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Abstract

Flooding-based communication with protocols such as Glossy is being used in-
creasingly in low-power wireless communication for multi-hop networks because
of its efficiency and reliability. For example, Glossy can achieve packet reception
rates above 99.99% in real-life tests. However, faults like interference can still
occur, causing a packet to get lost, and, up-to-date, most Glossy-based communi-
cation protocols do not take such faults explicitly into account. We address this
by using the Low-Power Wireless Bus (LWB), a MAC protocol based on Glossy
floods, to design fault-tolerance mechanisms. To this end, we classify the faults
that can affect our LWB network, and analyze fault-tolerance mechanisms for
data collection and data dissemination applications. We propose two different
mechanisms for data collection and present general evaluation results, consider-
ing one data-collecting sink as well as multiple (redundant) sinks. Furthermore,
we briefly discuss three approaches to fault-tolerant data dissemination. Glossy
and LWB are simple protocols with nice statistical properties, which helps to
model and analyze fault-tolerance mechanisms independently of network topol-
ogy and traffic patterns. Additionally, the proposed mechanisms for data col-
lection are able to leverage Glossy and LWB to increase efficiency. This general
classification and fault-tolerance mechanisms can be used as a foundation for
future analysis of more specific use-cases, e.g. designing a fault-tolerance mech-
anism tailored for a specific network topology. Additionally, an investigation on
the assumptions we make for our analysis could provide further insight into the
modeling of Glossy-based networks.
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Chapter 1

Introduction

In recent years, network flooding based on Glossy has become an energy effi-
cient and reliable method of communication for low-power wireless multi-hop
networks, such as wireless sensor networks [1]. In network flooding, a sender
broadcasts a packet to all receivers in range, which in turn repeat the packet,
which thus gets flooded to the whole network.

Up-to-date, the design of Glossy-based protocols has focused on increasing
the nominal reliability and Glossy itself can achieve packet reception rates above
99.99% in real-life tests. Nevertheless, packets can get lost, e.g. because of ex-
ternal interference, which can happen anywhere at any time. This unpredictable
nature makes fault-tolerance mechanisms essential for reliable packet delivery
[2].

This project investigates the design, modeling, and analysis of fault-tolerance
mechanisms based on the Low-Power Wireless Bus (LWB) [3], a MAC-layer
protocol using Glossy floods as a communication primitive.

We first introduce the basic principles and properties of Glossy and LWB in
chapter 2. Furthermore, we describe and motivate several assumptions we make
about the network for our analysis. Following this, we classify problems which
can occur in LWB-based networks in chapter 3. Next, we briefly explain the
fundamentals of fault-tolerance mechanisms in chapter 4 and introduce packet
reception rate and bandwidth overhead factor as metrics we use for evaluation.
In chapter 5, we focus on the data collection use-case. We analyze network
with a single sink as well as multiple redundant sinks and present fault-tolerance
mechanisms based on LWB and develop models to evaluate them. Finally, in
chapter 6 we turn to data dissemination and briefly discuss several approaches
in the context of LWB and Glossy based-networks.
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Chapter 2

Protocols and Assumptions

In this chapter, we first introduce the protocols on which this work is based:

• Glossy [1], a flooding communication primitive based on synchronous trans-
missions.

• Low-Power Wireless Bus (LWB) [3], a MAC-layer protocol based on Glossy.

Subsequently we discuss the statistical properties of Glossy-based communication
and formalize the assumptions we consider in this work, e.g. regarding packet
reception probability.

2.1 Glossy

Glossy is a protocol that uses concurrent transmissions to implement efficient
flooding. This is possible by synchronizing the clock on all nodes during the
flood. A synchronization in the µs range is achieved and causes the concurrent
transmissions to interfere constructively, enabling reception of packets even if
many nodes are sending simultaneously.

As a communication primitive, Glossy does not address issue like medium
access, which is handled by LWB, which we describe in section 2.2.

2.1.1 Core Functionality

First, we discuss the core functionality of Glossy. Every flood in Glossy starts
with one node, the initiator, sending a packet and thus initiating a flood. In the
following, the flood is driven by radio events only: As soon as another node has
successfully received a packet, it re-send the packet.

2



2. Protocols and Assumptions 3

Figure 2.1: Example of a Glossy Flood with N = 2 transmissions per packet.
E.g. the initiator does not transmit the packet at time c = 3, since it has already
transmitted the packet N = 2 times. Reprinted from [1].

Time Synchronization As mentioned before, Glossy relies on synchronous,
also called concurrent, transmissions – it is therefore essential to synchronize the
different nodes. This is achieved by adding timing information: The initiator
adds both its current time and a relay counter (initialized with 0) to a packet.
Before each retransmission the relay counter is incremented. Every node can
estimate the duration of a single transmission based on local radio information
(e.g. time of interrupts). Combining the duration for a single transmission with
the relay counter, a node can determine how much time has passed since the
flood started. By adding the passed time to the initiator time stamp, every node
can synchronize with initiator whenever a packet is received.

2.1.2 Mechanisms to Increase Reliability

Glossy increases transmission reliability by transmitting a packet up to N times
instead of once (Figure 2.1). Glossy uses N = 3 as a default setting and achieves
reliability over 99.99% in real-life tests. [1]

2.2 Low-Power Wireless Bus

The Low-Power Wireless Bus (LWB) is a MAC-layer protocol that uses Glossy
floods for communication.

Using Glossy floods, every packet reaches each node, which makes routing
unnecessary and essentially turns the multi-hop network into a structure similar
to a shared bus.
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2.2.1 Core Functionality

Figure 2.2: Schematic of LWB rounds consisting of n slots (Glossy-floods).
Reprinted from [3].

LWB uses a node, designated at design time, as host to compute and dis-
tribute a communication schedule for the other nodes to organize network access.
The network communication is organized in rounds consisting of several slots
(each slot in a LWB round is complete Glossy flood). Between rounds, nodes
sleep to save energy.

At the end of round k is a slot dedicated for the schedule-packet of round
k+1. This packet is sent by the host node and contains two pieces of information:

• The starting time for round k + 1, defining the sleep time between the
current and next round.

• The slots in the round and which nodes sends a packet in each round.

During the round, nodes follow the schedule, i.e. initiate a flood if its their turn,
otherwise receive and retransmit, following the procedure of Glossy. If a node
does not receive the schedule, it does not participate in the round.

Data Streams Nodes inform the host of their demand to send data by reg-
istering periodic data streams. Each data stream has a specified Inter-Packet
Interval (IPI), describing the time between two packets.

2.2.2 Mechanisms to Increase Reliability

First of all, the schedule is sent again at the beginning of each round to add
redundancy. For our analysis, we do not consider this additional schedule, since
it is not essential for LWB. Furthermore LWB specifies the following additional
behavior for nodes missing a schedule: It starts listening earlier in the next round
in case the schedule was missed due to synchronization problems.
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2.3 Statistical Properties and Assumptions

In this section, we state the statistical properties of packet reception in Glossy
and describe and motivate additional assumptions.

2.3.1 Subsequent Reception of Packets is Independent

It has been shown that the reception of packets by a given node in subse-
quent Glossy floods can be modeled as independent and identically distributed
Bernoulli-trials (fig. 2.3a) [4]. A packet is received during a Glossy flood with
the probability p, which mainly depends on

• The size of the packet.

• The number N of retransmissions per node (see section 2.1).

