
Distributed
 Computing

Invisibee: Multiplayer Game with
Secret Strategies on a Shared Screen

Lab Report

Linus Kortesalmi Nico Kurmann

kolinus@student.ethz.ch kurmannn@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Michael König, Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

August 8, 2017

Acknowledgements

We thank Manuel Eichelberger and Michael König for their continuous feedback
while designing the game, as well as our partners and families for their unwa-
vering support and help testing the game. Also we thank TIK for supplying
controllers.

i

Abstract

This work describes Invisibee, a multiplayer Real-Time Strategy (RTS) game.
Unlike other RTS games, it is played on a shared screen by making use of hidden
inputs via gamepads. This allows the players to create units, construct buildings,
and move armies in secret; the locations and details of which are only revealed
when units enter an enemy’s sight range.

ii

Contents

Acknowledgements i

Abstract ii

Glossary iv

1 Introduction 1

1.1 Related Work . 1

2 Game Mechanics 3

2.1 Core Gameplay . 3

2.2 Unit Counterplay . 4

2.3 Armies and Movement . 4

2.4 Hidden Information . 5

3 Implementation 7

3.1 Unity3D . 7

3.2 Firing . 8

3.3 Armour . 8

3.4 Pathfinding . 9

3.4.1 Grid . 9

3.4.2 Simple A* . 10

3.4.3 Coroutine A* . 11

3.4.4 Region A* . 11

3.4.5 Additional Problems . 13

3.5 Game Configuration . 16

3.6 Army Formations . 17

4 Discussion 18

4.1 Game Dynamics Supported by Hidden Input 18

4.2 Cognitive Load . 19

iii

Contents iv

4.3 Depth and Richness of Interaction 19

4.3.1 Game Strategies . 20

4.3.2 Playability . 20

4.4 Approaches to Improve Pathfinding 21

4.4.1 Group Pathfinding . 21

4.4.2 Common-Goal Pathfinding 21

4.4.3 Coroutine A* Improvements 22

4.4.4 Path Traversal Improvements 22

4.4.5 Dynamic Obstacles Improvements 23

4.4.6 Pathfinding Into Fire Range 23

5 Future Work 24

5.1 Expanding Invisibee . 24

5.1.1 Line of Sight and Vertical Positioning 24

5.2 Application of Hidden Input in Other Genres 25

5.3 Output-Only Approach to Hidden Information 25

Bibliography 27

A How to play A-1

Glossary

CP: Control Point - A position on the map that can be claimed by units and
upgraded for superior defence and resource production.

FoW: Fog of War - Visual layer ensuring that only the part of the map which
units can see is revealed to players.

FPS: Frames Per Second - The number of frames that are calculated and ren-
dered per second. 60 FPS are typically seen as a minimum benchmark for modern
games.

HP: Hit Points - Represents a unit’s or building’s health. When this reaches
zero, it dies.

NPC: Non-player character - A character not controlled by any player(s). In-
stead it is controlled by the computer via predetermined or responsive behaviour.

RTS: Real-time strategy - A game genre typically centred around collecting
resources and building armies to deny opponents their resources.

UI: User Interface - The domain where a player interacts with the game. The
UI usually contain information relevant to the player, such as HP.

v

Chapter 1

Introduction

Many multiplayer games like Jass1 or Stratego2 rely on hidden information to
introduce some form of asymmetry of information. This makes the games more
interesting and challenging, since many possible scenarios have to be taken into
account as well as their respective likelihoods.

Consequently, to not divulge too much information as to one’s own strategy, it
is often ideal to randomly select one of several strategies. Furthermore, some
games allow players to perform actions that will only be revealed at a later point
in time3, making these strategic choices have more impact and requiring players
to anticipate each other’s moves.

Normal shared-screen games have the inherent property of displaying the same
information to all players. The goal of this work was to explore the possibilities of
hidden information in shared-screen games. The product is Invisibee, a real-time
strategy (RTS) game that selectively hides information about the game state.

1.1 Related Work

Inspiration for this project comes from a video game called Hidden in Plain
Sight4, which consists of a series of mini-games, all revolving around the theme
of hidden identities. Each player secretly controls a character on the screen while
a large number of computer-controlled characters (NPCs) act as decoys. Since
players do not inherently know which character is theirs, they have to find out
by observing which one responds to their controller input. Most games can be
won in one of two fashions: either by being the first to achieve an objective, or
by eliminating all other human players. This results in players trying to perform
the task while not drawing any attention, or risk exposing their identity, which
usually leads the character’s rapid demise.

1Jass, card game: https://en.wikipedia.org/wiki/Jass
2Stratego, strategy board game for two: http://www.stratego.com/en/
3A Game of Thrones: The Board Game: https://www.fantasyflightgames.com/en/

products/a-game-of-thrones-the-board-game-second-edition/
4http://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/

1

https://en.wikipedia.org/wiki/Jass
http://www.stratego.com/en/
https://www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/
https://www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/
http://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/

1. Introduction 2

The concept of using decoys to “hide in plain sight” seems to have been exten-
sively explored by the game, which raises the question of what other ways there
are to incorporate hidden information in a shared screen experience.

We decided to design and implement a shared-screen game that makes use of
hidden information in a different way, namely hidden input.

Chapter 2

Game Mechanics

2.1 Core Gameplay

Invisibee is played on a flat playing field featuring impassable walls and un-
claimed Control Points (CP), see Figure 2.1. Every player starts off with a base
and the goal of the game is to destroy the opponent’s base.

The bases generate a small amount of resources, thematically called honey. Play-
ers can spend honey to create units at their base. These can be moved around
and will attack on sight any enemy units and buildings in range. Apart from
fighting, these units are also capable of claiming unclaimed CPs.

Figure 2.1: Screenshot of the map with the game’s UI. The white highlighted
edges are impassable walls and the white objects with 1-3 circles under them are
CPs. The four golden hexagons represent the current amount of honey. The red
and green buildings are bases.

