
Distributed
 Computing

Designing a Dynamic Micropayment
Channel Network

Bachelor Thesis

Corsin Gutkowski

gucorsin@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Conrad Burchert

Prof. Dr. Roger Wattenhofer

December 14, 2017

Acknowledgements

I thank Conrad Burchert, who gave me great advice on many questions through-
out this thesis, and who was always passionate about the topics of our long and
profound meetings.

i

Abstract

In this thesis, we design a micropayment channel network from scratch. The
resulting network should be convenient for most participants and not for few. We
propose a strategy to connect participants in a micropayment channel network
and set fees on channels accordingly.

In the first part, a model for a micropayment channel network is defined,
based on which we develop a strategy later on. The model assumes infinite ca-
pacities on micropayment channels. A key factor for the strategy design relies
on the transaction flow inside the network. For network creation and updates,
corresponding algorithms are constructed which are based on mathematical prop-
erties the network should fulfill. Algorithms for network updates are iteratively
applied to the network.

The strategy, when applied by participants, converges to a stable network
state in which fee update di↵erences are negligible.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation and Goals . 2

2 Background 3

2.1 Micropayment Channels . 3

2.1.1 Timelocks and Revocable Transactions 5

2.1.2 Hashed Timelocked Contracts 6

3 Design Strategy 8

3.1 Model . 8

3.2 Fee Strategy . 11

3.2.1 On Network Creation . 13

3.2.2 On Network Update . 16

3.2.3 On Entering/Leaving the Network 19

4 Analysis 21

4.1 Convergence . 24

4.2 Misbehavior . 26

5 Results and Discussion 28

5.1 Routing . 28

5.2 One Owner vs. Many Owners . 29

5.3 Related Work . 31

6 Conclusion and Further Research 32

Bibliography 33

iii

Chapter 1

Introduction

Nowadays we almost daily receive news from the world of cryptocurrencies. Espe-
cially Bitcoin, whose concept was introduced in 2008 by Satoshi Nakamoto [2],
makes headlines of late. Undoubtedly, cryptocurrencies and their underlying
blockchain technology have to be considered an alternative - or rather addition,
to our financial system.
However, Bitcoin is by far not perfect and still has major challenges to mas-
ter, one of them being scalability. With the current block size capped at 1MB
and new blocks being found on average every 10 minutes only 7 transactions/s
are expected, considering an average transaction size of 250 Bytes. Thus, more
and more transactions get added to backlog and need even longer to be con-
firmed as the already recommended waiting time of several blocks to avoid
double spending. In comparison, credit card company Visa claims to support
56’000 transactions/s.1 Latest adoptions of the SegWit protocol change and
block limits up to 8MB with Bitcoin Cash2 are only partial solutions.

Micropayment channel networks [1, 8] operating on top of the blockchain
are one solution to solve Bitcoin’s scalability problem. The idea behind a mi-
cropayment channel is that almost limitless transactions between two channel
parties can be handled with smart contracts o↵-blockchain. Thus, giving space
to process other transactions on the blockchain and eventually increasing the
transaction volume for a broader user base. Micropayment channels can be
connected to a larger network where any two participants, who do not have a
common channel, can send transactions over larger distances to each other. A
small fee has to be paid for every hop in between sender and receiver. Compared
to the fee charged for sending a transaction via the blockchain, fees on a micro-
payment channel are expected to be much smaller. In chapter 2 the concept of
micropayment channels is going to be explained in more detail.

1https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-
Jun2015.pdf

2https://www.bitcoincash.org

1

1. Introduction 2

1.1 Motivation and Goals

How participants of a micropayment channel network connect among themselves
and whether the resulting network structure still preserves one of Bitcoins core
principles, decentralization, has to be questioned [4]. Critics believe that large
institutions, like banks, could dominate micropayment channel networks by being
centralized hubs which route transactions between participants. Only wealthy
participants could a↵ord to create enough channels to maintain such a routing
service making them eventually even wealthier. We are not going to judge if
this is a good or a bad thing. We instead would like to design a micropayment
channel network from scratch.