For the sake of simplicity, we assume p to be equal for all packets, i.e. we assume
that all packets have the same size and we use the same number of retransmissions
N for all packets.

2.3.2 Packet Reception is Assumed to be Independent from Num-
ber of Initiating Nodes

In 5.3.2 we analyze several nodes initiating a flood at the same time. This can
be interpreted as a flood which is initiated by a single virtual node sending its
packet to all real initiators (fig. 2.3b). Since the resulting flood is identical, we
assume that a packet is received with probability p, regardless of how many
nodes initiate a flood.

2.3.3 Packet Reception by Different Nodes is Assumed to be
Independent

One of the strengths of LWB (and Glossy) is the independence of topology.
We do not want to introduce this dependency again for our analysis, therefore
we assume that the reception of a packet by different nodes in the network is
independent (fig. 2.3c). In particular, this applies for the LWB schedule: We
assume that the reception of the schedule packet is independent for each node.

We expect that the validity of this assumption depends on network topology,
especially where the sending/receiving nodes are located in the network. A closer
analysis of this assumption is of great interest, but finding a general model might
be difficult or nearly infeasible.
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(a) B sends a packet to A in flood 1, C sends a packet to A in flood 2. A receives each
packet independently with probability p.

(b) Left: A, B and C initiate a flood together. Right: A virtual node initiates the flood
by sending a packet to A, B and C. The resulting flood is identical in both cases.

(c) A sends a packet. We assume the reception of this packet by B and C to be
independent.

Figure 2.3: Statistical Properties and Assumptions
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2.3.4 Packet Reception in LWB is Assumed to be Independent

To simplify modeling, we assume that if A sends i packets to B using LWB, the
reception of all packets is independent.

While this would be valid for Glossy, the scheduling of LWB introduces some
difficulties. As described, a node only participates in a round, if it has received
the round schedule. Therefore, if the i packets are transmitted during the same
round, all i packets depend on the same schedule and are not independent.

Nevertheless, we assume independence and in the following we show that this
assumption is not completely off, but underestimates the probability to receive
packets deterministically.
First of all, a single packet sent by A is received by B if:

• A receives the schedule (and sends the packet).

• B receives the schedule (and listens for the packet).

• B receives the packet sent by A

All packets are received independently with probability p, leading to a total
probability of p3 that B receives A’s packet. (If one node is the host, it knows
the schedule, therefore a packet is received with probability p2.)

If A sends and B receives multiple packets during the same round, they all
depend on the same schedule. If both A and B receive the schedule, the i packets
themselves are received independently. Otherwise, no packets can be received.
Therefore, the probability to receive all i packets is p2+i (p1+i if one node is is
the host).

Contrary to this, if we assume all i packets to be independently received, the
probability to receive all packets is p3i (p2i).

Comparing the results, if i > 1, then p3i < p2+i (p2i < p1+i), which means
that the probability that B receives i packets sent from A in a single round
decreases if we assume independence.

2.3.5 Discussion

While the statistical properties of packet reception in Glossy are nice, we re-
quire additional assumptions to simplify modeling of packet reception in various
situations we encounter.

Independence of network topology is one of the general strengths of Glossy
and LWB, and with the assumptions present, we are able extend this strength to
our analysis, which allows us to provide general, topology independent, models
and results in the following chapters.
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Investigating the assumptions further is out of scope for this work, but might
provide valuable insights for the modeling of Glossy and LWB-based communi-
cation and about the validity of our work.



Chapter 3

Classification of Faults, Errors
and Failures

The aim of this chapter is to describe possible mis-behaviors or problems that
can occur in LWB. In the literature, such problems are classified into faults,
errors, and failures [5]. First, we state the general classification. Next, we take
a closer look at faults, errors and failures as they can occur in a wireless multi-
hop network using LWB as communication protocol and model their relationship
with fault trees.

Finally, recalling the assumptions made in chapter 2 we use the fault-tree
analysis to model the lifetime of each packet independently with a finite-state
machine to illustrate at which points problems occur and where fault-tolerance
mechanisms come into play.

3.1 General Classification

Faults, Errors and Failures are defined below based on [5]. Figure 3.1 illustrates
the relationship between them.

Figure 3.1: The relationship between faults, errors and failures.

Definition 3.1 (Fault) A Fault is an underlying problem, e.g. interference. A
fault can lead to an error. 3

Definition 3.2 (Error) An Error is an indeterminate or wrong state of the
system. Being in an error state can lead to a failure of (a part of) the system.3

Definition 3.3 (Failure) A Failure is the observable result of an error, e.g. a
packet is lost. 3

9



3. Classification of Faults, Errors and Failures 10

3.2 Faults, Errors and Failures in LWB

A network is not 100% reliable, at any point in time a packet can get lost. We
call loosing a packet sent by an application packet failure. Nevertheless, a packet
failure might be corrected, e.g. by re-sending. Only a application packet which is
lost and cannot be recovered is definitely lost, which we consider to be a network
failure.

In this section, we first take a look at network failures before analyzing packet
failures more closely.

3.2.1 Network Failure

It is obvious that in order to definitely loose a packet, the system must be in the
state of having lost a packet. Using the terminology introduced in section 3.1,
a packet failure is an error state of the network, which can lead to a network
failure.

The goal of a fault-tolerance mechanisms, which we describe in more detail
in chapter 4), is to prevent the transition from error to failure. Therefore, in the
context of this analysis, a non-existing or not-working (e.g. because limits are
reached) fault-tolerance mechanism is an error state of the network as well.

And in conclusion, a network failure occurs if both a packet failure happens
and the fault-tolerance mechanism cannot handle it (fig. 3.2a).

3.2.2 Packet Failure

In this section we model the previously introduced packet failure by considering
faults and errors leading to the loss of an application packet.

First of all it is important to consider that LWB does not only send applica-
tion packets. To organize the network, the schedule has to be sent at the end of
every round (see section 2.2). A schedule packet can also get lost, which we call
schedule failure. Therefore, in the following we analyze both packet and schedule
failures.

Faults and Errors leading to Packet Failure An application packet is sent
from one node to (one or several) other nodes. Therefore, two fundamental errors
are possible: Either the packet is not sent, i.e. a sender error happens, or the
packet is not received by its indented recipients, i.e. a receiver error happens. A
receiver error can have the following underlying faults:

• Interference.
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(a) If a packet is lost and there either is no fault-tolerance mechanism or the mechanism
cannot correct the loss, the packet is lost for good, which we consider a network failure.

(b) An packet failure is a lost application packet, which can either be caused by a sender
error or receiver error. A sender error can happen if either the sending node does not
receive the schedule (schedule failure) or if the sending node fails. A receiver error can
happen because of interference, if the schedule has not been received or if the recipient
node fails.

(c) A schedule failure is a lost schedule packet. This equals 3.2b, except for the fact that
a schedule packet does not require to be scheduled.

Figure 3.2: Fault trees for network-, schedule packet- and application packet
failures. (The coloring highlights connections between fault trees.)
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• Node failure, e.g. a empty battery.

• The receiver has not received the schedule (schedule failure).

A sender error can either be caused by:

• Node failure.

• The sender has not received the schedule (schedule failure).

These dependencies can be illustrated with a fault tree (fig. 3.2b).

Host Node The host computes the schedule, therefore at the host node a
schedule failure cannot happen. If the host node either sends or receives a packet,
the respective schedule failure can be disregarded.