A further use for honey is to upgrade a claimed CP. Before a claimed CP can

3

2. Game Mechanics 4

be captured by an enemy, all of its upgrades must first be destroyed. They also
provide additional benefits depending on the type of upgrade:

Hive: Produces additional honey.

Freeze: Damages one enemy1.

Heal: Heals several allies, produces a tiny amount of additional honey, and
grants armour.

All units and buildings have a certain number of hit points (HP). When one takes
damage, its HP are reduced. When its HP reach zero, it is destroyed. Only the
upgrade built last takes damage, and is thus the first one being destroyed. Units
can be healed by standing close to a Heal upgrade, while upgrades can be repaired
by issuing a repair command.

2.2 Unit Counterplay

The game has three different unit types:

Ladybug: Fast, short-range unit that tackle enemies to inflict damage.

Bee: Mid-range unit that shoots slow projectiles which follow enemies. The
damage is dealt when the projectile reaches its target.

Badger: Expensive, long-range, high damage unit. Badgers shoot projectiles
similar to Bees.

Different unit types allow for interesting counterplay: While Ladybugs have the
highest damage output compared to their cost, they are efficiently dealt with
by the longer-ranged Bees. Likewise, Bees trying to defeat a Badger with its
significantly larger pool of HP will be at a disadvantage since the number of
Bees will dwindle over the course of the fight, while the Badger’s damage output
will not decrease as it takes damage. Lastly, in an even fight between Ladybugs
and a Badger, the Ladybugs will have the upper hand due to their large damage
output, while the Badger’s attacks will overkill Ladybugs in a single blow, thus
wasting damage output.

2.3 Armies and Movement

Both due to the constraints of controller input and the lack of visual feedback
when playing with Fog of War (FoW) (see Section 2.4), we chose to issue com-
mands to groups of units. When a unit is created, it is assigned to one of four

1Up to 3 in “extreme” settings preset

2. Game Mechanics 5

available armies (A, B, X, Y). The army that new units are assigned to can be
chosen via pressing a button combination.

Each player controls a visible cursor that can be moved around freely. By pressing
one of the army buttons (A, B, X, Y), all units of the corresponding army are
ordered to pathfind to the location the cursor had when the button was pressed.
Pathfinding means that they will navigate through the world and avoid any
obstacles or walls until the target location is reached. If they encounter an enemy
along the way, they will engage automatically. In order to allow disengaging from
a fight, units can be forced to ignore enemies by keeping their army button (A,
B, X, Y) pressed down. Even though the opponent can see the player’s cursor,
he or she does not know which or when an army button was pressed.

A third way to move units is to keep the army’s button pressed down and to
simultaneously move the cursor’s joystick in a certain direction. This will force
all affected units to stop pathfinding and instead try to move in the joystick’s
direction. This allows very direct control and allows units to be moved in parallel
to each other. To ensure that reinforcements from the base find their way to the
front, units that have not yet joined up with the bulk of the army will ignore
this command.

2.4 Hidden Information

In order to hide the player’s moves from the opponent, all units and upgrades are
hidden. This is represented by a ”selectively transparent”, dark layer covering
the map and hiding all units and buildings beneath it. This is called the Fog
of War (FoW). When a unit or CP spots an enemy within its sight range, a
small area around the enemy is revealed, temporarily lifting the FoW. The lifted
FoW is added back after a few seconds of play time, unless the unit gets revealed
repeatedly. The design decision of only temporarily lifting the FoW allows the
player to react to being spotted by the opponent. Players can try and disengage
from the combat and yet again hide their units in the FoW, or they can use
this opportunity to flank with another army of units already hidden in the FoW.
The FoW’s main function is thus to hide the unit positions. However, it cannot
effectively hide information concerning what types of units are produced (army
composition) and what upgrades are built. To hide these, units and upgrades
to be built are selected via hidden controller inputs. Figure 2.2 shows the two
visual indicators for producing upgrades and units, respectively.

2. Game Mechanics 6

Figure 2.2: Visual indicators for selecting what upgrade or unit to build. The
opponent is unable to determine which direction (Up, Left, Down, Right) was
pressed.

Chapter 3

Implementation

In this chapter, some of the most interesting parts with regards to implementa-
tion are presented and motivated.

3.1 Unity3D

We chose to implement the game using the Unity3D1 game engine, as it provides
useful functions such as:

• Simple physics simulation.

• Gamepad support.

• Prebuilt UI components.

• Automatic garbage collection.

• Well-documented API.

Furthermore, it can be programmed using a high-level language (C#) and offers
cross-platform support for Mac OSX, Linux (Beta), and Windows.

Unity3D allows a simple creation of scenes, which can then be gradually pop-
ulated with game objects. Scripts and components can then be attached to
the game objects to define their behaviour. This proved to be useful for rapid
prototyping.

A scene can be seen as an isolated container for objects in the game world.
Changing scenes removes all instantiated game objects, populating the scene with
only the predefined objects for that particular scene. Objects can be configured
to carry over between scenes, which is useful for objects containing general player
state for the game, such as lives in a level-based game. The end result consists
of three scenes: one for a 2-player game, a title scene (main menu), and a
configuration scene.

1https://unity3d.com/

7

https://unity3d.com/

3. Implementation 8

3.2 Firing

Figure 3.1 shows the finite state machine governing the firing of units. A unit
enters the state machine in the Idle / Waiting For Target (Idle) state, which
it remains in until a legal target has been acquired. A legal target is any unit
belonging to the other player that is in firing range and is currently alive.

Before a unit can fire however, it has to stand still for a certain amount of time,
which takes place in the Take Aim (Aim) state. If the unit is moved by a player
during this state, it will return to the Idle state and the Aim timer is thus
stopped. If the timer completes a final legal target check is performed. If the
target is no longer legal the unit will check if there are any other legal targets.
If no legal targets are found the unit will go back to the Idle state, skipping the
Cooldown (CD) state. If a legal target is found, or if the original target is still
legal, the unit will enter the Fire state and fire at the target. After firing it
enters the CD state; it will only return to the Idle state once the CD timer has
completed.

