential payload types can e.g.
be a schedule packet or a stream request packet. The payload includes the actual
data. The CRC16 is a cyclic redundancy check code with 16 bits to detect and
correct bit errors. The CRC16 field is currently sent, but not used. It could be
used when a less reliable interconnection is used or the serial communication has
a non-zero bit error rate.

Figure 4.2: The packet structure for the communication between scheduler and
the CP. The ”Len” field is the payload length in bytes.

The maximum BOLT message size is a define in the AP and CP code. It
is currently set to 256 Byte, because the overhead in decoding a message in
multiple packets can be saved. If a packet should be greater than 256 Byte, a
”packet-ID”2 must be added. A packet over 256 Byte is rather unlikely, because
scheduling packets are the longest packets and a scheduling packet must have
over 80 allocated slots in a single round to reach the size of 256 Byte (see section
4.1.3).

1The BOLT processor runs on different clock speeds than the other two processors. BOLT
signals the end of the message by changing a control line, which might be a few clock cycles
slower than the processor reading.

2Additionally, the ”Source-ID” or parts of the ”Type” field could be reused for the ”packet-
ID”.

4. Implementation 23

4.1.2 Packets structure between AP and PC

The packet exchanged over the serial connection between the AP and the PC
has the structure depicted in Fig. 4.3. The ”F” is for the ”Framing Byte”,
which is used to detect a beginning and the end of a message. If a ”Framing
Byte” is in the actual message, a ”Escape Byte” is sent before the ”Framing
Byte”. A ”Escape Byte” in the message is encoded as two ”Escape Bytes”. The
CRC32 is a cyclic redundancy check code with 32 bits. It can be used when the
serial connection is unreliable to detect and correct bit errors. The CRC32 is
currently not used. The ”packet-ID” can be used to numerate multiple packet.
The ”Framing Byte” is defined as 127 (0x7F) and the ”Escape Byte” as 126
(Ox80).

Figure 4.3: The packet structure for the communication between AP and PC. F
is a ”Framing Byte” to define the beginning and end of a serial connection. A
”Framing Byte” within the message is sent by adding a ”Escape Byte” before.

4.1.3 Payload structure

This section describes what the payload encodes and why some design choices
have been made. The general goal was to make the communication flexible,
efficient in message size and also efficient for debugging.

Payload for packets between AP and PC The payload for the packet
sent between the AP and the PC is the packet exchange between the CP and
scheduler (shown in Fig. 4.2). The AP can get the payload out of the packet
from the PC and send it directly via BOLT to the CP. Additional, the same
packet structure can later be used when the AP performs the scheduler tasks.

Payload for packets between CP and scheduler The encoded data in the
”payload” field depends on the ”Type” field from Fig. 4.2. All the payload types
are shown in Tab. 4.1 and explained in the next paragraphs.

HEADER REQUEST SCHEDULE The CP requests the next sched-
uler with payload shown in Fig. 4.4. The included TimeCP is the system time
of the CP when the message was sent. The time is not used for operation, but
for debugging analysis of the evolution of the CP time. This message type is

4. Implementation 24

Payload type Value

HEADER REQUEST SCHEDULE 1 (0x01)

HEADER STREAM REQUEST 2 (0x02)

HEADER SCHEDULE 3 (0x03)

HEADER DELETE STREAM 4 (0x04)

HEADER UNUSED SLOTS 16 (0x10)

HEADER HOST STREAM REQUEST 18 (0x12)

Table 4.1: The different payload types for the communication between CP and
scheduler.

sent when the contention slot was unused and no stream request arrived in the
actual round.

Figure 4.4: The payload for message type HEADER REQUEST SCHEDULE.

HEADER STREAM REQUEST The message with the type stream
request sends the stream request from the contention slot to the scheduler, which
makes the admission tests and eventually adds the stream to the list of active
streams. Additionally, the message also requests the schedule. The payload is
encoded with the Node-ID and Stream-ID from the requested stream. Addition-
ally, the IPI, start time and deadline are in the payload. The start time was
chosen to be relative to the beginning of the round in which the stream request
was received. The deadline is relative to the start time and must be smaller than
the IPI. A node can deregister its stream by sending a stream request with its
node-ID and the stream-ID of the stream to deregister and set the IPI of the
stream request to 0.

Figure 4.5: The payload for message type HEADER STREAM REQUEST.

4. Implementation 25

HEADER SCHEDULE The schedule packet can be the longest packet
and includes multiple fields (see Fig. 4.6). The field ”Round period” is the time
between two round starts and is defined by the schedule. The field
”NumAllocatedSlotS-Ack” includes the number of allocated slots, if a s-ack is
included and if a host s-ack is included. The formula 4.1 describes the value in
the ”NumAllocatedSlotsS-Ack” field in pseudo code.

NumAllocatedSlotsS −Ack = bitshift(NumAllocatedSlots, 2)+

bitshift(s ack depending, 1) + host s ack depending; (4.1)

”NumAllocatedSlots” is the number of allocated slots in this round.
”s ack depending” is 1, when the stream request from the last round was ac-
cepted and the ”host s ack depending” is 1 when the host stream request from
the last round was accepted.

Figure 4.6: The payload for message type HEADER SCHEDULE.

A slot is assigned to a stream and each stream is defined by the Node-ID
of the source and the Stream-ID. The red fields (from Fig. 4.6) specify the
stream, which is allowed to send a message in the slot defined by the index. The
number of slots n is the value ”NumAllocatedSlots” defined with the previous
field. If ”s ack depending” is 1, the yellow packet from Fig. 4.6 defines the s-ack
to send in the round. This field is only sent, when a stream is acknowledged.
The stream requests are acknowledged, because the contention slot is a random
access channel and a node has to know if its request was accepted, because the
node would otherwise just resend the request. The orange field from Fig. 4.6 is
only sent, when a stream from the host is acknowledged. The host Node-ID is
not needed to send, because there is only one host in the network and the host
directly processes the host s-ack without sending it and sets its stream to active.
The Tab. 4.2 shows how long each part of the schedule packet is. Currently, all
messages are sent in a single packet. Therefore, it must be ensured the maximum
BOLT message size and buffer size for the serial communication is at least as big
as (n ∗ 3 + 14)B. n is the the maximum number of slots per round.

4. Implementation 26

Name Length

packet header 6B

Round period 2B

NumAllocatedSlotsS-ack 2B

Allocated Slots n ∗ 3B

s-ack 3B

host s-ack 1B

Table 4.2: An overview of the fields and sizes of a schedule packet when both
s-acks are sent and n slots are allocated.

HEADER DELETE STREAM The delete stream header is used when
a stream is requested to be deleted/deregistered. The nodes could also send a
stream request with IPI of 0, which means deleting of a stream. This function
is currently only used to delete streams during testing and debugging phases.

Figure 4.7: The payload for message type HEADER DELETE STREAM.

HEADER UNUSED SLOTS The message with the unused slots is sent
to detect non-active streams. The payload is shown in Fig. 4.8. The scheduler
knows which streams were assigned in which slot. Therefore, it is sufficient and
more efficient to send only the slot index (starts at 0 for the first slot index).
The message is sent without payload when all slots have been used. The payload
length is defined in the packet header and is used to get the number of unused
slots.

Figure 4.8: The payload for message type HEADER UNUSED SLOTS.

HEADER HOST STREAM REQUEST The message with type host
stream request is similar to the type with the ”normal” stream requests, but

4. Implementation 27

does not request the computation of the next schedule and does not include the
TimeCP . This message is sent when the host requests a new stream for itself.
The host does not have to use the contention slot and can also send a separate
message within the rounds. The host might have a centralized role in the network
and has to send more streams than a normal source node and this message type
enables a faster adoption to changing stream demands from the host.

Figure 4.9: The payload for message type
HEADER HOST STREAM REQUEST.

4.2 Communication Processor

The basic functions are already implemented in the LWB code. The main pro-
tocol function is in the file ”lwb.c” in the directory ”/core/net”. The functions
for the different LWB round phases are called here. ”wait until” functions are
called in between the phases and slots to enable the time-triggered execution.
The changes and implementation of functions will be explained in the next sec-
tions. First, the changes to the handling of streams are explained and afterwards,
the communication with the scheduler is described.

4.2.1 Enable scheduling of individual streams with start time
and deadline

The standard LWB is assigning a communication slot to a node, but not to a
specific stream. Scheduling nodes and not individual streams can destroy the
real-time functionality (see the paragraph about the LWB limitations in section
2.2.3). Additionally, the LWB stream request do not include a start time and a
deadline.

Stream request with start time and deadline The stream requests are
defined in the struct ”lwb stream req t” in the file ”/core/net/scheduler.h”. The
basic protocol has already an array of type uint 8 t and length ”LWB CONF -
STREAM EXTRA DATA LEN”. Defines in ”defines outsource sched.h” set the
extra data length to 4 (bytes) and specify which index of the array is used for
which byte of the start time and deadline. Additionally, the functions to handle

4. Implementation 28

stream request were updated to read the extra data from the stream request and
encode it for the scheduler.