Our network should be convenient for most participants and not for few. We
believe that the fees on micropayment channels are an essential criterion for such
a network. On the one hand, participants want to minimize their fee payments
on transactions by choosing profitable routes, on which fees are presumably low.
On the other hand, participants want high fees on their own channels, paying out
fee earnings by forwarding transactions. Either way, fees play an important role,
and ultimately the question arises, how should we choose fees on micropayment
channels?

In this thesis, we propose a strategy on how to connect participants in a mi-
cropayment channel network and set fees on channels accordingly. The strategy
should achieve a globally stable network state in which micropayment channel
fees are persistent. Ideally, the resulting network structure would be decentral-
ized.

Chapter 2

Background

Descriptions and illustrated figures throughout this particular chapter are in-
spired by Burchert et al. [9]. Micropayment channels are first introduced by
Hearn and Spilman [6] and later micropayment channel networks have been pro-
posed simultaneously by Decker et al. as Duplex Micropayment Channels [8]
and by Dryja et al. as the Lightning Network [1].

2.1 Micropayment Channels

A micropayment channel is set up between two participants of a micropayment
channel network who want to exchange currency without broadcasting transac-
tions to the blockchain, apart from a one-time funding transaction to open and
a final commitment transaction to close the channel.

To create a channel an m-of-n multisig transaction output can be used, which
is only spendable if m private keys of the corresponding n public keys of the
output are provided. In case of micropayment channels, a 2-of-2 output is created
including both channel parties.

Opening a channel consists of two transactions: a funding transaction, broad-
cast to the blockchain, and a commitment transaction stored by both channel
parties.
In a funding transaction, parties declare how much funds they want to put in a
channel. Thereby, the channel balance is determined. Once funds are locked-in,
they are only usable inside a channel and are not transferable to other channels.
Inputs to the funding transaction usually reference previously unspent singlesig
outputs fulfilling Proof of Ownership.
Furthermore, a commitment transaction is created which, when being appended
to the blockchain, outputs the balance to the channel parties respectively. The
commitment transaction is a security that guarantees locked-in funds are re-
turnable at any time after channel creation. In Figure 2.1 channel creation is
depicted.

3

2. Background 4

Figure 2.1: Creation of a micropayment channel. Boxes represent transac-
tions and circles inputs or outputs. The multisig output/input in the middle
is only spendable if both channel parties sign the commitment transaction.

A channel can be updated by replacing the commitment transaction with a
newly agreed on commitment transaction representing the new channel state.
Figure 2.2 shows a channel update. With every update, the balance on the
channel gets shifted. Updates are the equivalent of sending transactions between
channel parties. As both private signatures are needed to create a new commit-
ment transaction locked-in funds are safe at any time. Eventually, a channel gets
lopsided and currency must flow in the other direction to balance the channel, or
the channel has to be closed and reopened via the blockchain with a new balance.

Figure 2.2: Update of a micropayment channel. A new commitment trans-
action is created and signed by both channel parties, representing the new
channel state where A will receive one unit more, and B one unit less than
in the old state.

Both parties can close the channel at any time by publishing the last agreed on
commitment transaction. To prevent parties from broadcasting old commitment
transactions, and hence, violating the current channel state, more sophisticated
smart contracts, like timelocks [8] or revocable transactions [1], can be used.

Once a channel is established new transactions can be created within seconds
depending on the latency and throughput of the channel parties. In comparison
to Bitcoin’s blockchain, which needs several minutes to hours depending on the
tra�c to confirm a transaction, this is a significant improvement.