Figure 3.1: The finite state machine governing firing

The design of the firing state machine enables a tactic called “Stutter-Stepping”.
When a ranged unit engages an enemy, it can take a shot, then move freely until
its cooldown expires. With good timing, this allows units to be moved around
without decreasing their damage output. This tactic can be used to get into an
advantageous position, or to retreat from an enemy with a shorter range, forcing
them to move closer.

3.3 Armour

Before damage is applied to a unit or building, it is reduced depending on the unit
or building’s armour score. For every point of armour, it can survive additional
damage equal to 10 percent of its base health, see Equation 3.1. The equation

3. Implementation 9

was inspired by the armour system of the video game ”Warframe”2.

Damage =
Strength

(1 + Armour/10)
(3.1)

This has several interesting effects. For one, since the Heal upgrade grants a CP
armour, it makes more sense to build the Heal first, so that it is destroyed last
when the tower takes damage. This allows other upgrades to benefit from the
Heal’s armour, making them sturdier.

Secondly, the badger is the only unit with armour. Since it has 10 armour as
default, this effectively doubles its health pool. As a result, healing applied to
a badger is twice as effective, as it undoes double the healed amount’s worth of
damage.

3.4 Pathfinding

Agent pathfinding is arguably a critical feature of any RTS game. Different
variations of the popular A* search algorithm were applied and tested during
the lifespan of our project. A* is an extended version of the famous algorithm
by Dijkstra, using heuristics to speed up the performance.

A representation of the map is needed in order to use the A* algorithm. Our
representation is covered in Section 3.4.1. Three variations of A* that we tried
are highlighted in greater detail in the Sections 3.4.2, 3.4.3, and 3.4.4.

3.4.1 Grid

A simple and straightforward matrix representation that we call our Grid was
chosen for our game map. In our case we have a map with a resolution of
2067 × 2067 pixels which is divided into 159 rows and columns, each cell being
13 × 13 pixels. Two cells are considered adjacent if they can be reached from
one to another by increasing or decreasing the row- and/or column-index by 1,
see Figure 3.2.

Ci−1,j−1 Ci−1,j Ci−1,j+1

Ci,j−1 Ci,j Ci,j+1

Ci+1,j−1 Ci+1,j Ci+1,j+1

Figure 3.2: Cells that are adjacent to cell C with row- and column-index i and
j, respectively. (Denoted Ci,j .)

2https://www.warframe.com/landing

https://www.warframe.com/landing

3. Implementation 10

Static Obstacles

Support for static obstacles like walls was needed in the Grid representation.
This is done by simply setting a Boolean value walkable to be false if the cell is
occupied by a wall or static obstacle. Adding information about static obstacles
to the representation requires us to introduce the concept of reachable adjacent
cells. Reachable means that a unit can move to the cell from the cell it currently
resides in. A cell is reachable adjacent if it fulfils the adjacent definition (Figure
3.2), and the added constraint on reachability (Constraints 3.2 and 3.3).

Reachability constraint:

A walkable non-diagonal adjacent cell is always considered reachable. (3.2)

A walkable diagonal adjacent cell is reachable if and only if at least

one of the two shared (non-diagonal) adjacent cells are walkable.
(3.3)

See Figure 3.3 for an example of cells satisfying and violating the reachability
constraint.

CA Wall CB

Wall C CC

CD CE Wall

Figure 3.3: Cell CA is adjacent but unreachable from cell C, due to the two
shared adjacent cells being walls. Cells CB and CD are both reachable adjacent
cells to C, satisfying Constraint 3.3. Cells CC and CE are also reachable adjacent,
satisfying Constraint 3.2.

3.4.2 Simple A*

Our initial attempt at pathfinding used A* with Squared Euclidean Distance as
our choice of heuristic function. This does not satisfy the triangle inequality (see
Equation 3.4) but it does result in a performance gain by avoiding calculating
the square root of the distance. This could lead to a suboptimal path being
computed, which introduces a trade-off between optimality and speed.

(1 + 1)2 � 12 + 12 (3.4)

Running A* individually on multiple agents resulted in poor performance; the
game was below 20 Frames Per Second (FPS) as soon as the unit count grew
above 20 units. This forced us to think about alternative approaches that could
lead to improvements. The considered approaches that we did not implement
are mentioned in Section 4.4. The two that we implemented are explained in
Sections 3.4.3 and 3.4.4.

3. Implementation 11

3.4.3 Coroutine A*

The first approach we tried was utilising Unity’s coroutines3 to distribute the
computational load over multiple frames. It was a straightforward fix to the
existing implementation, with performance gains that were acceptable but not
perfect; the FPS increased from roughly 20 frames to 50 frames with only 20
units in the game.

The motive behind this approach is the noticeable performance hit it took to
calculate a full path in one single frame. If we could spread the computation, it
would require less time per frame, making the game run smoother overall. If too
many frames are allocated for the calculation, there would be a visible delay in
the responsiveness of the pathfinding agent.

In our implementation we limited the number of cells to explore at each frame.
When the limit was reached it would pause execution and let the frame end.
During this frame the unit would stand still if no previous path had been calcu-
lated, otherwise it would continue following it. In our final implementation where
we achieved 50 FPS, there was a noticeable delay where the units either stood
completely still or continued following an old path going in the wrong direction
from the new target.

3.4.4 Region A*

We moved away from the coroutine approach and decided to try using a high-
level representation of the map and combine it with the Grid representation
mentioned in Section 3.4.1. The high-level approach was inspired by the works
of Alex J. Champandard [1].