Schedule Failure Schedule failures can cause packet errors, therefore it is
useful to analyze them as well. Since LWB is based on Glossy and Glossy doesn’t
treat the schedule packet any different, the fault tree for schedule failure looks
just like the fault tree for application packets, with one important distinction:
The sending of the schedule does not depend on any other schedule, it is always
sent by the host at the end of each round. Therefore, a sender error only occurs
if the host node fails (fig. 3.2c).

3.2.3 We Only Consider Interference

One of the reasons for packet failure in the previous section is the failure of a node,
which in turn can have many underlying faults again, e.g. a broken radio, empty
batteries, etc. Because of the variety of underlying faults, modeling node failure
is out of scope of this work. Furthermore just by modifying our communication
protocol, there is not much to do about node failures.

Therefore we do not consider node failure for the rest of the analysis, which in
turn simplifies the presented fault trees for packet and schedule failure (fig. 3.3).
The only fault remaining fault is interference.

3.3 Modeling with a Finite State Machine

In the previous section, we model the relationship of faults, errors and failures
in LWB with fault trees. Based on this analysis, we are able to model the
‘lifetime’ of a packet with a finite-state machine (FSM, fig. 3.4) and because of
the assumptions made in chapter 2, the FSM for each packet is independent of
the FSMs of other packets.
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Successful reception of a packet depends on reception of schedule1 and packet.
Both can get lost due to interference, causing the FSM to enter an error state
(packet failure). Finally, a network failure is a trace ending in the failure state
and, as mentioned in section 3.2.1, the objective of a fault-tolerance mechanism
is to prevent the transition into the failure state.

In conclusion, the FSM illustrates at which points interference can cause our
system to enter an error state and where fault-tolerance mechanisms come into
play.

3.4 Conclusion

In this chapter, we use introduce faults, errors, failures and their relationship in
general. Based on this analyze faults, errors and failures in LWB-based networks
using fault trees. We introduce the following terms:

• network failure: A packet is lost and cannot be recovered.

• packet failure: An application packet is lost.

• schedule failure: A schedule is lost.

A network failure is caused by a packet failure, if there is no fault-tolerance
mechanism which can recover the packet. a packet failure can be caused by
interference or by schedule failure, which again can be caused by interference2.

Based on the fault-tree analysis and the assumptions on independence made
in chapter 2, we present a finite-state machine modeling the ‘lifetime’ of each
packet independently, illustrating at which points interference can cause the
system to enter an error state and where fault-tolerance mechanisms come into
play.

1If the host is sending or receiving the packet, only the remaining node must receive the
schedule. Otherwise both nodes need to receive the schedule.

2Aside from interference, node failures could cause packet loss, but we argue in section 3.2.3
why we do not consider node failure in this work.
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(a) Schedule Packet Failure (b) Application Packet Failure.

Figure 3.3: Simplified fault trees exluding node failures. Otherwise equal to
fig. 3.2. (The coloring highlights connections between fault trees.)

newstart sch. suc.

err. fail.
?

Figure 3.4: Finite State Machine modeling a packet sent from one node (source)
to another (sink).
new: The source has generated a packet and awaits the schedule.
sch.: Schedule received, source sends packet, sink listens for packet.
suc.: Packet successfully received.
err.: Error: Either a schedule or the packet is lost due to interference.
fail.: Failure: The packet could not be recovered.
The transition from error to failure depends on the fault-tolerance mechanism,
indicated by ?.
Note: If one of the nodes is the host, it does not need to receive the schedule.



Chapter 4

Fault-Tolerance Mechanisms

In chapter 3, faults, errors and failures are introduced. We cannot completely
avoid faults, in our case interference, which can happen anywhere and at any
time, leading the system to an error state. At this point, fault-tolerance mech-
anisms come into play, which aim to stop an error from becoming a failure by
the use of error correction.

Approaches to error correction can be classified in two categories[6]:

• Forward Error Correction (FEC)

• Automatic Repeat Request (ARQ), also known as Backward Error Correc-
tion

In this chapter, we briefly introduce both FEC and ARQ and introduce packet re-
ception rate and bandwidth overhead factor, the criteria we use to evaluate fault-
tolerance mechanisms independent of traffic patters such as number of packets
sent at a given point in time.

4.1 Error Correction

4.1.1 Forward Error Correction (FEC)

With Forward Error Correction, the sender pro-actively adds redundancy by
encoding the data before sending in order to recover data even if some packets
are lost. The simplest approach is a repetition code, which sends the packet k
times. As long as not all k packets are lost, the packet is received successfully.

Glossy flooding itself is a kind of FEC: Each packet is repeated multiple times
while it progresses through the network during a flood, since every node repeats
every received packet N times (see section 2.1).

15
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4.1.2 Automatic Repeat Request (ARQ)

ARQ dynamically retransmits lost packets. Hence, additional information is
added to each packet to enable the receiver to detect packet loss and request
re-sending of the packet. E.g. TCP uses sequence numbers to detect missing
packets and the receiver sends acknowledgments to tell the sender which packets
need to be re-sent.
Attempts to re-send packets are usually limited for several reasons:

• Packets have to be stored by the sender until they have been received
correctly and storage is limited.

• The available bandwidth is limited as well. If lost packets are re-sent
indefinitely, the cumulative number of packets to send grows infinitely.

4.2 Evaluation of Mechanisms

In order to compare different fault-tolerant mechanisms, we use the following
performance criteria, which relate to the overall reliability, in terms of packet
reception, and power consumption.

1. Packet Reception Rate (PRR), i.e. the probability of successfully receiving
a packet by the intended recipients taking fault tolerance into account (in
contrast to the probability p of receiving a packet during one flood).

2. Bandwidth overhead factor, i.e. how much additional bandwidth is re-
quired to send one packet. This closely correlates with additional energy
consumption. In LWB, we describe overhead by how many slots are re-
quired for a single packet compared to the ideal case, in which a packet
requires exactly one slot.

Another performance criterion commonly used is the average time until suc-
cessful reception, which is important for timing-dependent applications, such as
real-time control. In this work, we do not focus on timing-dependent applications
and therefore do not consider the average time until success further.

Both performance criteria allow us to evaluate fault-tolerance mechanisms
independent of traffic patterns, e.g. we do not rely on the number of packets
sent at a given time and instead analyze the performance on a per packet basis,
allowing our result to be more general.
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4.3 Discussion

In the previous sections, we described forward error correction (FEC) and auto-
matic repeat request (ARQ). Furthermore, we introduced packet reception rate
and bandwidth overhead as important performance criteria to evaluate mecha-
nisms based on either FEC or ARQ. Next, we discuss how overhead bandwidth
and packet reception rate differ in general in FEC and ARQ.

As the name implies, forward error correction has no feedback: The sender
adds redundancy pro-actively to allow room for some errors. The bandwidth
overhead is constant: If we repeat a packet k times, it is sent k times, even if it is
received after the first attempt since the sender does not know (or care) whether
the sending has been successful. While a constant overhead is often wasteful, it
is a lot simpler to both implement and analyze.

Feedback makes ARQ-based mechanisms more dynamic, e.g. if a packet is
received correctly after the first try, it does not have to be re-sent again, which
lowers the bandwidth overhead if no errors happen. But additional acknowledg-
ment packets may be needed, which both increases the required bandwidth and
are possible points of failure. Both the dynamic behavior and additional packets
make ARQ-based mechanisms harder to model and analyze, but potentially al-
low better performance, e.g. reducing bandwidth overhead and therefore energy
consumption, which is desirable for low-power networks.