Slots are defined by Node-ID and Stream-ID The original LWB does
assign communication slots to a Node-ID. The slots must be assigned to a specific
stream to ensure the ”right” stream is sent. This means the slot must also
be specified by the stream-ID, which adds another one byte to every assigned
slot. The slots assignment would be 2 bytes for the Node-ID and 1 byte for
the Stream-ID. It was not clear if the increased message size can be supported,
because the sending of the schedule needs more time and memory. Therefore
two different implementations are made, which can be selected with the defines
in ”defines outsource sched.h”:

• The define ”SCHED SLOT SIZE” is 2 and the slot is defined by a 2 byte
variable. This is the same as in the standard LWB. The node-ID and
stream-ID are combined into one stream-node-ID, where the stream-ID is
bit shifted and added to the node-ID. Another define will specify the bit
shift and the bit masks to get the node-ID and stream-ID. Therefore, the
16 bits of the stream-node-ID can be flexible assigned. A network with
many nodes can assign a higher range of the 16 bits for the node-ID and
the stream-ID range is limited. The standard is 8 bit for the stream-ID
and node-ID each. This allows 256 different stream-IDs and 256 different
node-IDs.

• The define ”SCHED SLOT SIZE” is 4 and the slots are defined with a 4
byte variable. The bit shift define can be set to 16 (and the bit masks
accordingly) and the whole range of the node-IDs (up to 216) and stream-
IDs (up to 28 per node) can be used.3

The bit shifts and bit masks defines are now used in the ”lwb.c” code to get
the stream-ID for which the slot is allocated.

Separate output buffers for streams The standard LWB code has one
FIFO output buffer for the messages to send. The knowledge of the stream-ID
cannot be used to find the allocated stream when all the data packets are in the
same output buffer. A possibility was to also add the stream-ID to the packets
in the output buffer, but it would be necessary to search in the buffer and a
single stream could occupy the whole buffer with multiple messages. Therefore,
multiple FIFO-buffers are implemented.

3REMINDER: This was not completely tested and can lead to timing problems.

4. Implementation 29

The function call ”lwb out buffer get(glossy payload.raw data)” in ”lwb.c”
stores the first message in the output buffer at the location of ”glossy payload.raw-
data”. This function was changed and has also the stream-ID as parameter.

The function is defined in ”lwb.c” and it uses the FIFO buffer functionality from
”fifo.c”. The FIFO functions need a pointer to the memory location, where the
buffer is stored. An additional layer is added to get the pointer, which depends
on the stream-ID. These functions are in the source file ”apps/sched outsource/-
stream centered output buffer.c”. The functions to set up the buffer(s), register
new streams (in function ”lwb stream add”) , bind new streams to a output
buffer and remove the binding with the buffer when a stream is deleted is also
implemented in the same source file.

Sending streams The functionalities must also be tested and therefore the
file ”apps/sched outsource/lwb-test.c” is used.

The state of stream is tested with ”lwb stream get state(node-id)”. If the
state is non-active (means stream request not sent or no s-ack received), the
stream request is sent (again). The node can put a stream request into the
output buffer with the function ”lwb request stream(&my stream, 0)”, where
”my stream” is a stream request defined in the file and 0 is the priority of the
stream request.4

If a stream is active, it puts a dummy data packet into the output buffer of
the stream with the function ”lwb send pkt(receiver node id, stream id, &data,
payload size)”. All the nodes have a serial debug output when a packet arrives
with the receiver-ID equal to the node-ID and the sending and receiving of the
data can be tested. Multiple streams have been registered on the same node to
test the functionality of the output buffer, the sending and also the receiving of
packets.

4.2.2 Send the Data to the scheduler

Outsourcing of the scheduler function makes it necessary to exchange data be-
tween the network and the scheduler. The Fig. 3.1 gives an overview about the
data exchange when the scheduler is located at the AP. The AP is currently used
to forward the packets from CP to the PC and vice versa. The whole outsourcing
on the AP and in MATLAB R© is summarized in the violet box (in Fig. 3.1).

4LWB also allows to have high ”priority” streams requests, which are sent in the next con-
tention slot or if earlier, in the next communication slot assigned to the node (”piggybacking”).
”Piggybacking” is not implemented for the outsourced scheduler and the priority of 1 is not
allowed when real-time scheduling is executed, because stream request can use data slots and
the actually allocated stream will not be sent in this round, which can leads to deadline misses.

4. Implementation 30

Stream requests The stream requests are received in the contention slot (see
section 4.1 for the packet structure or the source file ”lwb.c”). The received
packet is given to the function ”lwb sched proc src”, which sends the stream
request to the host with the packet structure defined in Fig. 4.5.

Schedule request The schedule request is only sent when no stream re-
quest is sent, because the stream request also triggers the computation and
sending of the next schedule. The schedule request is called after the con-
tention slot (see ”lwb.c”). The function to send a stream request is called
”send schedule request()” and sends the stream request packet (see section 4.1
for the packet structure).

Host stream requests The host is scheduling all streams in the standard
LWB and the host just added streams for itself. The outsourcing makes it
necessary for the host to send a stream request as well. Two different solutions
have been considered: A separate host stream request message and combining
the stream request with a normal stream request from the contention slot.

• Combine stream request with normal stream requests: The first
implementation for the host stream request was just to send the host stream
request during the normal contention slot, because most of the stream
request functions for the normal nodes can be reused. Although, it is
problematic to send multiple stream requests at once, because the time
to compute the admissions tests is increasing, which can lead to timing
problems with the time-triggered LWB rounds. The host has a centralized
role and it is likely the host has to send more streams than the normal
source node. Therefore, the host got a higher priority and if the host
has a stream request, the normal stream request from the contention slot
is ignored. Unfortunately, the used functions for the source-node stream
requests have not been developed for the host and the implementation failed
when a s-ack for a host stream was received. The error was evaluated in the
clearing of the bit in the variable ”lwb pending requests”, which is used to
keep track of the unacknowledged streams. An elegant and easy solution
was not available. The additional effort for a separate host stream request
was regarded smaller and the sending of separate host stream request also
enable to request two streams per round (see paragraph below).

• Separate host stream request: Therefore, the solution with an indi-
vidual stream request was implemented. The function to send a stream
request is ”lwb stream add(&my stream request)”5, which is changed to
send a host stream request in a packet structure explained in section 4.1.

5my streaam request is from data type ”lwb stream request” and includes all information
for a stream request.

4. Implementation 31

This function can be called during the ”Manage streams” phase (see Fig.
3.1) and sends the message directly to BOLT.

Unused slots The unused slots are needed to detect non-active streams and
delete these, because non-active streams can happen in a low-power wireless net-
work and waste communication resources.

The current slot index is added to the array ”unused slots” when a data slot
was unused in ”lwb.c”. The variable ”index unused slots” is also increased every
time a slot is unused (in the communication phase in ”lwb.c”). The array is sent
at the end of the round in the packet structure explained in section 4.1).

4.2.3 Receive the Data from the scheduler

The outsourced scheduler has to send data into the network like the schedule
and s-acks. The s-acks and the schedule are sent in one packet, which makes the
encoding of the packet easier and safes the overhead of sending/receiving two
packets. The packet structure is shown in Fig. 4.4.

The receiving is implemented with a BOLT interrupt, because the time
needed for the outsourcing is variable. The interrupt is defined in the func-
tion ”handle bolt interrupt” from file ”sched-outsource.c”. The interrupt should
not be executed during the communication of the network, because the host
would miss the timing for sending and receiving. The interrupt must be disabled
during the network communication phases. The interrupt is activated at the
end of the function ”lwb sched compute(...)”, which is after the communication
slots, and deactivated after the execution of the interrupt routine.

4.3 Application Processor

The final task of the AP is to calculate the schedule. This functionality was not
implemented, yet, because outsourcing the scheduler to MATLAB R© on a PC
enables a wider range of debug possibilities like manually set up a set of streams
and change parameters fast (see section 4.4). The AP is currently used for the
communication between the CP and the scheduler running in MATLAB R© on the
PC.

The message exchange between PC and AP is serial and the message ex-
change between AP and CP is over BOLT. The overall data exchange between
CP and PC via BOLT, AP and serial is considered in this section.

4. Implementation 32

4.3.1 Communication from PC to CP via AP and BOLT

As a first step, the communication from PC to AP via serial and from AP to CP
via BOLT is explained.

The standard LWB code for the DPP has already implemented a console-like
function on the AP. The function ”console” in the source file ”console.c” com-
pares the input with predefined function names. The implemented functions are
read and write BOLT and get status informations from the system. Whenever
a character (single byte) arrives via the serial port, an interrupt is triggered,
the character is added to an array and the array is compared to the predefined
function names.