Early-Stopping

Before we begin outlining the high-level approach it is important to discuss an
approach called Early-stopping. The reasoning behind this approach is that only
a part of the path is needed, since it is being updated frequently. The agent
only utilises maybe the first ten cells of the path. Early-stopping would find a
(potentially) great initial path, while keeping the remainder of the path unknown
and uncalculated. There are no guarantees that the path found would be optimal
or even near-optimal; the path could easily lead the unit into a dead end that it
would never escape.

3https://docs.unity3d.com/Manual/Coroutines.html

https://docs.unity3d.com/Manual/Coroutines.html

3. Implementation 12

High-Level Representation

A high-level representation of the map could be created automatically by group-
ing cells together into clusters. The criteria could be to only group reachable
adjacent cells until the cluster was of a chosen size. A path is then be a series of
clusters and there is be a trade-off between cluster size and speed. Many small
clusters result in a large search space, while few large clusters result in a loss
of precision; the goal is reached as soon as the unit enters the cluster and if
more precision is needed a new search in the lower-level representation has to be
executed.

We chose to exert more control over the process and instead created the regions
manually by reading data from a map file.

The map file contains the Grid representation with information about whether
each cell is walkable or not. We added so it also contains what region a cell
belongs to. By doing so, we could control the regions while automatically creating
an internal representation by parsing the map file. With regions, the pathfinding
problem changes into finding a suitable sequence of regions to reach the goal’s
region from the start’s.

Gateways

Gateways are cells that connect two regions in the higher-level representation.
A region usually has more than one gateway. These gateways were marked
manually in the map file.

For each pair of gateways of a region, the connecting path is precomputed and
stored in a cache when the game is loaded.

We wanted to use these precomputed paths to quickly find the sequence of opti-
mal regions to traverse. Our first step was to find the best gateway in the agent’s
region (start region). The best start gateway is the gateway with the lowest cost
to reach the gateway of the goal’s region (end region) with the smallest Squared
Euclidean Distance to the goal cell. The cost is thus the sum of the actual costs
of the precomputed paths between regions in order to reach the best gateway of
the end region.

We used the simple A* algorithm and limited it to only explore cells in the start
region. We call this approach local A*.

In our first draft we also found the path from the best gateway to the goal by
doing local A* in the goal’s region. Later, we discarded this step when taking
inspiration from the Early-stopping approach, as it was not needed to have the
full path. We only need to know the path leading up to the best gateway, as the
goal might change before the agent even reaches the gateway to the old goal’s
region.

3. Implementation 13

3.4.5 Additional Problems

There is more to pathfinding than choosing the algorithm to use. This section
will cover three additional problems solved during the lifespan of the project:
path traversal, obstacle hugging, and dynamic obstacles.

Path Traversal

Retrieving a path of cells to follow from start to goal is only one part of the
solution for agent navigation. Movement in Unity is typically done with their
physics engine which computes the effects of forces applied to agents’ bodies.

Despite the paths consisting of a number of discrete cells, it is important for
agents move without any apparent stops. In the first draft of the path traversal
solution, agents had to be in close proximity to the centre of a cell before they
would start moving to the next cell on the path. We denote the process of
clearing a cell and moving on to the next one as a step. The step cell is the cell
currently being moved towards on the path.

We identified two particular scenarios that could lead to problems when reaching
a step cell:

Colliding with other agents: When colliding with other agents it could hap-
pen that they were pushed past a cell without triggering it as a step. If this
happened, the pushed agent would have to turn back and reach the step
cell before they could continue on their path. This was mainly a problem
if the following cells on the path were closer to the pushed agent than the
step cell on the path.

Overshooting the step cell: Overshooting happens naturally as there is a
trade-off between the distance of the proximity check and the tightness of
following a path. If the distance is too large, the agent would too quickly
step through the path, leading to problems when navigating around cor-
ners and obstacles. If the distance is too small, the agent would have to
really hit the centre of the step cell before advancing on the path, which
can be complicated by physics or low frame rates.

We decided to focus on solving the overshooting problem as it also partly solves
the colliding problem. We did this by introducing a method to prune a step:

1. The prune method calculates the distance to the step cell and saves it in
memory.

2. In the next iteration it compares the new distance to the step cell with the
saved one calculated in the previous iteration.

3. Implementation 14

3. If the new distance is bigger, we assume that the agent overshot and we
trigger a step. Otherwise we save the new distance and go to the next
iteration.

This only solved the colliding problem in the case where the agent was pushed
past the step cell, making it being closer to the following cells on the path. In
the case where it was pushed away from the step cell and thus the rest of the
path, it would trigger a premature step. We tried solving the premature step
by also checking the distance to the next cell as well as the current cell. If both
distances are larger a step would not be triggered. This worked in the case where
the unit is pushed away from the path. It causes problems however if the unit
is pushed too far ahead on the path, so that the distance to the current and the
next are both bigger, as it would not trigger a step; then the unit has to move
back. This could potentially be fixed by also checking the distance to the third,
the fourth, the fifth step cell and so on, and prune if any of those cells are closer.
However, this approach does not address the underlying problem of the basic
solution, as it does not handle the worst case scenario where the next step cells
are unreachable from the agent’s current position as a result of pruning. This
regularly happened when moving around corners, with either approach.

We removed the premature step solution, as it added complexity to the code while
not solving the real problem: the worst-case scenario. Instead, the worst-case
scenario was solved without trying to implement an even more complex prune
method but by simply running the pathfinding algorithm repeatedly at a fixed
time interval. This primitive solution to the problem introduces a trade-off in
performance and effectiveness. If the fixed time interval is too short it decreases
the performance of the game, but makes stuck units become ”unstuck” quicker.
If the fixed time interval is too long the performance is better, but units can be
stuck for a longer period of time.

Wall Hugging

When pathfinding around obstacles, the pathfinding algorithm chooses a path
directly touching the obstacle, as this minimises the cost function of the search
algorithm.