2. Background 5

2.1.1 Timelocks and Revocable Transactions

Duplex Micropayment Channels [8] make use of timelocks for replacing commit-
ment transactions. The concept relies on using the lock time field of a transac-
tion, meaning a transaction will only be accepted in the blockchain after time
T has elapsed. Replacing a transaction will decrement the timelock of the new
transaction. For example, when a first transaction is created with a timelock of
T=10 the second transaction replacing the first one will have T=9 and so forth,
see Figure 2.3. There is always a clear order amongst all transactions.

When the timelock of the latest transaction has elapsed the channel should
be closed, otherwise older transactions might also get publishable, which would
violate the most recent agreed-on channel state. An invalidation tree described
in [8] can be used to prolong the lifetime of channels.

In the Lightning Network [1] revocable transactions are used. Is one party
not behaving correctly and eventually tries to cheat, its counterparty can claim
the whole channel balance. For this purpose, each channel party creates a secret
for each transaction. After a transaction gets invalidated by a new one, secrets
of the old transaction get exchanged. A personal commitment transaction is
created for both channel parties, which is already signed by the counterparty
and can be published with the party’s own signature at any time. The set up
of a revocable transaction is illustrated in Figure 2.4. The scenario in which
one party can punish the counterparty is possible when old transactions are
broadcasted and secrets are known beforehand. Every secret has to be stored,
and thus, the construction of revocable transactions needs additional storage
space.

Figure 2.3: Transaction re-
placement with timelocks. For
consequent transactions the
lock time T is decreased.

Figure 2.4: Revocable trans-
action. The coloring indicates
to which channel party the
transaction/-output belongs.

In general, participants can interact trustlessly with other participants in
the network using one of the presented constructions, as long as channels are
actively maintained. By knowing that one channel party is absent, or in case of

2. Background 6

a successful Denial of Service attack, the channel can be abused as both concepts
rely on su�cient time to counteract misbehavior.

2.1.2 Hashed Timelocked Contracts

A micropayment channel network is reasonable when participants do not need
to be connected to everyone else. Thus, di↵erent channels can be connected
to send transactions over multiple hops. E.g., participant A wanting to send a
transaction to C over B implies that A and B as well as B and C maintain a
channel chAB and chBC respectively, see Figure 2.6. In this scenario, B would
be an intermediate hop.

To construct transactions Hashed Timelocked Contracts (HTLCs) are used
which guarantee atomic currency exchange over multiple channels. Figure 2.5
illustrates the setup.

Figure 2.5: HTLC commitment transaction. There are three di↵erent out-
puts, where the first two return directly the balance to A and B respectively.
The third output can be claimed by A after time T has elapsed, or by B if
B can provide a secret s s.t. hash(s) = r. The underlying transaction goes
from A to B.

The third conditional output guarantees that in case of a non-cooperating
intermediate node all channel parties receive their rightful share after a certain
time. Therefore, the timelock T has to be decreased for each consecutive HTLC,
otherwise, currency loss might occur. Additionally, each party is given enough
time to pull their funds by providing the secret to their HTLC.
A transaction of one unit from A to C with HTLCs could look as shown in Figure
2.6.

HTLCs can be established in any chain of any length consisting of di↵erent
payment channels. As an incentive for intermediate hops to forward transactions
a small fee is charged for using the service of the channel, i.e., A would propose
in Figure 2.6 slightly more than one unit to B. Fee payments are also justified
as the balance on a channel gets shifted, which is only beneficial for balancing a
lopsided channel. Channel parties decide in collaboration on a channel fee.
After a successful transaction with HTLCs, channel parties do not need to broad-

2. Background 7

Figure 2.6: Atomic exchange over two micropayment channels with HTLCs.
As soon as HTLCs are successfully established within each channel, C can
publish secret sC and pull the unit from B, and B from A consecutively.

cast their contract and can just replace their HTLC with a new commitment
transaction without an HTLC. HTLCs can be combined with timelocks or revo-
cable transactions changing the output of the HTLC accordingly.