The interrupt functionality was kept for the serial communication and the
function in ”console.c” was changed to handle the new communication. The
packet structure from Fig. 4.3 with the ”Framing Byte” and ”Escape Byte”
is used to detect the start and end of messages. All the bytes from the serial
port are read individually and the received message is sent via BOLT after the
”Framing Byte” is received. The serial connection has a Baud-rate of 115200
symbols/s. The duration of the serial write is evaluated in section 5.1.2.

A first experiment was made to control the timing and functionality of read-
ing a message from BOLT. The time was measured after the message was written
to BOLT by the AP and until the message was read by the CP. The results are
shown in Fig. 4.10 (orange line). The duration was very constant and other
measurements in Fig. 4.11 and Fig. 4.12 (orange line in all figures) show the
same results. The CP reacts fast to the available message and reads the mes-
sage. The delay is very predictable and less than 2 ms. The main reasons are
the deterministic operation of BOLT and the CP is interrupt triggered to read
BOLT messages. Therefore, no changes to the first implementation is necessary.

4.3.2 Communication from CP to PC via AP and BOLT

The first implementation of the communication was in the main routine of the
AP. The Macro ”BOLT DATA AVAILABLE” is used to check whether a mes-
sage is in the BOLT input queue. If a message is available, the message is read
and send via serial to the PC. The time was measured in one of the firsts tests
and showed the duration of AP detecting a message in the BOLT queue and read-
ing the message. The results are shown in Fig. 4.10 (blue line). The message
size is slightly varying. The measurement was difficult to analyse and therefore
an observation with a constant message size (CP is always sending a schedule

4. Implementation 33

Figure 4.10: The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size for the communication from
AP to CP was constant. The message size from CP to AP was not constant and
AP used polling to read BOLT. The CP used an interrupt to read the message
and the reaction was very predictable and fast.

4. Implementation 34

Figure 4.11: The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size of the both communication
was constant and the AP used polling to read BOLT. The CP used an interrupt
to read the message.

Figure 4.12: The time for detecting a message in the BOLT queue and reading
the message for the CP and AP. The message size for both communications were
constant and the AP and CP used an interrupt to read from BOLT.

4. Implementation 35

request and no stream request) was done and the result is shown in Fig. 4.11.
There is still the linear increase in the duration. The execution time of the main
function is roughly 20ms (see Fig. 4.10 when the duration toggles from close to
0ms and 20ms). Most likely the duration will drop to nearly 0ms when close
to 20ms as well, because this is the difference when the main function is started
directly after the BOLT message is written and the BOLT message is written
directly after the main function was executed.

The time duration has a very large range of possible times and it is not
the perfect implementation as we want a predictable and tight upper-bound.
The results in Fig. 4.10 and Fig. 4.11 for the CP reading suggest an im-
provement when the AP also uses an interrupt to read the BOLT messages.
The interrupt was implemented in the source file ”main.c” at the end and
the interrupt is called ”isr bolt interrupt()”. The interrupt is enabled with the
Macro ”MAP INTERRUPT enable INTERUPT(INT PORT1)” and setting the
”INT PORT1” port to the name of the interrupt in the file ”msp432 startup ccs.c”.
The result is shown in Fig. 4.12. The reading of the AP is now even faster than
the reading of the CP, because the AP has a faster clock and is a more powerful
processor.

Every function executed by the AP is now interrupt driven. This allows to
set the AP into a low-power mode after an interrupt ends and wake up when an
interrupt is triggered. The low-power mode after an interrupt is enabled with
the Macro ”PM ENABLE SLEEP ON ISR EXIT”. The values in Fig. 4.12 are
already measured when the AP goes into sleep mode after an interrupt. In sum-
mary, the interrupt implementation made the exchanging of the messages more
predictable, faster and more energy efficient.

A more detailed evaluation of the upper-bound of the communication can be
found in chapter 5.

4.4 Scheduler (MATLAB R© on PC)

The scheduling functions are implemented in MATLAB R© first, because it al-
lows to directly change parameters without recompiling the code, a lot of debug
output is possible without significantly effecting the critical timing, store an in-
creased amount of logging data and directly modify the stored set of streams to
test a specific scenario.

The Blink scheduler was already implemented in MATLAB R© for simulation
purpose only. The three different scheduling techniques ”greedy”, ”naive lazy”

4. Implementation 36

Field name Stream 1 Stream 2

Periods (IPI) 8 10

Start-times 3 5

IDs 1 2

Deadlines 7 8

stream node ids 3000011 2000011

unused slots 0 0

Table 4.3: The set of all active streams is stored in the ”streams” struct with
the shown fields and values for two example streams.

and ”lazy” are available. The ”lazy” technique achieved the best performance
(see [4]) and was therefore used. The implemented scheduler is able to handle
a time unit with an integer data type. The time unit can be defined to be any
(scaled) time unit suitable for the application. The implemented Blink scheduer
was only capable in setting up a set of streams and calculate the schedule for a
given time. It was not possible to change the set of streams during the execution.
This means additional functionalities are needed.

The main structure of the code is the ”main” function, which decodes the
input messages from the CP and calls the responsible function to handle the in-
put. Afterwards, the ”main” function initiatives the computation of the schedule
and the sending of the schedule. The scheduler needs the information from the
network and sends the schedule back to the network (CP) with the functions de-
scribed in the section about the serial and packets functions. The other functions
to handle the stream requests, update the bucket queue and detect non-active
streams are explained in the next sections. Additionally, functions were imple-
mented in MATLAB R© to analyse the timing, which are explained in section
4.4.9.

4.4.1 Data structures

The two most important data structures in the MATLAB R© code are the active
streams and the bucket queue explained in the next paragraphs.

Active streams The struct ”streams” includes all active stream with the in-
formation depicted in Tab. 4.3.

The example in Tab. 4.3 shows two streams. The first stream has ID 1, a
period of 8 time units, a start time of 3 time units, a deadline of 7 time units,
a stream-ID of 3, a node-ID of 11 and has used its last allocated data slot. The
stream-ID and node-ID are combined into the stream node ids by adding up the
stream-Id*1’000’000 and the node-ID.

4. Implementation 37

IDs Start-times Deadlines IPI Stream-node-IDs

1 11 15 8 3000011

2 15 18 10 2000011

Table 4.4: The bucket queue implemented as a matrix with two example streams.

Bucket queue The bucket queue is used to find the stream with the earliest
deadline. The matrix has the following structure depicted in Tab. 4.4. The
IDs are only in relation when the stream request arrived and are continuous
counted up. The ID can be used to relate a bucket queue entry with the set
of active streams (in the struct ”streams”). The start-times and deadlines are
absolute times. The start-times and deadlines are updated whenever a stream
was executed and set to the next start-time and deadline by adding the IPI to
the current times. The streams in the bucket queue from Tab. 4.4 are the same
as shown in the active streams in Tab. 4.3 after each stream was executed once.
The stream-node-ID makes it easier to get the stream-ID and node-ID without
using the ID and searching the ID in ”streams”. The bucket queue is used to find
the task with the next deadline and therefore, the queue is ordered by increasing
deadline.

Possible implementation of bucket queue on an embedded processor
The storage demand in MATLAB R© can be neglected, because a current PC has
enough resources to store the set of active streams and the bucket queue separate.
Although, an embedded processor like the AP has limitations regarding memory.
The bucket queue and the active streams stored in the struct ”streams” have
many shared information. It would be sufficient to store all information in the
bucket queue by adding the field ”unused slots” to the bucket queue and remove
the ”IDs” column in the bucket queue. Although, it would not make it possible to
show all streams in a readable view as with the ”streams” struct during testing.

4.4.2 Main function

The main function calls the ”serial read”, which returns the serial message as
an array. The array is read with ”packet read” (regarding the packet structure
in Fig. 4.2 and 4.3). Afterwards, the header of the packet is checked and the
type of the payload (see Tab. 4.1 for all payload types) is determined and
the appropriate function is called to handle the input. The main function also
saves logging information and makes debug print-outs to improve the debugging
process.

4. Implementation 38

4.4.3 Serial functions

The functions to handle serial communications in MATLAB R© are in the directory
”serial communication” and are called ”serial write” and ”serial read”. Both
functions handle the communication protocol based on the ”Framing Byte” and
”Escape Byte” described in section 4.1.2. The function ”serial read” reads byte
by byte of the message with the MATLAB R© function ”fread”6 and parses the
message. The function ”serial write” returns an array with the ”Framing Bytes”
and ”Escape Bytes”. The array is then written to the serial port with the
MATLAB R© function ”fwrite”7.

4.4.4 Packet functions

The functions to decode and encode the packets in MATLAB R© are in the direc-
tory ”serial communication” and are called ”packet read” and ”packet write”.
The functions encode and decode the packets with the structure descriebed in
section 4.1.1. The main function stores the last 10 sent and received packets,
which enables backtracking when an error occurred.