Chapter 5

Fault-Tolerant Data Collection

In this chapter, we take a closer look at fault-tolerant data collection. To this
end, we provide a context in form of an application case, illustrating the scenario
and objective.

Next, we introduce an FEC mechanism using packet repetition for fault-
tolerance, which allows us to ignore feedback to simplify analysis in a first step.
We motivate why a mechanism based on repetition is suited for our applica-
tion, and show how it achieves high reliability but comes with high bandwidth
overhead.

Then, we consider a mechanism using feedback. As further explained in
section 5.2.2, we can leverage the scheduling-based communication of LWB to
extend the repetition mechanism to an ARQ mechanism, re-sending packets only
if they have been lost (instead of a fixed repetitions). The re-sending mechanism
achieves the same packet reception rate as the repetition mechanism and requires
less bandwidth on average, which helps to conserve energy.

Furthermore, we show how additional data collecting nodes (later called
sinks) can be added to further improve fault-tolerance and in particular, how
using additional sinks benefits from Glossy-based communication. We show two
mechanisms using additional sinks:

1. A passive variant without dedicated feedback from the additional sinks,
which benefits from Glossy because the additional sinks overhear all pack-
ets.

2. An active variant including acknowledgments to provide feedback from
additional sinks, which also benefits from Glossy: We show how shared
slots can limit the overhead bandwidth factor.

For each mechanism, we discuss limitations and benefits.

18
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5.1 Application and Objective

Wireless Sensor Networks One important function of low-power wireless
sensor networks is data collection. In such a scenario, one node in the network
(the sink) is either connected to the Internet, equipped with big storage capa-
bilities (or similar) while the other nodes (the sources) have neither. Sources
generate packets of data and send them to the sink. E.g. in the PermaSense
project, all nodes are connected in a low-power wireless network, while a sin-
gle node (the sink) features a GPRS-module to transmit the sensor data to a
database via the Internet[7].

Limitations and Objective Nodes in such networks, as in PermaSense, have
limited computational capabilities and must be available over months (or years)
and therefore have to consume as little energy as possible. A major factor
for energy consumption of each node is the radio on-time[4]. In conclusion,
low-power communication protocols must minimize the number of transmissions
while achieving high reliability. Fault-tolerance mechanisms for such networks
therefore have the following objective in terms of the criteria formulated in chap-
ter 4:

• High packet reception rate by the sink

• Low bandwidth overhead factor

Considerations for LWB The sink has more capability in terms of computing
power, available energy, Internet access, etc., so it makes sense to let the sink be
the network controller, i.e. the LWB host.

Moreover, in a network like PermaSense, sources continuously generate data
at a constant rate, e.g. one sample every 10 seconds. Therefore, using LWB,
a node registers one (or several) data streams with the required inter-packet
interval once on startup and no streams are added/removed (Node failure is not
considered in this work, see chapter 3). We assume that all data streams have
been registered already and do not particularly analyze the startup phase, as
described in chapter 2. For a dynamic environment with changing data streams,
it might be necessary to adjust the mechanisms introduced in the following, but
this is out of scope for this work.

Multiple Sinks It can be interesting to add additional sinks, e.g. multiple
nodes equipped with a GPRS module. Using multiple sinks, a packet is consid-
ered as received if at least one sink has received it. We discuss additional sinks
in section 5.3.
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5.2 Single Sink

We now consider the application case described in section 5.1 with a single sink.
First, we propose a simple FEC mechanism using packet repetition for fault tol-
erance. Second, we present an ARQ mechanism based on the repetition mecha-
nism. Comparative analysis of the two mechanisms shows that both achieve the
same packet reception rate, but the ARQ mechanism requires less bandwidth on
average.

5.2.1 Fault Tolerance using Packet Repetition

Because of its simplicity, an FEC mechanism is an ideal starting point. In
particular, we consider packet repetition, which requires no computation on the
sources. This is suitable for nodes with low computational capabilities, like in
our application.

The Mechanism

• The sink schedules every packet in k subsequent rounds.

• If the packet is received in any of the rounds, the transmission was suc-
cessful.

To differentiate packets and request re-sending, we require a sequence number
for every packet of each data stream. The sequence number is added to the
schedule, which now contains the following information for every slot:

• The source, i.e. node initiating the flood

• The sequence number of the packet to be sent

Packets themselves do not require to contain the sequence number again, since
the slot in which a packet is received is tied to the sequence number of the packet.

Sources need to keep sent packets in memory along with their sequence num-
ber. Every time a schedule is received, packets which are no longer scheduled
are removed.
Furthermore, we identify limits for k:

• The bandwidth must be sufficiently big for k times the number of packets
per data stream.

• The sources must be able to keep k packets per data stream in memory.
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Packet Reception Rate We model the reception of a packet during a single
round with a finite state machine as described section 3.3 (fig. 5.1a). Since recep-
tion probability is independent of the round, repetitions are essentially separate
events.

The probability that the sink receives a packet during a round is p2: The
source needs to receive the schedule (and send the packet) and the sink needs to
receive the actual packet. Both packets are received independently with proba-
bility p, resulting in an overall probability p2. We compute the packet reception
rate (PRR), i.e. the probability that the sink receives the packet at least once if
it is scheduled in k rounds.

PRR = 1 − (1− p2)k︸ ︷︷ ︸
loose all k packets

If the sink does not receive the packet at least once after it has been scheduled
in k rounds, it is definitely lost.

We note that for increasing k, the packet reception rate approaches 1 asymp-
totically (fig. 5.1b).

Bandwidth Overhead Factor The repetition mechanism requires k times
the data slots compared to the ideal case. The slots themselves have the same
length as without repetition – while the sequence number is additional informa-
tion, it is only required in the schedule and does not influence the data packet
size.

Summary & Discussion We analyze a fault-tolerance mechanism using packet
repetition suitable for sources with little computational power, as common in low-
power wireless networks. While the packet reception rate approaches 1 asymp-
totically for increasing k, the bandwidth overhead increases linearly with k.

The proposed mechanism schedules a packet in k subsequent rounds. Alter-
natively, a packet could be scheduled k times in the same round, although with
less reliability: A source only sends packets in a round, if the schedule for the
round has been received. As a result, no matter how often a packet is scheduled
in a single round, receiving the schedule is a bottleneck – if the schedule is lost,
no packet are sent at all.
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(a) FSM based on fig. 3.4 for the reception of a single packet. The source receives
the schedule with probability p. The sink receives the packet sent by the source with
probability p as well. The failure state depends on the FSMs of all k packets and is not
included here.

� � � � 	 
 � �  �� �� �� �� �� �	 �

����������������������

���

��	

��


���

���

��

���

��
��

��
��

��
��

���
��

�
��

�

p
=
0.
6

p
=
0.
6

p
=
0.
7

p
=
0.
6

p
=
0.
7

p
=
0.
8

p
=
0.
6

p
=
0.
7

p
=
0.
8

p
=
0.
9

(b) Packet reception rate over number of packet repetitions, plotted for several values of
p (probability for receiving a packet in a round). The packet reception rate approaches
1 asymptotically with increasing k

Figure 5.1: Fault-tolerance mechanism using packet repetition.
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5.2.2 Fault Tolerance using Packet Re-Sending

In this section, we analyze an ARQ mechanism, which is saving bandwidth by
re-sending a packet only until it has been received by the sink.

