
Distributed
 Computing

Android Smart Cloud Storage

Semester Project

Rolf Scheuner

schrolf@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Gino Brunner, Simon Tanner

Prof. Dr. Roger Wattenhofer

July 4, 2017

Acknowledgements

I thank my supervisors Gino Brunner and Simon Tanner for their great support
during my semester project. Whenever I stuck with a problem they helped
me out with the right idea. In each meeting they shared their motivation and
inspiration with me.

i

Abstract

The most widely used cloud storage providers for private users are Google Drive,
Dropbox and Microsoft OneDrive. There are countless ways to access and man-
age data on each of these providers. From web interfaces over desktop apps to
mobile apps. There are even apps supporting different cloud storage providers,
but they all treat each cloud storage as single file system.

The aim of this project is to enable the users to handle their data as it was
stored in one place while it is actually distributed over multiple cloud storages.

Unified Cloud Storage uses rclone in the background to read/write files
from/to different cloud storage providers. It lets the user store their accounts
and then define Unified Folders which can spread over multiple cloud drives.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

2 Unified Cloud Storage 3

2.1 Remote . 3

2.2 Unified Folder . 5

2.3 Upload Files . 6

2.4 Download Files . 6

2.5 Network Handling . 7

2.6 Using a compiled Binary . 8

3 Conclusion and Future Work 9

3.1 Future Work . 9

Bibliography 11

iii

Chapter 1

Introduction

1.1 Motivation

Cloud storage is the future way of storing data. The key advantage of cloud
storage is its availability. The user’s data is available on the smartphone, on the
PC at work and at home. To share data with friends, it is enough to send them
an invitation link to the folder one wants to share. Another big advantage is
reliability. Most people do not have a backup solution for their locally stored
private data, so if their hard disk fails their data is lost. When they have their
data synchronised with a cloud storage provider they have a backup with almost
no additional effort. Therefore it is no surprise that more and more people use
cloud storage in their everyday life.

Today many cloud storage users use free offers form Dropbox, Google Drive
or Microsoft OneDrive. Since these providers offer only a few gigabytes as free
capacity, users often use more than one provider. However, when using more
than one cloud storage provider, one has to access each cloud storage separately.
This is clearly an undesirable additional effort which users have to make.

Therefore UCS (Unified Cloud Storage) aims to let the users access their data
independently from where it is stored. It gives the user the usability as if all files
were stored on one single cloud drive. Additionally a Unified Folder provides the
combined free space of all connected remotes.

1

1. Introduction 2

Figure 1.1: Analyzed apps, March 29 2017

1.2 Related Work

In his work about Android Smart Cloud Storage, Marco Studer purposed to
use rclone as cloud storage interface in order to support different cloud storage
providers. [1]

To ensure this project does not just reproduce an existing application, avail-
able cloud storage related applications were tested (see figure 1.1). There were
various applications supporting multiple cloud storage providers. Some support
even up to a hundred different cloud storage providers, but we could not find a
single application which enabled the user to combine their cloud storages.

Chapter 2

Unified Cloud Storage

The application developed during this project is named Unified Cloud Storage
even if the project’s title is Android Smart Cloud Storage. This is because the
project was named after it’s predecessor project, but the application needs an
appropriate name in the Google Play Store.

UCS enables it’s users to manage data independently from where the data
is stored. The users access their data through Unified Folders which can be
spread over different cloud storage providers. A Unified Folder in UCS appears
to the users as a normal folder in any other file manager (see figure 2.1). UCS
automatically distributes the data in a Unified Folder to the connected cloud
storage providers. It uses a compiled binary of rclone to connect to the supported
cloud storage providers and upload and download files.

2.1 Remote

A remote consists of a cloud storage provider and an access token belonging
to this provider. The remotes are stored in the rclone configuration file, which
is never directly accessed by UCS (see section 2.6). This configuration file can
also be imported from another installation (e.g., from a desktop installation) of
rclone. This makes it easy for rclone users to start using UCS.

The user has to define at least one remote before a Unified Folder can be
created and therefore to use UCS. When defining a remote, the user has to
authenticate himself and log in on the chosen cloud storage provider via web
browser. Rclone then stores the generated access token. The user also has the
ability to reauthenticate an existing remote (e.g., if a token is no longer valid).

The user can also create an encrypted remote. An encrypted remote uses
a normal remote to access the cloud storage but all files are encrypted before
uploading and decrypted after downloading. This helps the user to keep private
data private independently from the terms of use of the specific cloud storage
provider.

3

2. Unified Cloud Storage 4

Figure 2.1: Schematic drawing of a Unified Folder spread over Dropbox and
Google Drive

The user can create remotes with following providers (see also figure 2.2):

• Google Drive

• Dropbox

• Microsoft OneDrive

• Amazon Cloud Drive

• Hubic

• Yandex

Further remotes from following additional providers can be imported with
the rclone configuration import function:

• Amazon S3

• Swift / Rackspace Cloudfiles / Memset Memstore

• Google Cloud Storage

• Backblaze B2

This second group of cloud storage providers can not be supported by UCS,
because they have a highly specific authentication procedure in rclone.

2. Unified Cloud Storage 5

Figure 2.2: Available cloud storage providers

2.2 Unified Folder

Unified Folders have one or more remotes to which they distribute the contained
data. On each remote a Unified Folder has its own subfolder. The data is
distributed similarly as in a RAID 0: on upload UCS chooses the remote with
the least data stored so far to upload the new file.

To define a Unified Folder the user has to pick at least one of the previously
defined remotes. On creation on each selected remote a subfolder belonging to
the created Unified Folder is created.