This caused especially larger agents to get visibly slowed down by colliding with
corner obstacles. We called this behaviour wall hugging. An example of the
wall hugging problem, and its solution, is explained and visualised in Figure 3.4.
This problem is further exacerbated when moving as a group. It also causes
problems with the prune method described before in Section 3.4.5, Paragraph
Path Traversal, by frequently enabling the worst-case scenario.

We discouraged the wall hugging behaviour by changing from a uniformly weighted
Grid, where cells could only be marked walkable or not, into a Grid where cells
closer to static obstacles had an increased cost to them. The cost increased the

3. Implementation 15

∗
∗
∗
∗
∗

∗

∗

E

·
·
·
·
·

∗

X

X

X

X

X

·

∗

S

·
·
·
·
·

∗

∗

∗

∗
∗
∗
∗
∗

Figure 3.4: Wall hugging example: The start is the purple cell containing S; the
goal is the blue cell containing E. The orange dot-path is wall hugging the red
X-wall. The green star-path is using the non-uniformly weighted Grid and is
thus longer than the dot-path. The cost for the dot-path is smaller than the cost
for the star-path; however, the time it takes to traverse the star-path is shorter
than the time to traverse the dot-path, as there are no collisions to slow down
the unit.

closer the cells were, punishing agents from hugging the walls tightly. This means
that it is still possible for an agent to pass through a narrow gap in the wall, if
the cost of going around the wall is bigger.

Dynamic Obstacles

When agents engage in combat, it often results in front lines being formed. This
behaviour leads to agents being stuck behind the front line, unable to partake.
The desired behaviour would be for agents to expand the front line or create a
firing arc around the enemy army.

To achieve this, agents have to plan their route when engaging enemies and take
other agents into consideration. Our solution was to introduce the concept of
dynamic obstacles, also called temporary obstacles. A unit is typically larger
than a grid cell; so at every frame, every unit marks the centre grid cell it
occupies as blocked (containing a dynamic obstacle) by adding it to a centre
blocked cell list. It then also adds all of its adjacent cells to a adjacent blocked
cell list. Both lists get cleared at the end of every frame.

The cells in this list have then a modified cost when using them for constructing

3. Implementation 16

paths: centre blocked cells have a higher cost than adjacently blocked cells. This
approach is similar to the wall hugging solution, as it discourages units to use
centre and adjacently blocked cells for navigating while still allowing for traversal
through these cells if the cost of going around them is too great.

3.5 Game Configuration

We tried to make the game as balanced and as fun as possible. Configuring a
game’s parameters in such a way that it is most fun to play, however is a lengthy
process that even seasoned game developers struggle with. As people learn to
play a game, their preferred strategies change and at a certain point it may be
the case that certain strategies are too strong, leading to a less fun experience.
That is why we created a simple way of adjusting the game’s parameters.

All relevant parameters of units and upgrades can be changed via an in-game
configuration scene (see Figure 3.5) accessible from the main menu. There are
also fields allowing FoW to be turned off or on and alternative upgrade behaviour.
Turning off FoW proved to be a great way to learn the game. It gives the players
a good overview of what is happening when pressing what button, and it allows
players to focus on learning the controls instead of trying to keep track of where
their armies are positioned.

Figure 3.5: Configuration scene automatically populated from GameRules.cs

Additionally, several configuration presets are included. The three main presets
offer varying mounts of hidden information, as new players may otherwise be
confused by the lack of feedback the game provides. Three additional presets
were included offering vastly different playing experiences.

In the interest of being able to perform adjustments easily, all relevant settings
are stored in a single object called Config.cs. Whenever a script needs to look
up a value, it does so there. In order to present the typical user with only the
most relevant options, we created a new class called GameRules.cs containing

3. Implementation 17

74 of the most important parameters from Config.cs.

Upon loading the game scene, the current instance of the game rules are applied
to the configuration object. This allows users to modify the game rules before-
hand or load one of the six preset rule configurations; some containing only a
few changes to the 74 parameters present, while others change a lot more. Addi-
tionally, the modified game rules can be stored to disk or retrieved with a single
press of a button.

3.6 Army Formations

We played around with different army formations during the lifespan of the game
development. The current implementation uses no particular army formation,
it simply lets the units group and form formations based on the result from
Unity’s physics engine. With the addition of dynamic obstacles mentioned in
Section 3.4.5, Paragraph Dynamic Obstacles, units would no longer group up in
a ball formation when fighting opponents. Instead, they would form firing arcs
around the opponent, or even surround the opponent fully.

Before the addition of dynamic obstacles, we had two different formations the
army could use: ball formation and line formation. The ball formation is the
same approach we currently have, where we let Unity’s physics engine take care
of the grouping of units by applying a small force towards the centre of the
formation. The line formation applies forces only in movement direction, causing
units to gather up in a line perpendicular to the movement direction.

The concept of choosing between several different formations is a relic of the
time when each player only had two armies, each controlled directly by a thumb
stick. With the change to four armies, which can be ordered to pathfind to any
place on the map, the concepts of group movement and a movement direction
have become somewhat obsolete and less clearly defined. This lead to formations
eventually being discarded. In a future version, one could return to the idea of
army formations and see if it could be reworked and reintroduced in the current
movement system.

Chapter 4

Discussion

As discussed in the motivation chapter, we set out to design a game that makes
use of hidden input. We aimed to give the game strategic depth and tried to
make it fair while remaining interesting.

4.1 Game Dynamics Supported by Hidden Input

The reason behind exploring the concept of hidden input is to enable game
dynamics not previously possible on a shared screen. Game dynamics are the
behaviours resulting from a set of game rules. In the case of Invisibee, we have
the mechanic of a rock-paper-scissors game1 between the three unit types.

In a setting without hidden information, this mechanic adds some depth to fights.
Adding hidden input to hide the armies’ unit compositions takes this dynamic
to another level: players have to anticipate their opponent’s strategy, both with
regards to army composition and positioning.