We show that this mechanism achieves the same packet reception rate as
the repetition mechanism described in section 5.2.1, but uses the available in-
formation to only re-schedule a packet if necessary instead of a fixed number
of repetitions. We show that for a given probability p to receive a packet in
a round, the average bandwidth overhead factor of the re-sending mechanism
does not exceed 1/p2 while the packet reception rate is equal to the repetition
mechanism.

Mechanism ARQ requires detection of packet loss and requesting of re-sending.
Fortunately, both are easily achieved in LWB with the sink as LWB host.

• Packet loss is detected by the sink simply by checking if a packet has been
received in a slot or not.

• If a packet is lost, the sink requests re-sending by scheduling the packet
again in the next round.

• If a packet has already been scheduled k times, it is not scheduled again
and is definitely lost.

In a worst-case scenario, i.e. a packet is only received in the k-th round or
never, the re-sending mechanism exactly equals the repetition mechanism, but
the re-sending mechanism avoids unnecessary re-scheduling if a packet is received
earlier.

Packet Reception Rate Packet reception for the re-sending mechanism is
modeled with an FSM. In contrast to the repetition mechanism, subsequent
rounds are now connected, in particular, the process is only repeated if the
packet is lost (fig. 5.2a).

The Packet reception rate equals the repetition mechanism since we only stop
re-scheduling after k rounds (as before) or in the case of success. The packet
reception rate (PRR), i.e. the probability that the sink receives a packet after it
has been scheduled in up to k rounds, is:

PRR = 1− (1− p2)k

Alexander Dietmüller

I have completely removed the paragraph on round size/timing, since when reading the text again it did not really seem important for the rest of the chapter.
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schedule again (up to k times)

(a) FSM modeling packet reception a re-sending mechanism based on fig. 3.4. The source
receives the schedule with probability p. The sink receives the packet sent by the source
with probability p as well. If the sink does not receive the packet, it is scheduled again
(up to k times). If the packet is not received by the sink after k times, it is definitely
lost.
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(b) Package reception rate and average bandwidth overhead factor over attempts to
schedule a packet plotted for several probabilities to receive a packet in a round p.
The packet reception rate is equal to fig. 5.1b, the average bandwidth overhead factor
approaches 1/p2 for increasing k.

Figure 5.2: Fault-tolerance mechanism using packet re-sending.



5. Fault-Tolerant Data Collection 25

Bandwidth Overhead Factor In a worst-case scenario, every packet is sched-
uled k times, which equals a bandwidth overhead factor of k. For the average
bandwidth overhead factor, we recall: The sink only re-schedules a packet if it
is not received and schedules any packet up to k times.

A packet requires i (i < k) slots, if it is received in round i, which is equal to
the probability of not receiving the packet in i − 1 rounds and finally receiving
it in round i. Exactly k slots are used by a packet if it has not been received
in the previous k − 1 rounds, regardless of the reception in round k, since the
packet won’t be scheduled again. The probability to receive a packet in a round
is p2, as established in section 5.2.1.
The average bandwidth overhead factor is equal to the expected number of slots
per packet: If we expect j slots per packet instead 1 as in the ideal case, the
bandwidth overhead factor is exactly j:

E[slots per packet] =
k−1∑
i=1

i (1− p2)i−1 p2 + k (1− p2)k−1 (5.1)

=
1− (1− p2)k

p2
(5.2)

How to get from 5.1 to 5.2 is explained in Appendix A, where we also show that
for k → ∞, the average bandwidth overhead factor approaches 1/p2 (fig. 5.2b).

Summary & Discussion We describe a fault-tolerant mechanism based on
re-sending that closely relates to the repetition mechanism described in sec-
tion 5.2.1. In particular, using the sink as LWB host allows requesting the
resending of packets with the schedule instead of requiring additional packets.
In contrast to the repetition mechanism, a packet is only re-sent until it is re-
ceived once. This results in a expected bandwidth overhead much lower than
the worst-case bandwidth overhead (k times the ideal number of slots). The
expected bandwidth overhead does not scale linearly with k, but asymptotically
approaches 1/p2 times the ideal number of packets.

In other applications, it might be interesting consider a bandwidth overhead
factor, not per packet, but per round, e.g. scheduling at most one slot for the
re-sending of packets per round. Analysis of such a mechanism would depend on
the traffic patterns, i.e. the size of rounds over time, which is out of scope for
this work. Nevertheless, the approaches to modeling and analysis presented in
this section are tools that can be used for such mechanisms as well.

5.3 Multiple Sinks

In this section we add additional sinks, e.g. multiple nodes with a GRPS Module
in PermaSense. We denote the number of additional sinks by s. As described in
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section 5.1, a packet needs to be received by at least one sink, no matter which
one. One sink still is the LWB host, which we call the host sink. All other sinks
are called additonal sinks.

First we show how additional sinks increase packet reception rate simply by
being part of the network, i.e. without any dedicated communication with the
host sink, because communication is based on flooding (see section 4.1).1

Furthermore, we motivate and analyze a fault-tolerance mechanism for mul-
tiple sinks based on sending acknowledgments from the additional sinks to the
host sink.

5.3.1 Passively Increased Reception by Additional Sinks

All nodes in the network receive (and send) all packets during every Glossy flood,
which means that every additional sink overhears all packets just by being part
of the network, without any explicit communication with sources or the host
sink.

Packet Reception Rate The packet reception rate is the probability that a
packet is received by at least one sink (host or additional). The probability that
the host sink receives a packet is still p2. The probability that an additional sink
receives a packet is p3, since this depends on three packet receptions, which we
assume to be independent (section 2.3):

1. The source must receive the schedule (to send the packet)

2. The additional sink must receive the schedule (to participate in the round)

3. The additional sink must receive the packet

Therefore, the packet reception rate (PRR) is:

PRR = 1−
(
1− p2

)︸ ︷︷ ︸
host

(
1− p3

)s︸ ︷︷ ︸
additional

Which is monotonically increasing in s, i.e. with every additional sink, the packet
reception rate increases.

Combined with the the mechanisms from sections 5.2.1 and 5.2.2, the packet
reception rate increases further, without changes to the average and worst-case

1We assume the probability to receive a packet by a node to be equal at every point in space
and time. In reality, interference might be localized. Multiple sinks in different locations are
less affected by localized interference, therefore providing additional benefits not discussed in
this work.
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Figure 5.3: Package reception rateover attempts to schedule a packet (k) plotted
for several sinks with a fixed probability to receive a packet in a round (p = 0.7).
A desired packet reception rate can be achieved by both increasing k or adding
additional sinks.

bandwidth overhead factor. The packet reception rate (PRR) for a re-sending
mechanism with additional sinks is:

PRR = 1−
(
1− p2

)k (
1− p3

)sk
In conclusion, the packet reception rate is increased by additional sinks and this
effect scales with scheduling a packet multiple times.

Bandwidth Overhead The bandwidth overhead factor remains unchanged,
since no additional slots are required2 and the additional sinks do not commu-
nicate with the host sink, therefore, re-scheduling still depends on the reception
by only the host sink.

Summary & Discussion Through Glossy flooding, additional sinks in the
network increase reliability because they receive all packets. Furthermore, addi-
tional sinks do not increase the bandwidth overhead factor and work well together
with the re-sending of packets, increasing benefits further.