4.4.5 Stream requests

The stream request is first checked if it is a new request or wants to update an ex-
isting stream with the same stream-node-ID. The stream-node-ID is the node-ID
plus the stream-ID times 100′000. This combination is used to only search for one
id instead of two and the overhead is seen as small, because MATLAB R© stores
every variable with type ”double”8. The function is implemented in ”newStream-
Request.m”. First, the stream-node-ID of the stream requested is searched in
the set of active streams and the index of the stream is returned. If the index is
not found, it is a new stream request and else it is a stream to update.

New stream request The received stream request is a new stream, because
there is no existing stream with the same stream-node-ID. The requested stream
is checked to have an IPI bigger than 0, because new streams with an IPI of 0 (or
smaller) are ignored. Afterwards, a temporal set of all the existing streams and
the new stream is made and the admission test checks if the temporal set is still
schedulable. If the temporal set is schedulable, the existing set is replaced with
the temporal set and a s-ack is added to the pending array. The s-ack will be
sent with the next schedule. If the admission test fails, the new stream request
is ignored.

6ch.mathworks.com/help/matlab/ref/serial.fread.html
7ch.mathworks.com/help/matlab/ref/serial.fwrite.html
8Floating point with a total length of 64 bits, 52 bits precision, 10 bits exponent and 1 bit

for the sign.

ch.mathworks.com/help/matlab/ref/serial.fread.html
ch.mathworks.com/help/matlab/ref/serial.fwrite.html

4. Implementation 39

Update existing stream request The received stream request is a request
to update an existing stream. If the IPI of the stream is set to 0, the stream
will be deleted from the set. Otherwise, a temporal set of streams with the
updated stream is made and an admission test is executed. If the admission test
is positive, the existing set of streams is replaced with the temporal set. If the
admission test fails, the stream update is ignored. The stream will still exist
with the old parameters.9

4.4.6 Bucket queue

At the beginning of the execution of the main function, the function
”init bucket queue” queue is called, which sets up the bucket queue with all
the streams stored in the struct ”streams”. Normally, the ”streams” should be
empty at the start of the scheduler, but this mechanism allows to add arbitrary
streams before the start of the network and test specific scenarios.

The updating of the bucket queue is done by the function
”manage bucket queue”. Depending on the results from the admission test from
the stream request, a stream will be added, deleted or updated in the bucket
queue.

4.4.7 Detect non-active streams

The message with the payload (shown in Fig. 4.8) is used to get the streams,
which have not used the allocated slots in the previous sent schedule. The ”un-
used slots” field in the ”streams” struct is increased for these streams. If the
value of the unused slots in a row is above a specified threshold (defined by
”threshold delete unactive” and currently set to 3), the stream will be removed
from the active streams and the bucket queue with the functions ”stream requests”
and ”manage bucket queue” by setting the IPI to 0. The ”unused slots” field in
the ”streams” struct from all streams, which were allocated in the last schedule
and are not in the ”unused slots” message, are set to 0.

4.4.8 Host stream requests

The host stream requests are handled like the normal stream requests explained
in section 4.4.5. The only difference is the different way of sending the host s-ack
in the next schedule packet (shown in Fig. 4.6) and the schedule is not computed
after the host stream request.

9This is a design choice made, because the stream can still send the current amount of data.
Another option would be to delete a stream when the updating fails.

4. Implementation 40

4.4.9 Timing analysis

The functions in the directory ”experiment evaluation” are used to plot the
observed times from the experiment.

safe data timing experiment.m This function is used to plot the execution
time of one schedule/stream request in MATLAB R© like Fig. 5.5.

analyze timing.m The times for the serial communication, the BOLT delays,
time from the start of a round until the schedule is received and the communica-
tion delays on the DPP are all plotted with this function. See Fig. 4.12 for an ex-
ample. The output is often used for the function ”plot compare slots per round”
(see below) to compare the timing for different number of slots per round.

plot compare slots per round.m This function takes the values from ”an-
alyze timing” as input and produces figures to compare the timing of the same
delay with different number of slots per round. See Fig. 5.4 or 5.7 for examples.

4.5 Leveraging the outsourced scheduler on the DPP

Many real-time application require small deadlines and IPIs. Additionally, an
IoT device should be as energy efficient as possible. The longer a device can stay
in a low-power mode, the less energy it consumes. Smaller IPIs and longer sleep
time for the CP can be achieved by reducing the round length (see Tl in Fig.
2.3), which is the time for the active execution of the network protocol (sending
schedule, s-ack, data, stream requests, computing of schedule and managing
streams functions, see Fig. 2.4). Reducing the round length has two positive
effects:

• If the round period stays the same, the CP can sleep longer, because the
processor is active only during the round length (see Fig. 2.4).

• The round times can be reduced until the round time is equal to the round
length. A shorter round length therefore allows smaller deadlines and IPIs
of the streams.

Outsourced scheduler is used to speed up computation and enable
more streams The original LWB round structure was constructed for a se-
quential execution on a single processor. The round structure is shown in Fig.
4.13 (a). The outsourced scheduler (AP or PC) is used to speed up the compu-
tation and enable more streams, because more memory is available. The whole
LWB round is executed sequentially.

4. Implementation 41

Is it possible to run the scheduler in parallel to the communication
protocol? The DPP allows to escape the sequential execution, because the
network protocol and the scheduler run on different processors. It is evaluated if
a parallel execution of network protocol and scheduler is possible. The parallel
execution could reduce the round length. First, the data dependencies within
a LWB round are considered to find possibilities to reorder the round structure
and enable parallel execution:

• It is necessary to send the schedule k at the beginning of round k and the
schedule k + 1 at the end of the round. The schedule at the beginning of
the round is used to synchronise the network again after the potentially
long waiting time since the end of the last round. The processors are in the
sleep mode until the execution of the next round starts. The clock drifts
of the nodes in the network are integrating and long round period cause
large offset in the time for each node. A large time offset is not acceptable,
because the LWB rounds are time-triggered and must be synchronised. The
schedule at the end of the round is used to know when the communication
of the next round starts. The processors can go into sleep mode until the
start of the communication of the next round. Therefore, the schedules
must be sent at the beginning and end of the rounds.

• The contention slot must be before the computation of the next schedule to
ensure a fast adaptation to new streams. The calculation of the scheduler
needs the information of the contention slot to compute the next schedule
(see Fig. 4.13 (a) for the data dependency).

• The results of the calculation of the next schedule must be available for
the the sending of the schedule, which is for the next round (see Fig. 4.13
(a) for the data dependency).

• The s-ack and communication slots are defined by the schedule from the
previous round. The current implementation sets a stream active directly
when the s-acks is received. Although, data is put into the output buffer if
the stream is active in the ”Manage streams” phase. Therefore, the s-ack
slot must only be before the ”Managing streams” phase. There is no data
dependency between the computation of the schedule in round k and the
s-ack and communication slots in round k.

The schedule can be computed in parallel to the communication slots and the
s-ack slots, because there is no data dependency and the communication part is
handled on the CP, while the scheduling task is outsourced (see Fig. 4.13 (b)
for the adapted round structure). Therefore, the round length can be reduced,
which enables a more energy efficient execution and smaller deadlines.

4. Implementation 42

Figure 4.13: (a) The standard LWB round structure executed on a single pro-
cessor is sequential. (b) The adapted LWB round structure for the DPP enables
parallel computation of the schedule during the communication of the network.
The parallel execution reduces the round length (Tl).

4.6 Optimise the round duration

The time tsched2 was introduced in Fig 4.13. It represents the time at which the
schedule from the next round is sent, with respect to the start time of the current
round. tsched2 is a fixed parameter for all rounds and independent of the number
of allocated data slots per round. It is important that the communication slots
have finished and the outsourced schedule arrived back from the scheduler. Of
course, the goal is to have a round length as small as possible and the parameter
tsched2 should be a close upper-bound of the communication slot duration and the
time needed to compute the outsourced schedule. This section proposes a model
of the different parameters of a LWB round, which is used for the implementation
evaluation in chapter 5.

4.6.1 Outsourcing the schedule

The second schedule can not be sent before the schedule was arrived from the
outsourced scheduler (see Fig. 4.14). This induces a lower-bound on tsched2 (see
formula 4.2).

tsched2 ≥ (Tsched + Tgap) + (Tcont + Tgap) + tsched outsource compute (4.2)

The delays for the outsourcing of the schedule depends on the maximum data
slots per round, if a stream request was sent and on the serial communication.
Therefore, the timing of the different phases is looked at in details in chapter 5.

4. Implementation 43

Parameter Value

tsched 18ms

tdata 12ms

tcont 12ms

tround 394ms

tgap 4ms

data packet size 32B

slots per round 20

Table 4.5: The different standard parameters for the LWB round structures.
The values are from [3] except the duration of the contention slot was increased
to the same value as the contention slot (see Fig. 4.14 a graphical view of the
parameter names).