Rclone needs several seconds to list the files and subfolders of a folder. There-
fore the folder structure of a Unified Folder is cached locally and only updated
when the user tells UCS to reload the folder structure. It is also possible to only
reload a subfolder of the Unified Folder. An update is necessary if data in the
Unified Folder was changed through another access than UCS or when a Unified
Folder is defined in UCS which has already data available in its subfolder on at
least one remote.

When a Unified Folder is deleted in UCS, the corresponding subfolders on
the remotes are not deleted. When the user recreates the Unified Folder with
the same name, the data will still be available.

2. Unified Cloud Storage 6

2.3 Upload Files

There are two ways to upload files to a Unified Folder:

First, while browsing through the folder structure in a Unified Folder, the
user can select upload from the actions menu. Then a file-choose intent is sent
and the user can choose a file to be uploaded. This requires a file explorer on
Android and notifies the user if no file explorer is found on the system. Since
Android Marshmallow there is a standard Android file explorer which can be
accessed through Settings - Storage - Explore in stock Android.

Second, UCS registers itself on the share intent of Android, so a file can
be sent to UCS which opens an activity to choose the path to upload the file.
The URI (Uniform Resource Identifier) has different forms depending on the
application which sent the intent. It is therefore not trivial to get the absolute
file path (needed for rclone) from the URI.

While uploading UCS shows a notification, which disappears as soon as the
upload has finished.

2.4 Download Files

When the user clicks a file it is downloaded to the standard download folder and
opened as soon as the download is completed. When no application to open the
file was found, the user gets a notification.

To download a file or folder without opening afterwards, the user selects
the desired files and folders and clicks download from the options menu (see
figure 2.3). The file or folder is then downloaded to the standard download
folder of the Android device.

2. Unified Cloud Storage 7

Figure 2.3: Download multiple files

2.5 Network Handling

The user can configure whether he wants UCS to use only WiFi or also mo-
bile data connection. To keep track of the network state, UCS registers a
NetworkChangeListener and stores a boolean as SharedPreference if currently
network connections are allowed or not:

networkAllowed = wifiConnected ∨ (mobileConnected ∧ not wifiOnly)

Before an action using Internet is performed, UCS checks the boolean in the
SharedPreference if it is allowed.

2. Unified Cloud Storage 8

2.6 Using a compiled Binary

UCS uses a precompiled binary of rclone to connect to the supported cloud
storage providers.

Rclone is a command line tool that enables the user to copy, move and sync
files from and to various cloud storage providers. It is developed and published
by Nick Craig-Wood as freeware for personal and commercial use.[2]

Rclone is programmed in Go Programming Language and therefore can not
be imported as library in an Android Project. But since Android is a regular
Linux system one can compile rclone on Android and then include it as asset in
the application.[3]

UCS executes rclone the following way:

Runtime . getRuntime () . exec (S t r ing [] commands)

This returns a Process object on which one can observe if the command was
already executed. To get results from the command, the InputStream and Er-
rorStream of the Process is read. For interactive subprocesses further commands
are written to the OutoutStream of the Process.

Because rclone commands which move or copy data take several seconds to
execute, these commands are executed in separate threads.

Chapter 3

Conclusion and Future Work

UCS lets the users access their files as if they were stored on one single cloud drive
while they are actually distributed over multiple independent cloud storages.
Thanks to the caching, browsing through a Unified Folder works smooth and
fast (see section 2.2).

The choice of rclone as cloud API was necessary since it enabled us to support
the most common cloud storage providers without including a bunch of different
APIs in the application. However, it makes UCS dependent of rclone. That
means each time a cloud storage provider changes it’s interface, we have to wait
for rclone to be updated. Then the rclone library has to be updated and then
UCS can be updated.

3.1 Future Work

It would be easier for the developer if the Java interface for rclone would not
be part of the source code of UCS. It should be contained in a separate Java
library. Like this it would be reusable and could be developed independently from
UCS. The implementation of the rclone interface contained in the application
as it is now is not complete. It only implements the functionality used for the
application. A more general implementation packed into a library would not only
be useful for the further development of UCS, but also for other applications (e.g.,
a cloud file browser for desktop usage).

9

3. Conclusion and Future Work 10

A feature which would be useful is the usage of different cloud storages as
drives for a RAID. Unified Folders represent a RAID 0 configuration. It would
be nice if users could also define RAID 1 or RAID 5 configurations with different
cloud storages. The key question before implementing this is how to define the
stripe-size of the RAID. One idea is to use files as stripes, this is the simplest
solution to implement, but it will give bad performance with large files. Another
approach would be to split files into stripes of predefined size. This is as it is done
by conventional file systems. But it would give additional computation effort on
the mobile device to split and recompose the files on upload and download. It
would also cause the files to be unreadable for any other access than with UCS.

Bibliography

[1] Studer, M.: Android smart cloud storage. Semester project, ETH Zurich
(December 2016)

[2] Craig-Wood, N.: Rclone. https://rclone.org/ Accessed: 2017-07-03.

[3] Park, S.: Develop android app using golang. https://de.slideshare.net/
SeongJaePark1/hello-androidgo (April 2015) Accessed: 2017-07-03.

11

https://rclone.org/
https://de.slideshare.net/SeongJaePark1/hello-androidgo
https://de.slideshare.net/SeongJaePark1/hello-androidgo

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Unified Cloud Storage
	2.1 Remote
	2.2 Unified Folder
	2.3 Upload Files
	2.4 Download Files
	2.5 Network Handling
	2.6 Using a compiled Binary

	3 Conclusion and Future Work
	3.1 Future Work

	Bibliography