Boom vs. Rush vs. Turtle2 is another dynamic that is as old as the RTS genre.
Players have the option to increase their resource income by building Hives. This
is beneficial in the long run, however investing too many resources in the econ-
omy makes the player vulnerable to attacks until the investment has paid off.
This opens up another rock-paper-scissors game of strategies (attack – defend
– expand). This dynamic requires hidden information to exist. Our implemen-
tation does however give away certain key information, such as the number of
CPs claimed and the number of upgrades built. Luckily, the strategies expand
and defend can look very similar, because both rely on upgrading CPs, allow-
ing this mechanic to still exist, albeit to a lesser extent. Despite limiting this
game dynamic, we think that revealing this information leads to a better game
as the visual feedback it provides is essential. It might be worth considering to
only reveal this information when the player presses a certain button, but that
would add additional complexity to an already elaborate control scheme. Fur-

1A mixed Nash Equilibrium with three strategies.
2Strategies centred around early expanding, early attacking, or defending early aggression:

http://aoeo.heavengames.com/strategy/guides/rush-vs-turtle-vs-boom/

18

http://aoeo.heavengames.com/strategy/guides/rush-vs-turtle-vs-boom/

4. Discussion 19

thermore, we think that some amount of visual feedback is required to keep the
game appealing.

Another decision players are faced with is the choice between static defences
and a mobile army to keep their base(s) safe. While static defences deal more
damage, they are more predictable and are far more difficult to use offensively.

Lastly, there is the trade-off between the number of armies a player uses. While
there is no direct downside to using all four army slots available, managing all of
them is challenging and stressful. In our experience it is often more advantageous
to limit oneself to using only two armies, as using more can become a significant
burden, especially for novice players.

4.2 Cognitive Load

There are several features of the game that require a great deal of attention by
players, as they need to keep track of:

• The number and the types of units per army. The types are hidden until
units are engaged in combat, while the number can be displayed using a
button combination.

• Positioning and moving armies via a mental image of the situation, as the
armies are normally hidden.

• Spending honey on units or upgrades.

• Producing units for the correct army.

• Managing units in combat. One can utilise the inner mechanics of different
unit types to mitigate damage taken and maximise damage dealt.

• Performing or defending against multipronged attacks.

Compared to other games, this is a lot to keep track of, especially given how little
visual feedback the game can provide without giving away hidden information.
This is especially pertinent in the case of novice players who in addition are only
just getting accustomed to the controller scheme. Playing with FoW enabled
takes the game to another level, which is why it can be disabled to allow players
to learn all the other game mechanics first.

4.3 Depth and Richness of Interaction

We tried to make the control of units as intuitive and as expressive as possible.
Units can be ordered to go to a certain location, ignore enemies, or even just
move in a certain direction without pathfinding.

4. Discussion 20

A player can have up to four armies that they can issue commands to separately.
Some players may prefer not to use all available armies, as keeping track of them
is a task in its own right.

4.3.1 Game Strategies

The game offers a richness of strategies, each with their own merits. This leads
to an interesting metagame in which players try to out-think each other in the
strategies they apply.

Two examples of strategies that can be used are:

Standard Opener: In a Standard opener, the natural expansion – the control
point right outside the main base – is captured first. This CP can support
up to one upgrade. After capturing the natural, the player can branch the
strategy and decide whether to invest in a Freeze upgrade (Turtle branch
– defensive), a Hive (Boom branch – expand), or save up resources for
another unit (Rush branch – attack).

Swedish Opener: Instead of capturing the natural expansion outside the main
base, this strategy first captures the CP above/below the main base (sec-
ond expansion). After capturing this CP, the player is free to branch the
strategy in any direction, depending on the information available. The
advantage this brings, is that it leaves the natural expansion free to be
upgraded with a defensive tower at a later point in time.

Hill Gambit: If the opponent does not immediately claim their second expan-
sion, it is possible to claim it for oneself. By immediately constructing
a freeze tower, it is possible to establish a foothold near the opponent’s
base that is neigh impervious to early-game pressure. Later on it can be
upgraded with a heal tower and be used as a basis for many harassing
attacks.

Of course, the execution of strategies also relies on mastery over the controller
commands, thus dexterity plays a significant role as well.

4.3.2 Playability

Without FoW, the game is complex:

The players are able to monitor the opponent’s actions. This leads to players
trying to have a slightly larger army than the opponent. This is either achieved
by expanding and defending, or by attacking undefended expansions.

With FoW, the game is complex and hard to navigate:

4. Discussion 21

Delayed information about the opponent’s strategy leads to the choice of strategy
having a larger impact on the game, as it may be too late to build adequate
defences against an opponent’s attack, or the fact that they had undefended
Hives producing large amounts of income may be discovered too late. This makes
strategies harder to counter and information becomes a valuable commodity.

Balance

As far as we were able to test it, game balance was decent. No particular strategy
seemed overpowered. However, experience shows that good balancing can only
be achieved through extensive play. Balance and the pacing of the game can be
changed via the configuration scene.

4.4 Approaches to Improve Pathfinding

The following approaches were also considered when trying to improve the per-
formance of the pathfinding algorithm. They could possibly be combined with
the existing approaches to create an even more powerful pathfinding behaviour.

4.4.1 Group Pathfinding

When a group of agents close to each other pathfind to the same goal, a lot
of duplicate computation is performed. The paths computed for agents in close
proximity typically only differ in the first few cells, after which they are identical,
making it wasteful to calculate the whole path for every agent.

A solution we considered implementing was to calculate the full path from the
most centred agent in the group, while only calculating the path from every other
agent to any cell on the full path by using Breadth-first search (BFS).

4.4.2 Common-Goal Pathfinding

When several agents pathfind to the same goal from spread out starting cells,
it could be beneficial to save repeated computations by changing from an A*
approach to a BFS approach.