The benefit of additional sinks is achieved without dedicated communica-
tion between the additional sinks and the host sink. While this is elegant in its

2Additional nodes might increase the network diameter, increasing the radio on-time of
Glossy [1], which we don’t look into further, since we try to find results independent of network
topology.
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simplicity, a packet might be re-scheduled by the host sink even though an addi-
tional sink might have received it. In the next section, we analyze one approach
to address this.

Nevertheless, we are able to provide a model combining packet re-sending
and additional sinks, which can be used to make a decision in the process of
designing a network. If the cost of additional bandwidth and additional sinks or
constraints on either bandwidth or number of sinks are given, this model can be
used to find an optimal set-up.

5.3.2 Additional Sinks Actively Acknowledging Reception

Using a re-sending mechanism without any feedback from the additional sinks
can cause packets to be re-scheduled unnecessarily: Regardless of the additional
sinks, if the host sink has not received the packet, it is re-scheduled. In order
to avoid this, communication between the additional sinks and the host sink is
required.

Communication between sinks could happen out-of-band, e.g. over the Inter-
net, but this is out of scope for this work. Instead we focus on a solution using
LWB and extend the re-sending mechanism of section 5.2.2 to include acknowl-
edgment packets, ACK in the following, sent by the additional sinks to inform
the host sink about received packets.

We discuss how Glossy flooding helps limit the number of ACK slots required
per packet and analyze the resulting mechanism.

Acknowledgment Mechanism We extend the re-sending mechanism of sec-
tion 5.2.2 as follows:

• For each packet, additional slots for ACKs are scheduled.

• An ACK is a predefined packet, e.g. of one byte length with content 1.

• Additional nodes send an ACK, if they have received the packet, otherwise
they don’t send anything.

• If the host node has not received the packet or an ACK from at least one
of the additional sinks, the packet is re-scheduled (up to k times).

Naively, we need to schedule one ACK slot per packet for each additional
sink, resulting in s slots for ACKs per packet. Fortunately, since the network is
based on Glossy, we are able to reduce this overhead.

As explained in section 2.1, a flood can be initiated from several nodes with-
out changing the outcome, i.e. a packet is still received with probability p. Since
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the objective is to receive the packet by at least one sink, no matter which one,
all additional sinks which have received a packet can share an ACK slot by ini-
tiating the flood together. As a result, one ACK slot is required per packet,
regardless of the number of additional sinks.

Packet Reception Rate ACKs do not influence the packet reception rate,
they only allow re-scheduling to be stopped if one of the additional sinks has
received a packet Therefore, the packet reception rate PRR is equal to the re-
sending mechanism using additional sinks without ACKs.

PRR = 1− (1− p2)k(1− p3)sk

Bandwidth Overhead Factor Contrary to the packet reception rate, to com-
pute the bandwidth overhead factor, ACKs have to be considered. The host sink
stops to schedule a packet either if it has received the packet itself or if it has re-
ceived an ACK. If the host receives the packet, the additional sinks are irrelevant.
Otherwise, if at least one of the additional sinks initiates ACK transmission, the
ACK is received with probability p. If the host sink receives the packet or ACK, it
is certain that the packet has been received and does not need to be re-scheduled
(fig. 5.4a).3 We call the probability, that the host sink is certain that the packet
is received by itself or one of the other sinks, pcertain and can use this to compute
the average bandwidth overhead factor as in section 5.2.2. We have to consider
that every time a packet gets scheduled, we actually require 2 slots, one for the
packet and one for the shared ACK.

pcertain = p2︸︷︷︸
host

+(1− p2)(1− (1− p3)s) p︸ ︷︷ ︸
additional

(5.3)

E[slots per packet] = 2

k−1∑
i=1

i (1− pcertain)
i−1 pcertain + k (1− pcertain)

k−1

(5.4)

= 2
1− (1− pcertain)

k

pcertain
(5.5)

While the ACKs indeed allow the host sink to stop re-scheduling earlier, the
additional slot required for the ACK causes this mechanism to actually have a
higher bandwidth overhead factor compared to the mechanism without ACKs
(fig. 5.4b). Nevertheless, without a shared ACK slot, the bandwidth overhead
factor have a constant multiplier of s instead of 2, i.e. the average bandwidth
overhead would increase with the number of additional sinks!

3Not receiving an ACK does not mean that no additional node has received the packet, since
the ACK could have been simply lost.
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(a) FSM based on fig. 5.2a describing whether a packet is re-scheduled or not using a
re-sending mechanism with additional sinks sending ACKs. The additional states are:
ack: The host sink has received an ACK.
ack: The host sink has not received an ACK.
stop: The host sinks stops to re-schedule a packet.
The probability p∗ to receive an ack is the probability that at least one additional sink
receives the packet times the probability that the ACK is received by the sink (p as for
all packets), i.e. p∗ =

(
1−

(
1− p3

)s)
p.
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(b) Average bandwidth overhead factor over attempts to schedule a packet (k), plotted
for several numbers of sinks. The probability to receive a packet in a round is fixed to
p = 0.7. Additionally the average bandwidth overhead factor without using ACKs as
comparison. While, using ACKs, additional sinks lower the average bandwidth overhead
factor, the slot required for ACKS causes the average bandwidth overhead factor to be
higher compared to not using ACKs at all.

Figure 5.4: Additional sinks sending ACKs
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Summary & Discussion We show how ACKs can be used for communication
between additional sinks and the host sink to avoid unnecessarily re-scheduling
a packet if it has already been received by an additional sink. Furthermore, by
sharing the ACK slot, which is possible because of Glossy flooding, the number
of ACK slots is limited to one per packet. Nevertheless, evaluation shows that
ultimately the bandwidth overhead factor is higher – although the slots per
packet can be reduced, the additional ACK slot counteracts this gain.

Furthermore it has to be considered that the simple ACK mechanism we
analyze can not avoid unnecessary re-sending completely. Even if an additional
sinks receive a packet, if the ACK is lost, the packet is re-scheduled.

It might be possible to address the overhead of ACKs by scheduling one
ACK per additional sink per round containing information about all packets
of the round. But analysis of this approach would depend on traffic patterns,
i.e. how many slot are scheduled per round, which is out of scope of this work.
Additionally, as mentioned above, the sinks could also use a common back-end
like the Internet to exchange information, which might provide greater flexibility,
although entwining LWB with another protocol like TCP can provide a challenge
for modeling and analysis.

In consideration of these limitations, shared slots might be an interesting
approach which is made possible by the use of Glossy floods – and indeed, in
section 6.4, we briefly discuss another possible use case of shared slots for shared
negative-acknowledgments.

5.4 Discussion

In this Chapter we describe low-power data collection applications like Per-
maSense and formulate the objectives of fault-tolerance mechanisms for such
applications.

Based on this, we describe a mechanism based on re-sending packets and show
that this mechanism essentially is an extension of a mechanism using packet rep-
etition and differs by using the available information and the scheduling of LWB
to avoid unnecessary repetition of packets without additional communication
required.

The re-sending mechanism is limited by available bandwidth in the net-
work and storage capacity of sources, but otherwise requires little computational
overhead. Furthermore we show that the expected bandwidth overhead upper
bounded by 1/p2 (p is the probability to successfully receive a packet) and the
packet reception rate is 1− (1− p2)k (k is the maximum number of attempts to
send a packet).