Chapter 3

Design Strategy

We start by formally defining an appropriate model for a micropayment channel
network. Later on, we propose properties which a network should feature when
being created, and when being updated. A key factor for our strategy design
will rely on the transaction flow inside the network.

3.1 Model

In the following, we present assumptions and definitions for di↵erent components
of a micropayment channel network.

Definition 3.1 (Capacity). The capacity of a micropayment channel is the sum
of the channel balance.

Assumption 3.2. Micropayment channels have infinite capacities. Transactions
can be sent regardless of capacities.

Definition 3.3 (Network Graph). A network graph G = (V,E) consists of n
di↵erent participants. Each participant is represented by a unique node v 2 V .
Two participants X, Y having an open micropayment channel chXY are con-
nected by an edge e 2 E. It holds that |V | = n, and n�1 |E| n(n�1)

2 . Edges
in a network graph are undirected.

Assumption 3.4. A valid network graph is connected.

Apart from the previously stated assumptions, micropayment channels, rep-
resented by edges in our model, and resulting transactions are constructed as
described in Chapter 2, e.g., transactions can be secured with HTLCs on the
sending route.

Definition 3.5 (Connection Rule). A connection rule is a condition under which
two nodes should connect in a network graph.

8

3. Design Strategy 9

A simple example for a connection rule R1 could be: ”connect two nodes s, r
if s wants to send a transaction to r”, see Figure 3.1.
A more complex example could be: ”connect two nodes u, v i↵ conditions c1, .., ck
are met”.
Each application of a connection rule will result in a new network graph G

0 with
G

0 = (V,E [{e}), where e = (u, v) and u, v are the involved nodes. Similarly, a
disconnection rule can be defined resulting in G

0 = (V,E \ {e}).
If a network graph becomes disconnected, e.g., when no transactions are being

sent between two di↵erent groups of participants, we can treat each subgraph as
an independent network graph. Thus, we can also handle such cases even though
we consider only connected graphs by Assumption 3.4.

Definition 3.6 (Honest Actor). An honest actor actively participates in a net-
work and follows the proposed strategy.

Assumption 3.7. Participants in our model behave as honest actors.

The basic network structure is settled. Now, we need to define transactions
between participants. We quantify transactions by their volume (concerning the
transaction count) being tra�cked during a certain period. Such a quantification
assumes some knowledge about the future to be useful, e.g., how many transac-
tions are going to be sent during a certain period from node s to node r. The
more accurate the prediction is, the better participants can adapt the network
by making advantageous connections beforehand.

Definition 3.8 (Transaction Matrix). A transaction matrix of a network with n

participants is defined as Tm 2 Nn⇥n. Matrix entry Tm(s, r) denotes the number
of transaction being sent during a certain period, where s is the sender and r

the receiver of the transactions. It holds that 8s 2 {1...n} : Tm(s, s) = 0.

For example, matrix entry Tm(s, r) = 5 would be read as: ”Node s sends
5 transactions to Node r”. See Figure 3.1 for an example.
The observed period in which these transactions are being sent is variable for
each transaction matrix. It is even possible that each entry of the transaction
matrix represents a di↵erent period. This di↵erence depends on how long we
expect a channel to persist.
Throughout this thesis, the index s stands for sender and the index r for receiver.

Definition 3.9 (Fee Matrix). A fee matrix of a network with n participants is
defined as Fm 2 R+n⇥n. Matrix entry Fm(i, j) denotes the amount of fee to pay
when routing a transaction over edge e = (i, j). It holds that Fm(i, j) = Fm(j, i),
and further 8i 2 {1...n} : Fm(i, i) = 1.

Matrix entry Fm(i, j) = 1 denotes that node i and j are not directly con-
nected, i.e., they have no common payment channel. A fee matrix is similar to
an adjacency matrix. Note, fees are positive.