4.6.2 LWB communication phase

Figure 4.14: The adapted LWB round structure with the parameter names of
the different phases and slots.

The length of communication operations, like sending the schedule, the con-
tention slot, the data slots and the gap time between two slots, is fixed and
reported in Tab. 4.5. The used parameters are also shown graphically in Fig.
4.1410. All the values are the standard values from LWB except the duration of
the contention slot was increased to the duration of a data slot11. The time tgap
is the gap between two slots. The value tsched2 is analysed in chapter 5.

The value tround can be calculated with Formula 4.3. The duration of the

10Mind: The values are printed to the serial debug output at start up and are rounded.
11The contention slot was moved before the s-ack and data slots. This makes the calculation

of the starting times for all following slots complex. Setting the contention slot to the same
length as the data slots allows to use the standard LWB Macro to get the start times.

4. Implementation 44

s-ack slot is the same as for a normal data slot (tdata), which is also the reason
to multiple the duration of data slot (tdata) with the amount of slots per round
(Max Data Slots) plus 1.

tsched2 ≥ tround = (tsched + tgap)+

(tcont + tgap) + (Max Data Slots + 1) ∗ (tdata + tgap) (4.3)

The time until the second schedule is sent from the beginning of the round
(tsched2) must be greater or equal to tround, because the next schedule can not
be sent before the communication slots are over.

4.6.3 Summary for constrains on tsched2

The two sections before explained the two constrains on the tsched2 parameter.
Both constrains are combined in formula 4.4.

tsche2 ≥ (Tsched + Tgap) + (Tcont + Tgap) + max((Max Data Slots + 1)∗
(Tdata + Tgap), tsched outsource compute) (4.4)

There is a fixed part of the minimal value of tsched2, which is independent of
the number of data slots per round: (Tsched + Tgap) + (Tcont + Tgap). The other
part is the maximum of the duration for the outsourcing of the schedule and the
duration of the communication slots. A model for the variable part is evaluated:

• The communication time is the duration of a s-ack slot and the number
of slots per round multiplied with the duration of a data slot. tsched2 is a
fixed parameter for every round. Therefore, the maximum duration of the
communication slots must be considered for every round. The maximal
duration for the communication slots is: (n + 1) ∗ tdata, where n is the
maximum number of slots per round. The duration is linearly increasing
with the number of slots per round and is shown in Fig. 4.15 in blue.

• The duration for outsourcing the scheduling tasks is depending on the max-
imum number of slots per round as well, because the admission test, the
scheduling of the streams and the message size depend on the number of
slots per round. It is likely to have a bigger offset than the communica-
tion slots duration, because the request of the schedule and sending the
schedule has a relatively high latency (see chapter 5). If the increase of
the duration with the number of slots per round is not as dramatic as for
the communication slots duration, the duration depending on the slots per
round could look like the green line in Fig. 4.15.

4. Implementation 45

Assuming the scheduling duration increases slower with the number of slots
per round than the communication duration, the two delays evolve as represented
in Fig. 4.15. This implies that beyond a given number of slots per round n′, the
outsourcing of the schedule virtually costs ’no time’ (see Fig. 4.15 for point n′).

Numerical values for those delays and number of slots per round are investi-
gated in chapter 5.

Figure 4.15: The model for the minimum of tsched2. tsched2 min is the maximum of
the delay for the communication slots (blue) and the outsourcing of the schedule
(green).

The delays are analysed for different number of slots per round in chapter 5
and tried to verify if there is a number of slots per round above the outsourcing
of the scheduler is neglectable (see Fig. 4.15 point n′).

Chapter 5

Tests and Evaluation

This chapter presents the system design and implementation evaluation. It has
several objectives:

• Measuring the various system delays having an impact on the implementa-
tion (see Fig. 4.14 for the parameters for the delays and times like tsched2
and section 4.6 for the explanation of the delays).

• Investigating the dependency between the schedule computation time and
the numbers of slots per round.

• Validating the correct implementation of the outsourced computation on
a real-life network environment like the wireless network testbed Flocklab
[10].

5.1 Evaluate parameters for different number of slots
per round

Minimising the round length, which is the time from the start of the execution
of round k until the end of the round k (see Fig. 5.1), is the goal of this section.
Therefore, the duration of all LWB round phases and the time for outsourcing
the scheduler must be upper-bounded. Additionally, the parameter tsched2 must
fulfil the formula 4.4. The overall structure with the evaluated delays is shown
in Fig. 5.1. It is particular difficult to upper-bound the delay for outsourcing the
schedule computation to the PC over serial (tagged as 2a in Fig. 5.1). Finding
an analytical value for tsched2 is very difficult, because the computation of the
schedule and the serial communication is handled by a PC with a non-real-time
OS. Therefore, the parameters are evaluated with multiple observations over
30min. This section describe how the experiments are realized to estimate the
upper-bound for tsched2.

46

5. Tests and Evaluation 47

Figure 5.1: The overall setup when the scheduler is outsourced to MATLAB R©.
The relation from communication slot together with s-ack (yellow and orange)
to the calculate schedule block (violet) is not fixed and depends on the number
of data slots per round.

5. Tests and Evaluation 48

The times were measured by toggling pins on the CP and AP. Each pro-
cessor has two pins, which can be toggled in the code by calling the Macro
”PIN XOR(pin name)”. The pins are analysed with a Logic Analyser, which ex-
ported the time of the pin changes. The function
”experiment evaluation/analyze timing.m” reads the timing file and generates
the following plots in Fig. 5.2 and 5.3 and produces the input for the function
”plot compare slots per round”, which produces the Fig. 5.4, 5.5,5.7 and 5.9.

The scheduler is executed with MATLAB R© on a PC 1. MATLAB R© was the
only application actively running. Other applications like the anti-virus software
and some OS managing functions were still running in the background. The
energy saving functions were disabled.

The goal is to find the upper-bounds and therefore a setup for the most
extreme scenario is used. A new stream request arrives in every round and no
streams are deleted. The message from the CP to AP are therefore always the
maximum size of a stream request. After an initial phase, the schedule message
from the AP is often a schedule with all slots assigned, because streams are
added until the admission test fails and the network utilisation is very high. A
set of 128 pseudo random streams are emulated with an IPI2 between 4 and 9 s
and a relative deadline of (IPI − 2) s with the following pseudo-c code:

static uint_16 random_stream_request_counter=0;

void emulate_stream_request(){

lwb_stream_req_t random_stream_request;

random_stream_request.id= 147;

random_stream_request.stream_id= random_stream_request_counter%128;

random_stream_request.ipi= (random_stream_request_counter)%5+4;

random_stream_request.start_offset= 2;

random_stream_request.deadline= (random_stream_request_counter)%5+2;

//send emulated stream request to scheduler

lwb_sched_proc_srq(&random_stream_request);

random_stream_request_counter= (random_stream_request_counter+1)%1024;

DEBUG_PRINT_INFO("emulated stream request sent");

}

1A MacBook pro 15’ with an Intel Core i7 processor (quad-core with 2.3 GHz) and 16 GB
RAM was used.

2REMINDER: The current implementation of the Blink scheduler can schedule integer time
units. The used time unit is chosen to be one second. Other values like 500ms are also possible.

5. Tests and Evaluation 49

Maximum slots per round After initialisation After 30 min.

5 25 26

10 50 51

15 75 78

20 100 103

Table 5.1: The number of active streams is depending on the maximum slots per
round. The scheduler is initialised with an empty set of streams and a stream
requests is arriving in every round. The number of active streams is quickly
growing to the shown value ”After initialisation” and afterwards only a few
more streams got accepted until the final value ”After 30 min”. Therefore, the
utilisation was constantly high and the computation of the schedule was made
complex.

After 128 streams with a different stream-ID have been requested, every
stream gets again requested with a potentially different IPI. Therefore, the sched-
uler has to make a full admission test in every round and test if the stream is
updated or added. The tests were done with 5, 10, 15 and 20 slots per round.
The tests are all done with the same stream set (see pseudo-c code). Nearly
all the streams have been accepted in the initialisation phase. Afterwards, the
number of streams is more or less constant with a small increase. The number
of active streams after the initialisation (phase as long as nearly all streams are
accepted) and after 30 min is shown in Tab. 5.1. The 128 different streams are
a big enough stream set, because even for 20 slots per round at least 25 streams
have not been accepted. The utilisation was oscillating around 90%3 after the
initialisation.

5.1.1 Communication between CP and AP

The BOLT communication delays were already considered for the implementa-
tion of the functions. Fig. 4.12 shows a very constant duration for the reading
of BOLT messages. Additional tests are evaluated in this section to find an
upper-bound for the BOLT read & write delays together.