Next, we show how using additional sinks works well in Glossy-based net-
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works, since all nodes in the network (including the additional sinks) receive all
packets. This increases the packet reception rate without increasing bandwidth
overhead and without any dedicated communication between the additional sink
and the host sinks. As a result, the packet reception rate can both be increased
by adding additional sinks or allowing each packet to be re-scheduled more often
and we provide models for the influence of each. Given information such as cost
to increase bandwidth versus cost of additional nodes, this can be used to find
the best solution for a given situation.

Finally we describe a mechanism using both re-sending and additional nodes
in combination with acknowledgment packets to allow the additional nodes to
provide feedback. With this feedback, the host node can stop re-scheduling a
packet if an additional nodes receives it. Ultimately, we find that the overhead
of ACKs outweighs the benefits of avoiding unnecessary re-scheduling. Never-
theless, we show how the sharing of slots by jointly initiating a flood by several
nodes allows to limit bandwidth overhead. While it is not useful in this particu-
lar mechanism, it might be an interesting approach in other situations. Another
mechanism making use of this is briefly described in section 6.4.

All results must however be taken with the assumptions made in section 2.3
in mind. In particular, since nodes are sending multiple packets per round, the
discussion in section 2.3.4 is relevant. In short, we underestimate our probability
of success by assuming independence. Further work analyzing the impact of this
assumption might be an interesting next step.



Chapter 6

Fault-Tolerant Data
Dissemination

In chapter 5, we introduce a data-collection scenario in low-power wireless net-
works. Such a network features multiple nodes, e.g. sensors, which collect and
send data to a node with additional capabilities, such as an Internet connection.
This sink also assumes the role of LWB host.

Often, the data flow is not one-directional. The host might not only collect
data but distribute data packets itself, e.g. sensor settings, control commands or
software updates, called host packets in the following. We assume host packets
can be identified by sequence numbers without getting into more detail for the
sake of simplicity. In this chapter, we take a look at data dissemination. As
before, the objective is to achieve a high packet reception rate, i.e. as many of
the distributed packets as possible should arrive, while keeping the bandwidth
overhead factor, i.e. the required additional energy, low. Furthermore, it is
interesting to consider the information available to the host, in particular, if the
host knows which nodes in the network have received data, and which have not,
e.g. to be aware that some sensors might operate with old settings and react
accordingly.

W Unfortunately, analyzing data dissemination is more complicated than
data collection. All nodes react to the sending of packets by the host, which
in turn, depending on the mechanism in use, might schedule the dissemination
of host packets based on all nodes in the network, e.g. based on the number
of nodes which have received a previous host packet. This can cause nodes to
depend on all other nodes in the network, which is difficult to model.

Nevertheless, we roughly describe three mechanisms for fault-tolerant data
dissemination in LWB and comment on their benefits and challenges to provide
a starting point for future work:

• ACKs for each node in dedicated slots

• ACKs added to existing data streams (piggy-backing)
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• Shared negative-acknowledgments (NACKs)

6.1 Application and Objective

6.2 Dedicated Acknowledgments

A first and straightforward mechanism is to schedule ACKs for every node and
host packet, similar to section 5.3.2. Unfortunately, we cannot share the ac-
knowledgment slot. The only information provided by receiving a shared ACK is
whether at least one node initiated the flood, i.e. at least one node acknowledges
reception, which does not help since all nodes need to acknowledge reception and
differentiating which node has acknowledged is important.

Example Mechanism

• For each host packet, the host schedules one ACK slot per node in the
same round.

• If at least one ACK is not received, the packet is re-scheduled.

• Every time a packet is re-scheduled, ACK slots are scheduled again for
nodes of which no ACK is received yet.

• Every packet is scheduled up to k times.

This mechanism attempts to save at least some bandwidth by not scheduling
ACKs for nodes which have already acknowledged reception of a packet.

Benefits Using ACKs by each node, the host receives precise information
about which nodes have received a packet. Furthermore, the host receives feed-
back in the same round in which the packet is disseminated.

Challenges A considerable bandwidth overhead is required: If the network
consists of B nodes, at least B additional slots are required for ACKs, without
considering re-sending and further ACKs.

The issue of many slots could be addressed by scheduling one ACK slot
per node, containing the data of the next expected packet, as in TCP. On the
downside, several host packets can depend on the same ACK, increasing modeling
difficulty.

The challenge of modeling could be approached by analyzing the number
of nodes for which no ACK is received for a given round, i.e. the number of
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unresponsive nodes. If there are unresponsive nodes, the packet must be re-
scheduled with as many ACK slots as unresponsive nodes. Depending on the
number of unresponsive nodes in the previous round, the number of unresponsive
nodes for the next round could be computed. The distribution of the number of
unresponsive nodes could provide an estimate for the bandwidth overhead factor,
since it determines the number slots needed in the next round, while the expected
number of unresponsive nodes after k rounds might be used to determine packet
reception rate.

6.3 Piggy-Backing Acknowledgments onto Data Streams

Example Mechanism Opposed to scheduling dedicated slots to provide ac-
knowledgments, the ACK could be attached to existing data streams, therefore
increasing the size of packets sent, but not requiring additional slots.

Benefits As before, using acknowledgments provides the host with precise in-
formation whether a node has received a packet. Furthermore, no additional
packets need to be scheduled.

Challenges The ACK is tightly coupled to the existing data streams in this
case. If we do not have data streams for some nodes, we need to compensate this
with something like acknowledgments as described in section 6.2, which brings
the challenges described there. Furthermore, the difficulty of modeling the data
streams, which depends on the scheduler in use, has to be considered.

6.4 Using Negative-Acknowledgment to Indicate Packet
Loss

We have discussed two different ways to send ACKs, either in dedicated pack-
ets or by piggy-backing on existing data streams. In this section, we consider
how using NACKS enables enables slot sharing, similarly to the shared ACK in
section 5.3.2. While slot sharing saves bandwidth, the shared NACK does not
provide the information of which nodes received a packet.

Example Mechanism

• For every host packet, a single NACK slot is scheduled in the same round.

• Every node which does not receive the host packet sends a pre-determined
packet in the NACK slot.
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• If a NACK packet is received by the host node, the host packet is re-sent.

Leveraging Glossy to share a slot is possible with NACKs, since it does not matter
how many nodes have not received a packet – if one node has not received it,
the packet needs to be re-sent.

Benefits By using shared NACKs, the number of additional slots required is
limited, preserving bandwidth. Furthermore feedback is provided in the same
round in which the host packet is scheduled.

Challenges Contrary to the previous mechanism, the NACK-based mecha-
nism does not provide the information which nodes have received a packet: Not
receiving anything during a NACK slot does not equal reception of the host
packet by all nodes – the NACK packet could have been lost.

Nevertheless, a mechanism based on negative-acknowledgment can increase
the probability to receive a packet with limited bandwidth overhead, if it is not
important to know which node has received each packet.

6.5 Discussion

In this chapter, we introduced three mechanisms for data-dissemination scenar-
ios: Sending ACKs in dedicated slots, piggy-backing ACKs onto existing data
streams and shared NACKs.

In conclusion, the first two – acknowledgment-based – mechanisms we discuss
suffer from high bandwidth overhead. Based on the work we did, it is not obvious
if Glossy and LWB can be leveraged for acknowledgments in data dissemination
applications.