3. Design Strategy 10

0

BBBB@

0 0 0 3 0
0 0 4 3 1
0 4 0 2 5
2 0 1 0 3
0 0 0 0 0

1

CCCCA

Figure 3.1: Transaction matrix and the resulting network graph, created
under the connection rule R1: ”connect two nodes s, r if s wants to send a
transaction to r”. Note, node 5 is only a receiver node as the 5-th row of
the matrix contains only zero entries.

To access the fee on an edge the weight function:

f : E ! R (3.1)

is defined, which takes as an input edge e 2 E and returns the associated fee,
see Figure 3.2. The weight function matches each edge with a possible value if
that edge should exist.

0

BBBB@

1 1 1 4 1
1 1 3 1 1
1 3 1 2 5
4 1 2 1 1
1 1 5 1 1

1

CCCCA

Figure 3.2: Network graph from Figure 3.1 with labeled fees on the edges
according to the fee matrix on the left. Here, the highest fee would be paid
on edge e = (3, 5), namely f(e) = 5.

Participants only have a partial view of the complete fee matrix as they are
interested in the fees paid along routes which route over their channels. The
same holds for the transaction matrix, where participants are interested in the
tra�c on their channels. Participants can use routing protocols, which are not
subject to this thesis, to obtain information on di↵erent routes. By sending
transactions, participants gradually get a local picture of the transaction flow,
which in the end allows predictions about the transaction matrix.

For clarity, the following expressions are equivalent:

• node, participant and channel party

• edge and channel

3. Design Strategy 11

3.2 Fee Strategy

When we want to develop a strategy, we first need to consider what properties
are important for a micropayment channel. The strategy is defined from a global
perspective but is locally applied by participants.

One important property is the connectivity of the participants. Participants
should only connect to few other participants. Firstly, because locked-in funds
will get proportionally smaller and smaller with each created channel (as in
reality participants have only limited funds to spend). Thereby, channels become
more useless to route a transaction over. And secondly, opening and closing a lot
of channels will burden the blockchain with more transactions. Thus, we want
the network to penalize creating too many channels.

By another property we want to capture that participants act rationally
to some extent, i.e., they care about the fee being paid on a channel, either as
customer or owner of the channel. When o↵ering a channel to other participants,
routing a payment over that channel should be attractive. For example, a channel
with the fee close to the blockchain transaction fee (on-chain cost) will most likely
not be picked by transactions which need more than one hop to their destination.
Therefore, we also want participants to avoid large fees, which indirectly suggests
choosing good channels.

We propose the following loss function which combines both previously men-
tioned properties:

l(G, f, Tm) =
X

(s,r)

Tm(s, r)
X

e2SP (s,r)

f(e) +B|{e 2 E|9s, r : e 2 SP (s, r)}| (3.2)

The loss function l : ((V,E), f,Nn⇥n) ! R takes as arguments a network
graph G = (V,E), weight function f , transaction matrix Tm 2 Nn⇥n and cal-
culates the resulting loss. The transaction matrix Tm can be arbitrary as long
as the resulting network graph G is connected, i.e., it exists a tra�c flow which
includes all participants. The weight function is dependent on the graph and its
underlying fee matrix, where participant decide on channel fees.
The double sum of the loss function captures all the fees being paid by all trans-
actions. On the right side of the plus sign are the costs for creating all channels,
i.e., all edges in the network graph belonging to some shortest path (SP). The
shortest path is the cheapest route from sender to receiver with respect to fees
being paid on the route, not hops concerning the distance of the route.

The goal now is to construct a network graph for which the loss, given a
transaction matrix, is minimal. I.e., we want to provide a network graph for
which we can reason why existing edges are formed, and also, why these edges
are favorable to minimize the loss potentially.

3. Design Strategy 12

Trivial solutions should be prevented, like creating a graph with no edges, or
a minimally connected graph with 0 fees being paid on the edges, for which the
loss would be truly minimized. Therefore, the weight function f should be of
the form f : E ! R+ \ {0}, which is also in favor of network participants who
want to make some profit eventually. Additionally, we constrain the right-hand
side by assuming that the shortest path must exist for each sender and receiver
of a transaction.