CP writes stream request to BOLT and AP reads The delay for the
CP writing a schedule/stream request to the AP via BOLT and AP reading it
is shown in the overall setup Fig. 5.1 (green 1a). The duration of exchanging a
stream request from CP to AP via BOLT is shown in Fig. 5.2 (blue).

3Utilisation =
1

max num slots per round
∗

n∑
i=1

1

IPIi
, the IPI of stream i is in the same

time unit as the Blink scheduler is running (in seconds).

5. Tests and Evaluation 50

Figure 5.2: The BOLT communication delay is measured for different number of
slots per round (see red labels). (Blue): Writing a stream request by CP and AP
reading it (see Fig. 5.1 (1a)). (Orange): AP writing a schedule and CP reading
it (see Fig. 5.1 (1b)). The delay for the schedule depends on the schedule size,
which depends on the number of slots per round.

The writing and reading of the schedule request from CP to AP via BOLT has
a very low variance and is independent of the number of slots per round, because
the stream request message size is constant and independent of the number of
slots per round. The delay is less than 0.265 ms for all observed rounds.

AP writes the schedule to BOLT and CP reads The delay for BOLT
communication from AP to CP is shown in the overall setup Fig. 5.1 (green 1b).
The duration of the schedule exchange over BOLT is shown in Fig. 5.2 (orange)
for different number of slots per round.

The time is clearly depending on the number of slots per round, because the
schedule message size is increasing with the number of slots per round. The first
200 samples are with 5 slots per round, the second 200 samples for 10 slots per
round, the third 200 samples for 15 slots per round and the last 200 samples are
for 20 slots per round. The delay is low (the maximum is below 2.5 ms) and has
low variance. These are the expected properties of BOLT communication.

5.1.2 Delay for the communication between AP and scheduler
including computing the schedule

The communication delay to the scheduler is also evaluated to find the upper-
bound of the delays. The round-trip time (RTT) of the serial communication

5. Tests and Evaluation 51

with the computation of the schedule on the PC was measured together (marked
green in Fig. 5.1 (2a)). The AP toggles a pin when a packet per serial is written
and received.

Variance of the serial communication The first measurement investigated
the predictability of serial communication delays. The results for the RTT are
shown in Fig. 5.3. To remove as much noise as possible an empty schedule
was sent, without any schedule computation. The pure scheduler execution on
MATLAB R© was measured with the functions ”tic” and ”toc”4 from MATLAB R©

and was below 2ms. The experiment showed that the serial communication
variance is very high (between 111 ms and 154 ms).

Figure 5.3: RTT of the serial communication with sending an empty schedule.
The delay has a high variance (between 111.897ms and 153.1714ms).

The reasons can be the complex Operation System (OS) running on the PC,
which assigns the CPU to the processes dynamically, the serial communication
is handled by the OS as well and many processes are running in the background.
The variance is very high and therefore, a more detailed evaluation with at least
1800 rounds was done (i.e., a 30 min-long experiment). The more detailed eval-
uation of the upper-bound of the delay of the scheduler and the communication
is found in the next paragraph.

Upper-bound for the serial communication and schedule tasks The
delays from Fig. 5.3 have a high variance. It is difficult to find a upper-bound

4ch.mathworks.com/help/matlab/ref/tic.html and ch.mathworks.com/help/matlab/

ref/toc.html

ch.mathworks.com/help/matlab/ref/tic.html
ch.mathworks.com/help/matlab/ref/toc.html
ch.mathworks.com/help/matlab/ref/toc.html

5. Tests and Evaluation 52

for delay with such a high variance. It was tried to measure the extreme situation
with a stream request in every round and many schedule with the maximum size
(when the maximum number of slots per round are assigned). This setup ensures
the maximum communication delay, because the messages are as large as possi-
ble. Additionally, the computation of the admission test for a new stream and
the computation of the schedule is made complex by requesting a new stream in
every round, leading to an increasing amount of active streams in every round.
The result for different number of slots per round is shown in Fig. 5.4.

Figure 5.4: The time for the serial communication and computation of the sched-
ule is shown for different number of slots per round. Computing the schedule
includes an admission test for a stream request. The delay depends on the num-
ber of slots per round. The delays is not well predictable, because the delay has
a high variance and peaks.

The variance of the RTT is large (values between 107 ms and 290 ms) and
peaks happen for 10, 15 and 20 slots per round. The value is weakly depending on
the number of slots per round. An evaluation of the delay, the variance and the
peaks is difficult, and therefore the time to compute the schedule is considered
in the next paragraph.

Observe the computation time of the schedule The scheduler execution
time was measured in MATLAB R© to find the source of the high variance and
peaks in Fig. 5.4. It is important to know the reason for the peaks and the
variance and if the implementation of the scheduler on an embedded system like
the AP would make it more predictable. The predictability is desirable, because

5. Tests and Evaluation 53

it allows to make a tight upper-bound of the delays, which are used to specify
tsched2 (see section 4.6.3) and the round length.

Figure 5.5: Time for the computation of the schedule with an admission test
for a stream request with different number of slots per round. The (violet) and
(green) observations are two identical test with the same parameters and stream
requests. The peaks are at different rounds and therefore, the peaks are caused
by the OS and not by a complex stream request.

The measured schedule computation delay can be seen in the overall time
diagram in Fig. 5.1 (2b in green). The scheduler execution time is shown in Fig.
5.5 for different number of slots per round. The first four observations (blue,
yellow, orange and violet lines in Fig. 5.5) are from the same test as the data for
the Fig. 5.4. Multiple point can be seen by considering Fig. 5.4 and Fig. 5.5:

• What is causing the peaks: Not all peaks in Fig. 5.4 are caused by
the peaks of the computation of the scheduler (see Fig. 5.5). The serial
communication and the computation of the schedule cause peaks. The
peaks caused by the serial computation are irrelevant when the scheduler
is implemented on the AP. The outliers of the schedule computations are
problematic for an implementation on the AP (see below).

• What is causing the variance and most of the delay: If the peaks
are neglected, the computation duration is shorter than 15 ms and the
delay is very depending on the number of slots per round. This means the
serial communication adds a significant offset, because the minimum value
for the serial RTT with the computation is over 107 ms and the maximum
value for the computation is below 15 ms (when the outliers are ignored).
The variance is also caused by the serial communication, because the time

5. Tests and Evaluation 54

to compute the schedule is within a small range (between 5 ms and 15 ms
for 20 slots per round when the outliers are not considered). The variance
and the delay caused by the serial communication are avoided when the
scheduler is implemented on the AP.

• What is causing the outliers in the schedule computation: The
outliers of the tests are only observed for 20 slots per round. If the out-
liers are caused by a very complex scheduling decision, the outliers for the
computation on an embedded system would be similar as on the PC. The
exact same experiment (same parameters and order of stream requests) was
done twice (see green and violet lines in Fig. 5.5). The peaks happen at
different rounds and therefore the peaks are caused by the non-real-time
OS. The implementation on the AP must be more predictable than the
implementation on the PC.

5.1.3 Handling of host stream requests and detection of non-
active streams

Every node manages its streams between receiving the next schedule and the
start of the communication of the next round (see Fig. 5.1 number 3 in green).
The host also sends the unused slots in the ”Manage streams” phase and can send
a host stream request. The maximum execution delay of the managing functions
executed after sending the schedule also increases the minimum possible round
time, because the CP is busy and cannot communicate.

Source nodes Every source node checks the state of the streams and adds data
to the output buffer if the stream is active. Additionally, some debug output
is made in this phase. The host does this as well and additionally has other
tasks like the host stream request and sending the unused slots. Therefore, it is
sufficient to test the timing for the host.

CP Host The CP from the host makes debug outputs, has to send the unused
slots, potentially send a host stream request, test the states of all its streams
and add data to the output buffer. The time was measured between the end
of sending the new schedule and when the host went into sleep mode after the
”Manage streams” phase. The result is shown in Fig. 5.6. The test was done
with a unused slot message of 20 slots.

The slight increase of the time is the time needed to read a message from
the input buffer, because another host started to send data at this moment.
Generally, the delay is very constant a upper-bound of 50 ms is estimated.

5. Tests and Evaluation 55

Figure 5.6: The time needed by the Host CP to make debug outputs, send the
unused slots (here 20 slots), a host stream request, test the state of one stream
and put a message for this stream into the output buffer. The time is very
constant and the slight increase after 20 rounds caused by the host is reading
a data package from the input buffer. The data packet was not sent before by
another node.