Instead of running a pathfinding search algorithm from each start to the same
goal, one could perform a BFS from the goal to find all start cells. Whenever a
starting cell is found, the path from the goal to the starting cell is returned to
the respective agent.

It is a straightforward and simple approach to implement, but combining it with
other approaches would increase the complexity: how would one deal with Early-
stopping when it is the beginning of the path that is relevant and not the end?

4. Discussion 22

What would the critical ”level of spread out starting cells” be in order for this
approach to be more viable compared to the Group Pathfinding approach?

However, an expansive BFS could prove to be more expensive than performing
several A* searches. It may thus be worth considering replacing the BFS with a
modified version of A* that keeps its state between path computations. We are
not sure if such a thing is possible or efficient, as we have not explored it further.

Another approach, which incorporates Early-stopping, is to compute a BFS from
every gateway in every region. Key information from the search can then be
added to every Grid cell in that gateway’s region. The key information could
for example be the best reachable adjacent neighbour to move to, in order to
reach a particular gateway. This information can be precomputed and easily
combined with gateways from the Region A* approach to find the best gateway
to reach the goal’s region (see Section 3.4.4). The problem of pathfinding is
then reduced to following the precalculated sequence of best neighbours in order
to reach the best gateway. This approach would however have problems with
dynamic obstacles, as it is purely based on precomputed information.

4.4.3 Coroutine A* Improvements

There are obvious improvements that could be made to this approach. One
could be to combine the approach with the Early-stopping technique mentioned
in Section 4.4 and return the best path currently found at each frame, in order to
make the agent seem more responsive. However, one could argue that the Early-
stopping technique on its own would solve the performance hit of having heavy
calculations in one single frame, rendering the coroutine approach redundant.

In hindsight it would probably have been better to apply the Early-stopping
approach instead of the coroutine approach, even though the coroutine approach
had a straightforward implementation. The results were not as good as we an-
ticipated and needed, see Section 3.4.3 for numbers. Spreading the computation
resulted in problems later down the line when we wanted to quickly change the
pathfinding goal. It simply took too many frames to find the full path to the
goal: There was a visible delay in the responsiveness of units.

4.4.4 Path Traversal Improvements

The solution to the worst-case scenario during path traversal, mentioned in Sec-
tion 3.4.5, Paragraph Path Traversal, is rerunning the pathfinding algorithm
continuously at a fixed time interval. This naturally introduces a trade-off in
performance and effectiveness of the solution. The shorter the fixed time inter-
val is, the more performance it drains, while also making units become ”unstuck”
quicker.

One approach that could improve the trade-off is to remove the fixed time interval

4. Discussion 23

and instead dynamically decide whether a long or a short time interval should
be used. A short time interval is only needed in the worst-case scenario: when a
unit is stuck. Methods could be added to the unit to make it decide whether or
not it is currently stuck at this particular frame. It could for example compare
the last few grid cells to the current grid cell. If the cells are the same it either
means that there is no path to follow, or that the unit is stuck. This method
could then trigger unstuck mode, where the unit shortens its time interval so that
it quickly can become unstuck. When the problem is solved the unit returns to
using a longer time interval.

4.4.5 Dynamic Obstacles Improvements

When a unit tags its centre cell as temporarily blocked, it also adds its imme-
diately adjacent cells to that list as well. The level of adjacent cells is currently
a fixed number. This causes problems for units that are larger, or smaller, than
the fixed number. If a unit only occupies one grid cell in size, it would block
too much space for other units; on the other hand, if a unit takes up more a lot
more than the 8 adjacent cells, it would results in collision and the hindering of
a front line forming.

The solution would be to dynamically increase or decrease the number of cells
being added. Units could calculate exactly which Grid cells it is currently over-
lapping, and add all of them as blocked. This would require the introduction of
new methods for finding Grid cells for different parts of the unit, or some method
to map a radius in the size of the unit to a list of Grid cells.

4.4.6 Pathfinding Into Fire Range

When a unit is within sight range of an enemy, it will try to pathfind towards the
enemy until it is in firing range. The issue with this is that units will pathfind
towards the enemy, and not towards the closest point within firing range. This
causes units to not pathfind towards a wall, even if the enemy is just on the other
side of it. Instead, they try to take the long way around. This could be remedied
by passing the fire distance into the A* pathfinding method, or by units trying to
close the gap by simply moving in the enemy’s direction for a couple of seconds,
and only pathfind to the enemy, should that fail.

A second problem is that while pathfinding into fire range of an enemy, a unit can
possibly pathfind out of sight range. Unless another destination is set or another
enemy appears, it immediately stops moving, as the path is cleared when the
target disappears. One solution to this is to make units able to identify the
scenario and not clear the path. This results in the unit moving all the way to
the last known position of the opponent.

Chapter 5

Future Work

Apart from the different approaches to improve pathfinding described in Section
4.4, there are a few more conceptional ideas that could be explored further.

5.1 Expanding Invisibee

The game can be expanded in different ways: Allowing more than two players to
play at the same time can introduce team play mechanics to the game. Creating
more maps could require players to adapt their strategies to the terrain. We also
considered introducing a fourth unit type that can be spawned anywhere on the
map to allow players to buy mobility at the cost of resources, and opening up
new strategies.

5.1.1 Line of Sight and Vertical Positioning

Another possible expansion of game mechanics would be to introduce Line of
Sight (LoS) and vertical positioning, via the introduction of high-grounds and
low-grounds to the game.

Classically, units standing on higher ground enjoy a visibility advantage over
units on the low ground.

LoS makes units standing on higher ground hidden to units currently positioned
on lower ground.

This concept can also be applied to combat: low-ground units cannot fire at
high-ground units, unless the high-ground units are revealed. Adding LoS and
the notion of high- and low-ground could result in the need for units or abilities
to reveal units hiding on higher ground. Another problem arises in the form
of how to visualise the difference in vertical positioning when the game is in a
perfect top-down view.