We define the following cost function c : (L, f) ! R to access the costs on a
list L of connected edges:

c(L, f) =
X

e2L
f(e) (3.3)

The function sums up of all fees along the edges of the list. An example of
such a list could be the shortest path: SP (s, r) = L ✓ E.

The shortest path can be calculated from the fee matrix Fm 2 R+n⇥n and
the resulting network graph G = (V,E). Formally:

SP : ((V,E),R+n⇥n
, s, r) ! L

with s, r 2 V , and L ✓ E. We assume that the network graph and fee matrix
are always implicitly given and just write SP (s, r) to improve readability.
To calculate the shortest path we are using Dijkstra’s algorithm, mainly because
we do not have negative fees.

Although di↵erent sources consider negative fees plausible, e.g., for attract-
ing more transactions (a negative fee will pay o↵ the sender of a transaction
instead of charging), we try to avoid them and only allow positive fees. The
main reason behind this constraint is that allowing negative fees would possibly
result in oscillating fees when trying to optimize them. For example, setting fees
along a path with two edges could result in one edge fee being strongly negative
f(e�) ⌧ 0, and one strongly positive f(e+) � 0 but the overall cost would still
be zero: c({e�, e+}, f) ⇡ 0. In the only positive fee case, the fees could also
vary but not exceed the on-chain cost, or else no motivation is given to send a
transaction via micropayment channel network.

3. Design Strategy 13

3.2.1 On Network Creation

With respect to the stated loss function, we want to create a network graph for
n participants. Most crucial therefore is the transaction matrix Tm 2 Nn⇥n from
which we obtain information about the future payment flow. The fee on each
edge is of less importance as fees are a given factor initially chosen by channel
parties.

Algorithm 1 Network Creation

1: Input : Tm, B

2: E = ;, V = ;, Fm = 1n⇥n, TX = list() . first list index is 1
3: for s, r in 1...n do

4: add((Tm(s, r), s, r)) to TX . tx = (#tx, sender, receiver)

5: sort(TX) by #tx in desc. order
6: V = {TX[1]sender,TX[1]receiver}
7: E = {(TX[1]sender,TX[1]receiver)}
8: delete(TX[1]) from TX

9: for all tx in TX do

10: if either txsender or txreceiver is in V then . connection rule
11: E = E [{(txsender, txreceiver)} . e = (txsender, txreceiver)
12: V = V [{txsender, txreceiver}
13: txsender and txreceiver decide on an initial channel fee finit(e)
14: Fm(txsender, txreceiver) = Fm(txreceiver, txsender) = finit(e)

15: if both txsender and txreceiver are not in V then

16: swap list entry tx with next occurring unswapped list entry
17: continue with next list entry

18: if V contains all nodes then
19: break for-loop

20: for all s in V do

21: for all r in V do

22: if c(SP (s, r), finit) · Tm(s, r) > B then . connection rule
23: E = E [{(s, r)} . e = (s, r)
24: s and r decide on an initial channel fee finit(e)
25: Fm(s, r) = Fm(r, s) = finit(e)

26: return G = (V,E), Fm, finit

Algorithm 1 can be used to create a network graph for given Tm and B.
The algorithm sorts tuples of the form (#tx, sender, receiver) by the highest
transaction count. Consecutively, nodes and edges are added on which most
transactions are being tra�cked until a connected graph is achieved. For added
edges, an initial fee is determined by the channel parties. To add an edge either
the sender or the receiver should already be in the node set otherwise it is possible
to get a disconnected graph. In the last step, edges are added where the costs for

3. Design Strategy 14

sending transactions over the shortest path exceed the cost of creating a direct
connection. Note, swapped transactions should be marked and should not be
swapped back otherwise an infinite loop might occur.