5. Tests and Evaluation 56

Scheduler The scheduler has to search for non-active streams with the unused
slots message from the host CP and potentially has to check a host stream
request. The scheduler must not be finished at the end of the LWB round,
because the scheduler is not getting new commands before the contention slot
of the next round. It would be ideal when the checking for unused slots and
the host stream request is handled before the stream request, which arrives in
the contention slot in the next round. Otherwise, the computation of the next
schedule can be delayed. The detection of the non-active streams is very fast,
because it is only handling counters and deleting elements in the bucket queue.
The admissions tests for host stream request is more complicated. Although,
the admission test is less complex than the admission test with computing the
schedule, which is shown in in Fig. 5.5. The available time is the time for
managing the streams, sending a schedule and the duration of the contention slot
including the gap between is at least 84ms (50ms+18ms+4ms+12ms = 84ms).
The duration for the schedule computation had a few peaks for 15 and 20 slots
per round (see Fig. 5.5). The maximum observed delays are 120 ms. The
computation of the next schedule is prolonged in the next round if such a peak
happens for a host request. This additional delay will be considered for the
determination of the parameter tsched2 at the end of section 5.1.4.

5.1.4 Minimizing tsched2

The minimal value for tsched2 is the maximum duration of the data communica-
tion slots and the duration for outsourcing the schedule tasks. All the delays,
which sum up to tsched2, are in Formula 4.4. Especially, the serial communica-
tion between AP and scheduler and the computation of the schedule has a high
variance (see Fig. 5.1 (green 2a)). The time between the start of the execution
of the round until the outsourced schedule is received and ready to be sent by
CPHost, depending on the number of slots per rounds, was measured in an ex-
periment (see tsched2 in Fig. 5.1). The results are shown in Fig. 5.7 for different
number of slots per round.

We observe two different patterns depending on the number of slots per
round. The duration for 5 slots per round (blue) is very jittery. The other
delays (red for 10 slots per round, yellow for 15 slots per round and violet for
20 slots per round) are very regular. This can be explained easily: with only 5
slots per round, the time to compute the schedule dominates, and we observe
a jitter delay due to the serial communication between AP and the PC. For 10
slots and more, the duration of network communication becomes longer than the
scheduling. The values change between two points, which are the times for the
maximum number of slots per round in the communication phase and when one
slot is free. The tested scenario was with pseudo random streams, which leaded
to rounds with one free slot. The durations for a maximum number of 20 slots

5. Tests and Evaluation 57

Figure 5.7: The time between the start of the round and when the schedule is
stored at the CP. This time is the lower bound for the parameter tsched2.

per round is close to 400ms, which is the time for 20 allocated data slots, or
close to 390ms, which is the time for 19 slots allocated. In conclusion, the delay
for outsourcing the scheduler is neglectable for more than 10 slots per round.

Figure 5.8: Time diagram when the communication slots are longer than the
delay for the outsourcing of the scheduler.

The parameter tsched2 must fulfil the formula 4.4. The following points are
important for evaluating tsched2:

• tsched2 is depending on the number of slots per round.

• The value for tsched2 must be larger than all the samples in Fig. 5.7,
which include the network communication and the delay for outsourcing
the schedule.

5. Tests and Evaluation 58

• The duration for the network communication is predictable, because LWB
is time triggered.

• The duration for the outsourcing of the schedule is difficult to predict,
because a non-real-time OS is handling the serial communication and the
computation of the schedule (see Fig. 5.1 (2a in green) for the duration
in the overview and Fig. 5.4 for the values of the delay). It can not
be guaranteed to have observed the highest peak values by observing the
system for a bounded time. Therefore, a safety margin must be included
for the outsourcing of the schedule.

• If the network communication is significantly longer than the outsourcing
of the scheduler, a safety margin is already included (see illustration of the
”included” safety margin in Fig. 5.8 in red).

The ”included” safety margin in Fig. 5.8 can be estimated by observing the
time, which the schedule message is in the BOLT buffer after the AP wrote the
schedule to BOLT (see Fig. 5.1 (1b in green)). The AP writes the schedule to
BOLT as soon as the schedule arrives via serial. The CP reads the schedule as
soon as the BOLT message is available and the network communication is over.
If CP does not have to wait until the end of the network communication, the
time for AP writing to BOLT and CP reading the message was observed in Fig.
5.2 (in red). The maximum value is below 2.5 ms. Therefore, the time, which
the schedule message is in the BOLT buffer, can be used to estimate the included
safety margin and is shown in Fig. 5.9.

The estimated values together with the included safety margin of how long
the message is in the BOLT queue are shown in Tab. 5.2. The additional
safety margin for 5 slots per round was chosen to be 42 ms, because there is
no ”included” safety margin as the outsourcing delay is longer than the network
communication. The setup with 10 slots per round does already include a safety
margin of at least 8 ms and another 12 ms are added. The safety margin is
regarded enough, because the outsourcing of the schedule had only one outlier
(see Fig. 5.9), which was in a round with only 9 slots per round and the maxi-
mum slots per round of 10 slots would add an additional 16 ms to the network
communication delay (see Tab. 4.5). The setups with 15 or 20 slots per round
have already included more than 50 ms as safety margin and the values are only
rounded up. This safety margin also covers a high peak in the admission test
of the host stream request in the ”Managing streams” phase, which can prolong
the execution of the scheduler (see last paragraph in section 5.1.3).

5. Tests and Evaluation 59

Figure 5.9: The duration for AP writing to BOLT and CP reading the schedule
from BOLT during the execution. CP can only read BOLT after the communi-
cation slots are over. Therefore, the values can be used to estimate how much
longer the communication slots are compared to the delay for outsourcing the
schedule, which is the ”included” safety margin for the unpredictable outsourcing
of the schedule.

Slots/ Largest value Minimal margin tsched2
round tsched2 from tests BOLT read chosen

5 188ms < 0ms 230ms

10 228.6ms 8ms 240ms

15 313.3ms > 50ms 315ms

20 398ms > 80ms 400ms

Table 5.2: Values for tsched2 for different slots per round is estimated by including
a safety margin for the unpredictable delay for the outsourced scheduler. The
”included” safety margin (minimal value from Fig. 5.9) is considered for the
estimation.

5. Tests and Evaluation 60

slots per round tsched2 Minimal round period

5 230ms 302ms

10 240ms 312ms

15 315ms 387ms

20 400ms 472ms

Table 5.3: The minimal round period possible depending on the number of slots
per round.

5.1.5 Minimal round period possible

The minimal possible round period is the round length, because this is the sce-
nario when the next round directly starts after the end of the previous round.
The round length is the duration of the execution of all LWB phases (see Tl in
Fig. 4.13 (b)). The round length must be larger than tsched2, the time to sending
the next schedule and finish the manage functions at the end of the round like
sending the unused slots, host stream request, updating the stream states and
put messages into the output buffers (see Fig. 5.8). tsched2 is evaluated in section
5.1.4 and in Tab. 5.2 are reasonable values depending on the number of slots per
round. Sending a schedule (tsched) takes 22ms (see Tab. 4.5 for the parameters
used). The time tmanage f from Fig. 5.8 was evaluated in section 5.1.3 and is
below 50ms. Therefore, the minimal round period is tsched2 + 22ms+ 50ms and
is shown in Tab. 5.3 for different number of slots per round.

5.2 Flocklab

The previous validations of the real-time functionalities has been done with only
the host and all the stream requests were emulated. Additionally, tests have
been made with a source node and the host sending multiple streams to each
other. Every aspect like timing and small subfunctions have been tested with
this setup. The goal was to verify small pieces of the implementation. The
working subfunctions are a sign for the overall functionality, but a more realis-
tic scenario with multiple nodes and streams is necessary to really conclude the
overall functionality. Therefore, the implementation was tested on FlockLab [10].

FlockLab is a testbed with more than 25 DPPs. The testbed is config-
ured with an xml-file5, which includes the parameters for the observers (e.g.
observe serial output and toggling of pins), a list for the used nodes and the
binaries of the processors used. An xml-file can be found in the repository

5www.flocklab.ethz.ch/wiki/wiki/Public/Man/XmlConfig

www.flocklab.ethz.ch/wiki/wiki/Public/Man/XmlConfig

5. Tests and Evaluation 61

(LWB CP CC430/tools/flocklab). The code must be compiled without speci-
fying the ”NODE ID”, because FlockLab inserts the ”node id” from the nodes
used in the network.

The test application running is in the file ”lwb-test.c”. Every node tries to
add a stream with the IPI of ”node id” modulo 10 plus 3 (node id%10 + 3).
This allows to quickly observe if the IPI of the stream was correctly scheduled,
the schedule received and the packet sent at the right time. The receiver of the
packets is always the host. The debug output from the host can be read by the
PC on the desk. See Fig. 5.10 for the used setup.

Figure 5.10: (Left): One of the used FlockLab nodes with the DPP during a
network test. (Right): The setup on the working desk with a notebook to flash
the program and observe the serial debug output from the host CP, the DPP
host node, which is connected via serial to the PC, and the PC is running the
scheduler.

The FlockLab web-interface has a preview of the results, which shows the
value of the LED on the DPP. The LED is on when the RF module is on. It is
useful to get a first impression, if the node is synchronised and participated in
the flooding. The LED diagram for multiple FlockLab nodes over time is shown
in Fig. 5.11. All the nodes are synchronised, participate in the flooding and
receive the second scheduler after tsched2 (0.5 s).