24

5. Future Work 25

5.2 Application of Hidden Input in Other Genres

While we chose to explore the concept of hidden input in an RTS game, it
could very well be applied in a different setting. An example would be a round-
based strategy game, similar to “A Game of Thrones: The Board Game”1 in
which players concurrently during a round prepare actions by placing face-down
markers. This forces players to commit to a certain strategy ahead of time
without knowing all the opponents’ actions. In a PC version, these could be
placed via hidden input.

Figure 5.1: Secret command tokens from “A Game of Thrones: The Board
Game” that players could place face-down on the game board.

5.3 Output-Only Approach to Hidden Information

The decoy approach used by “Hidden in Plain Sight” works because the player
recognises which on-screen character responds to their input. Thus, it relies on
knowledge of the controller input and screen output, and their respective timing.
The exchange of hidden information here is bidirectional.

In our approach for Invisibee however, the transfer of hidden information is
largely unidirectional. At its core, the transfer of hidden information in our ap-
proach relies exclusively on controller input: a player issues a command to build
something or move units, and the game obeys without the opponent learning
about these actions.

This begs the question whether secret information can also be exchanged by only
using screen output. Since all information on screen is public, this would require
some form of encryption scheme simple enough to be performed in one’s head.

Furthermore, each player has to know a secret key shared with the game. These
keys would probably be communicated at the start of the game. One way of
doing this would be by making creative use of one of the two aforementioned
hidden information exchange methods: A player selecting their own code via
hidden input springs to mind; or a player figuring out which one of several codes
moves when they press a button, with the addition of unused decoy codes that
move randomly.Alternatively, the initial secret code could be communicated by
using a side-channel such as a private screen or a physical booklet to decipher

1https://www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/

https://www.fantasyflightgames.com/en/products/a-game-of-thrones-the-board-game-second-edition/

5. Future Work 26

the meaning of a code displayed publicly by the game2. This would only be done
once, at the start of the game; the side-channel would then be discarded and
unused for the remainder of the game. It is only used as a flavour to communicate
the secret code in the beginning of the game.

The simple encryption scheme visualised in Figure 5.2 allows the game to com-
municate one bit of information to one or several players. Note that it is possible
to send different messages to different players using the same ciphertext.

Figure 5.2: Encoding secret screen content

A possible application would be to mark potentially dangerous fields on a playing
field in such a way that only certain players can understand. For instance, if the
key matches the code, the field is guaranteed to be safe. If not, it is uncertain.
Due to the simplicity of the encryption scheme, it is likely that players may figure
out each others’ keys over time allowing them to gain additional information.

2Inspiration drawn from the boardgame “Betrayal at House on the Hill”:
http://avalonhill.wizards.com/games/betrayal-at-house-on-the-hill

http://avalonhill.wizards.com/games/betrayal-at-house-on-the-hill

Bibliography

[1] A. J. Champandard, “Near-optimal hierarchical pathfinding (hpa*),”
October 2007, (Date last accessed 18-May-2017). [Online]. Available: http:
//aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/”

27

http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/"
http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/"

Appendix A

How to play

Each player starts off with a base that produces a minimal amount of honey.
This honey can be used to produce units or to upgrade control points. The goal
is to destroy the opponent’s base.

Producing Units

To produce a unit, hold down the right trigger and select the unit to be produced
using the directional pad (Up, Left, Down, Right). Units are assigned to one of
four armies (A, B, X, Y). By default army A is chosen, but you can change this
by pressing the right trigger (RT) + (A, B, X, Y).

Moving and Fighting

To move an army, position your cursor to the desired location using the left
thumbstick (LS), then press the corresponding army button (A, B, X, Y). The
units will then pathfind towards the selected location. Units will automatically
attack enemies they encounter. If the army’s button is held down then the units
are forced to ignore enemies and move towards the cursor. Instead of ordering
units to pathfind to a certain point, they can also be ordered to move in a certain
direction. This is done by holding down the army button and moving the left
thumbstick (LS) in the desired direction. You can at any time display the number
of units in an army by pressing the right bumper (RB) + (A, B, X, Y) for the
respecive army’s unit count.

Control Points

Control Points are specific locations on the map. Units close to a CP will au-
tomatically claim it over time. A claimed CP can be upgraded: Hives produce
honey, Freezes attack, and Heals heal allies. A CP can support 1 to 3 upgrades,
this is represented by the number of circles below it. An upgrade can be applied
more than once. When taking damage, the last upgrade is destroyed first.

A-1

	Acknowledgements
	Abstract
	Glossary
	1 Introduction
	1.1 Related Work

	2 Game Mechanics
	2.1 Core Gameplay
	2.2 Unit Counterplay
	2.3 Armies and Movement
	2.4 Hidden Information

	3 Implementation
	3.1 Unity3D
	3.2 Firing
	3.3 Armour
	3.4 Pathfinding
	3.4.1 Grid
	3.4.2 Simple A*
	3.4.3 Coroutine A*
	3.4.4 Region A*
	3.4.5 Additional Problems

	3.5 Game Configuration
	3.6 Army Formations

	4 Discussion
	4.1 Game Dynamics Supported by Hidden Input
	4.2 Cognitive Load
	4.3 Depth and Richness of Interaction
	4.3.1 Game Strategies
	4.3.2 Playability

	4.4 Approaches to Improve Pathfinding
	4.4.1 Group Pathfinding
	4.4.2 Common-Goal Pathfinding
	4.4.3 Coroutine A* Improvements
	4.4.4 Path Traversal Improvements
	4.4.5 Dynamic Obstacles Improvements
	4.4.6 Pathfinding Into Fire Range

	5 Future Work
	5.1 Expanding Invisibee
	5.1.1 Line of Sight and Vertical Positioning

	5.2 Application of Hidden Input in Other Genres
	5.3 Output-Only Approach to Hidden Information

	Bibliography
	A How to play