Following a different approach, we present a mechanism based on negative-
acknowledgments, which sacrifices information, i.e. which node has received
what, but benefits from network flooding to conserve bandwidth.

All presented mechanisms are not analyzed as extensively as the mechanisms
in chapter 5 because their dependencies provided modeling challenges out of
scope for this work. Nevertheless, the mechanisms might provide a starting
point and inspiration for future work.
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Related Work

7.1 Protocols

eLWB In our data-collection application, we focus on periodically generated
data. The Event-based Low-power Wireless Bus (eLWB) [8] targets data-collection
in applications with additional random and sporadic events. It features a mech-
anism to register events. Although it is not the focus of eLWB, this mechanism
could be an interesting approach to request retransmission of lost packets.

Splash Splash [9] is a Glossy-based protocol for data dissemination. It uses
both FEC and ARQ for fault-tolerance. When distributing data, Splash adds
500 packets which are XOR-combinations of 20 randomly chosen data packets to
allow nodes in the network to recover from single packet losses. After the data
distribution is over, nodes which are still missing packets request them from their
neighboring nodes.

Pando Similar to Splash, Pando [10] is a data dissemination protocol based
on Glossy. It uses fountain coding to send a continuous stream of data to nodes
in the network and implements an ARQ mechanism with silence-based feedback
for fault-tolerance. The feedback works as follows: Pando organizes the network
in a tree and parent nodes keep forwarding data until their child nodes stop
transmitting. As soon as a leaf node has received all the data, it stops transmit-
ting. This is detected by the parent nodes and their parents, ..., until the whole
network is silent and the dissemination is complete. Therefore nodes can request
missing packets by not going silent.

Chaos Chaos [11] takes a different approach to network flooding: In Chaos,
every node adds its own data to the packet which is currently flooded, instead
of repeating the packet of the initiating node. To realize this, Chaos is based
on merge operators, which define how a node can combine its own data with the
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packet it has received, e.g. aggregation functions like max,min or sum. This way,
Chaos combines data collection and processing. Chaos implements an ARQ-like
mechanism to terminate the flood: A status flag for each node in the network is
added to every packet. If a node has participated in the flood, it sets its status
to 1. This way node receive feedback from other nodes and can terminate the
flood if every node has participated or restart the flood if some nodes are still
missing.

7.2 Related Work on Modeling and Fault-Tolerance

On Modeling Low-Power Wireless Protocols Based on Synchronous
Packet Transmissions The authors of [4] model the energy consumption of a
re-sending mechanism as described in chapter 5 – indeed, our mechanism is based
on their analysis. But their focus lies not on the fault-tolerance mechanism, but
on energy consumption based on the reception of schedule packets, in particular
modeling the response to lost schedules with a finite-state machine. They create
an accurate model of LWB and are able to predict the energy consumption of
LWB with an error of less than 1%.

End-to-End Real-time Guarantees in Wireless Cyber-physical Systems
While we focus on packet reception rate and bandwidth overhead factor, for
many applications timing is an important performance criterion. In particular,
guaranteed end-to-end deadlines. One approach to guarantee such deadlines is
to establish real-time contracts between applications and the network [12]. The
authors use a protocol built on LWB and add admission tests to the registering of
data streams. A stream is only registered if all parts of the chain from application
to application have the capability to deliver the packets of the data stream. This
way, guarantees can be given for all admitted streams.

A Survey on Data Dissemination in Wireless Sensor Networks In
a survey about fault-tolerant data dissemination, many approaches to fault-
tolerance in wireless networks based on routing are analyzed [13]. The report
confirms that up-to-date, little work (and analysis) has been done on fault-
tolerance in Glossy-based networks, but states that Glossy-based communication
is a promising technique for data dissemination.
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Conclusion

We provide a classification of problems affecting LWB-based networks and model
and analyze several fault-tolerance mechanisms for data collection and briefly dis-
cuss possible approaches to fault-tolerant data dissemination. Preliminarily, we
summarize the core concepts of Glossy and LWB in chapter 2, describe statis-
tical properties of packet reception in Glossy and motivate and discuss further
assumptions we make. In chapter 3, we classify faults, errors and failures in an
LWB-based network and model their relationship with fault-trees. We briefly
argue why we only consider interference as a fault for our analysis. Based on our
assumptions, we are able to model the ‘lifetime’ of each packet independently
with a finite-state machine. In chapter 4 we introduce Forward Error Correction
(FEC) and Automatic Repeat Request (ARQ) as the two basic approaches to
fault-tolerance. Additionally, we describe packet reception rate and bandwidth
overhead factor(related to energy consumption), the two main criteria we use
for evaluation of fault-tolerance mechanisms. In chapter 5 we introduce a data
collection application based on wireless sensor networks like PermaSense and
present several fault-tolerance mechanisms:

• We first focus on a single data collecting sink, present an FEC mecha-
nism on packet repetition and an ARQ mechanism based on re-sending
of lost packets, which achieves the same packet reception rate at much
lower average bandwidth overhead factor compared to the simple repeti-
tion mechanism.

• We also analyze several (redundant) sinks and analyze how they can benefit
from Glossy without communication between each other. Furthermore,
we present a simple acknowledgment-based mechanism for communication
between sinks and explain how Glossy can be leveraged to save bandwidth
required for acknowledgments.

Finally in chapter 6 we briefly discuss several approaches to data dissemination.
In conclusion, the statistical properties of Glossy allow us to create a sim-

ple model for packet reception which allows us to analyze the proposed fault-
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tolerance mechanisms for data collection. We are able to present several ways
to leverage Glossy and LWB for the design of fault-tolerance mechanisms:

• LWB scheduling is used to request re-sending of lost packets without any
acknowledgment packets.

• The flooding-based communication of Glossy allows every node in the net-
work to overhear every packet, allowing additional sinks in the network to
collect data (and increase reliability) without any changes to the way the
network operates.

• By initiating a Glossy flood with the same packet by multiple nodes, the
slot for an acknowledgment packet is shared to preserve bandwidth.

On the other hand, based on our discussion on data dissemination it is not
obvious whether Glossy and LWB-based communication can be leveraged for
data dissemination as well.

While some statistical properties of Glossy have been validated, we rely on
some additional assumptions for our analysis. Further analysis could be inter-
esting work to gain insight in which situations our assumptions are valid or to
be able to find models which do not require on these assumptions. Aside from
this, our results aim to be as general as possible, independent of different traffic
patterns and network topologies. Our work can be taken as a foundation for
analysis in more specific use-cases, e.g. specific network topologies and known
traffic patterns. Finally, the mechanisms we presented are only a subset of all
possibilities. While we are able to present fault-tolerance mechanisms leveraging
Glossy and LWB, there might be other equally – or more – interesting mecha-
nisms in Glossy-based wireless communication networks worth investigating.
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Closed Forms of Sums

For any 0 < q < 1:
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Where we use the elementwise differentiation to go from step A.5 to A.6:
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wk (A.12)

= w
∂

∂w

N∑
i=1

wk

︸ ︷︷ ︸
geometric series

(A.13)

= w
∂

∂w

1− wn+1

1− w
(A.14)
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For k → ∞, we do not have a final term, but otherwise the idea is the same.
Since 1− q is less then 1, the infinite sum converges:
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We use the same trick with elementwise differentiation to get a closed represen-
tation for the sum in A.16, but have an infinite geometric series now:
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