Every nodes CP is sending debug output via the serial port. The serial debug
outputs of all FlockLab nodes are captured by the FlockLab testbed. The debug
outputs of the nodes and the host are analysed and it is checked if the stream
request were sent and received, the s-ack were sent and received and the data is
sent and received with the correct IPI. The serial debug output from the node
with node-ID 10 is shown in Fig. 5.12. The node is sending a stream request,
gets the s-ack and later sends the packets with the correct IPI (3 s, because the
IPI is node-ID % 10 + 3).

Fig. 5.13 is showing a snippet of the serial debug output from the host. The

5. Tests and Evaluation 62

Figure 5.11: The value of the LED on different FlockLab nodes over time. The
red line means the LED is on, which signals the RF module is on. The single on-
impulse 0.5 s (is the used tsched2) after the first impulse is signalling the receiving
of the second schedule. All the nodes are synchronised and participate in the
flooding.

5. Tests and Evaluation 63

Figure 5.12: The CP of the node with node-ID 10 debug output from the Flock-
Lab test. The node is requesting a stream, gets the s-ack and is sending the data
with the correct IPI of 3 s (important steps marked in green). The node worked
as expected.

host is receiving multiple data packets from different nodes. Every node sent a
stream request, the stream request was received and acknowledged, the stream
was scheduled, the schedule was received and the packet was sent. Therefore,
the network worked as expected.

5. Tests and Evaluation 64

Figure 5.13: The host CP debug output from the FlockLab test. The host is
receiving multiple packets. E.g. packets from node 10 are received every 3 s,
which is the IPI of the stream from node 10 (marked green). Receiving a packet
at the right time guarantees the functionality of all previous necessary steps like
synchronisation, sending a stream request, receiving a s-ack and sending the data
regarding the schedule.

Chapter 6

Conclusion and future work

The goal was to enable a real-time functionality for the IoT or more precisely
for a low-power network. Real-time scheduling of wireless communication was
chosen as an example for a real-time network functionality. The DPP is used
to enable the outsourcing of the complex scheduling task. A network proto-
col strongly based on LWB was implemented on the CP and BOLT was used
to enable the interprocessor communication and outsource the Blink real-time
scheduler on the AP. In a first step, the Blink scheduler functions were imple-
mented in MATLAB R© on a PC, which is connected to the AP via serial commu-
nication. The outsourcing of the scheduler to MATLAB R© enabled better debug
possibilities and testing. The conclusion and future work will be discussed in
this chapter.

6.1 Conclusion

The FlockLab tests and the tests with a small network on the desk show the func-
tionality of the outsourcing. The DPP and the outsourcing caused additional
delays, but the outsourcing enabled a reordering of the LWB round structure,
which allows the parallel computation of the schedule on the AP while the net-
work communication is executed on the CP. The delay overhead of outsourcing
the scheduler is decreasing for an increasing number of slots per round. If the
maximum number of slots per round is larger than 10, the overhead for the out-
sourced real-time scheduler can be neglected, because the time for the network
communication is longer than the time for outsourcing the schedule. Therefore,
the real-time functionality is enabled by a very small overhead of the sending of
the stream/schedule request and receiving the schedule.

65

6. Conclusion and future work 66

6.2 Future work

The final goal is running the whole functionality on the DPP. Blink must be
implemented on the AP for the DPP to enable the real-time functionality on
its own. The implementation of Blink on the AP should be possible as the AP
is more powerful than a CC430 and has with 64kB SRAM and 256KB Flash
definitely more memory available than the implementation on the CC430 (see
[1] for a limited Blink implementation on a CC430). Additionally, Blink was
also implemented on a ARM Cortex M4 (same microcontroller family as the AP,
but with 72 MHz clock frquency instead of 48 MHz) by [4]. They were able to
execute Blink in less than 30 ms for a comparable stream set as the tests done in
chapter 5. Furthermore, running the scheduler on the AP allows to dismiss the
serial communication, which makes the execution faster and more predictable.

Bibliography

[1] J. Acevedo, “Real-time scheduling on resource-constrained embedded sys-
tems,” Master’s thesis, TU Dresden, 2016.

[2] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Giannopoulou,
F. Ferrari, J. Beutel, and L. Thiele, “Bolt: A Stateful Processor Intercon-
nect,” in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. New York, NY: ACM, 2015, pp. 267–280.

[3] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power wireless
bus,” in Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems. New York: ACM, 2012.

[4] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adaptive
real-time communication for wireless cyber-physical systems,” ACM Trans.
Cyber-Phys. Syst., vol. 1, no. 2, pp. 8:1–8:29, Feb. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3012005

[5] T. I. Inc., “Datasheet cc430f5147,” 2013, [Online; accessed 6-June-2017].
[Online]. Available: http://www.ti.com/lit/ds/symlink/cc430f5147.pdf

[6] T. I. Inc., “Datasheet msp432p401r,” 2017, [Online; accessed 6-June-2017].
[Online]. Available: http://www.ti.com/lit/ds/symlink/msp432p401r.pdf

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in 10th International
Conference on Information Processing in Sensor Networks (IPSN), 2011
: 12 - 14 April 2011, Chicago, IL, USA. Piscataway, NJ: IEEE, 2011, pp.
73–84.

[8] K. Leentvaar and J. Flint, “The capture effect in fm receivers,” IEEE Trans-
actions on Communications, vol. 24, no. 5, pp. 531–539, May 1976.

[9] M. Spuri, “Holistic Analysis for Deadline Scheduled Real-Time Distributed
Systems,” INRIA, Research Report RR-2873, 1996, projet REFLECS.
[Online]. Available: https://hal.inria.fr/inria-00073818

[10] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Proceedings of the 12th International
Conference on Information Processing in Sensor Networks, ser. IPSN

67

http://doi.acm.org/10.1145/3012005
http://www.ti.com/lit/ds/symlink/cc430f5147.pdf
http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
https://hal.inria.fr/inria-00073818

Bibliography 68

’13. New York, NY, USA: ACM, 2013, pp. 153–166. [Online]. Available:
http://doi.acm.org/10.1145/2461381.2461402

[11] R. Jscob, M. Zimmerling, P. Huang, and L. Thiele, “Towards Real-time
Wireless Cyber-physical Systems,” in 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS 2016), S. Altmeyer, Ed. Piscataway, NJ:
IEEE, 2016, pp. 7–9.

[12] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and L. Thiele, “End-to-end
Real-time Guarantees in Wireless Cyber-physical Systems,” in Proceedings
of 2016 IEEE Real-Time Systems Symposium (RTSS). Piscataway, NJ:
IEEE, 2016, pp. 167–178.

http://doi.acm.org/10.1145/2461381.2461402

	Acknowledgements
	Abstract
	List of Acronyms
	1 Introduction
	2 Background and related work
	2.1 BOLT
	2.2 LWB (Low-power Wireless Bus)
	2.2.1 LWB is Glossy-based
	2.2.2 LWB round structure
	2.2.3 Limitations of LWB for real-time functionalities

	2.3 Blink
	2.3.1 Basic stream parameters
	2.3.2 Blink scheduler steps

	3 System design
	3.1 Task partitioning
	3.1.1 Hardware specification
	3.1.2 Tasks overview
	3.1.3 Partitioning

	3.2 Data exchange and overview of phases in a round

	4 Implementation
	4.1 Data exchange
	4.1.1 Packets structure between CP and scheduler/ AP
	4.1.2 Packets structure between AP and PC
	4.1.3 Payload structure

	4.2 Communication Processor
	4.2.1 Enable scheduling of individual streams with start time and deadline
	4.2.2 Send the Data to the scheduler
	4.2.3 Receive the Data from the scheduler

	4.3 Application Processor
	4.3.1 Communication from PC to CP via AP and BOLT
	4.3.2 Communication from CP to PC via AP and BOLT

	4.4 Scheduler (MATLAB® on PC)
	4.4.1 Data structures
	4.4.2 Main function
	4.4.3 Serial functions
	4.4.4 Packet functions
	4.4.5 Stream requests
	4.4.6 Bucket queue
	4.4.7 Detect non-active streams
	4.4.8 Host stream requests
	4.4.9 Timing analysis

	4.5 Leveraging the outsourced scheduler on the DPP
	4.6 Optimise the round duration
	4.6.1 Outsourcing the schedule
	4.6.2 LWB communication phase
	4.6.3 Summary for constrains on tsched2

	5 Tests and Evaluation
	5.1 Evaluate parameters for different number of slots per round
	5.1.1 Communication between CP and AP
	5.1.2 Delay for the communication between AP and scheduler including computing the schedule
	5.1.3 Handling of host stream requests and detection of non-active streams
	5.1.4 Minimizing tsched2
	5.1.5 Minimal round period possible

	5.2 Flocklab

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	Bibliography