Participants only consider their own transactions and corresponding receiver
nodes when applying the algorithm. When creating a channel, the initial fee will
always allow both channel parties u and v to send at least all their transactions
to each other over their channel without exceeding the on-chain cost. The initial
fee is therefore bounded by:

0 < finit((u, v)) <
B

max(Tm(u, v), Tm(v, u))

This initialization guarantees that the channel party with more transactions
pays at most on-chain cost B. The upper bound becomes smaller for a higher
transaction count.

One might find the construction of Algorithm 1 counter-intuitive, especially
the first part. The loss function (3.2) indicates to add all edges to the edge set E
which belong to the cheapest theoretical shortest path of a fully connected graph.
Figure 3.3 illustrates that our algorithm achieves a better solution, where for
simplicity all fees are set to 1.

0

BBBB@

0 5 0 0 4
0 0 0 0 0
0 0 0 0 5
0 0 4 0 0
0 5 0 5 0

1

CCCCA

Figure 3.3: Loss comparison for di↵erent construction approaches. From
left to right: transaction matrix, network graph G1 constructed by Algo-
rithm 1, and the network graph G2 which uses the theoretical best shortest
path. The green arrow indicates the better shortest path SP (4, 3) com-
pared to the red one. We assume B = 10. The loss for graph G1 is
l(G1, f, Tm) = 36+4B = 76, and for graph G2; l(G2, f, Tm) = 28+6B = 88.

Although Algorithm 1 achieves a promising result, the resulting network
graph is not the best possible solution regarding the loss being minimal. A
counterexample is shown in Figure 3.4.
Nonetheless, we believe that the construction of our algorithm is well-chosen. We
can reason about why each edge is created. Connections are established one after
another with the notion that those connections will have high tra�c, and that
fees on these edges are presumably low compared to other fees in the network.

3. Design Strategy 15

Connections formed by the best solution might not be so obvious as a clear
connection order might not be reasonable. In the worst case, all possible network

graphs (2
|V |(|V |�1)

2 many) have to be considered, running in O(2|V |2). Our algo-
rithm runs in O(|V |2 log |V |2 + |V | log |V |+ |E|) = O(|V |2 log |V |2), for sorting
all transactions and finding the shortest paths.

0

BBBBBB@

1 ... i ... n� 1 n

1 0 ... 0 ... 0 0
...

i 5 ... 0 ... 4 4
...

n� 1 0 ... 0 ... 0 0
n 0 ... 0 ... 0 0

1

CCCCCCA

Figure 3.4: Counterexample. On the left side is the transaction matrix
depicted with node i connecting to the network. The red node indicates
the connection made by Algorithm 1 and the green node a potentially
better solution. Connecting to node 1 will result in higher costs for sending
4 transactions to node n-1 and n each, instead of connecting to node n-1/n
and send 5 transactions to node 1. The dotted line indicates a chain of
nodes where fees are presumably low s.t. sending 5 transactions to node 1
from node n-1/n does not exceed the on-chain cost.

3. Design Strategy 16

3.2.2 On Network Update

Having a strategy on how to create a network graph, we want a strategy on
how to update an existing network, by updating fees and eventually creating or
deleting edges.

Similarly to the network creation procedure, we also want to capture the
notion of participants being rational to some extent. Hence, updating the fee on
a channel should somehow be profitable for owners, in the sense that the channel
continues to be attractive, especially for participants with a high transaction
count. Here, the transaction matrix Tm is again critical, which predicts the
future payment flow. To improve predictions, the Hidden Markov Model could
be used which includes the past transaction flow.

We expect a real micropayment channel network to be similar to a social
network, like a small-world network. Thus, we predict the transaction matrix Tm

according to a small-world-like network where participants only interact with a
particular group of other participants. We denote this group as social range.

The following procedure captures the mentioned properties for choosing a
new fee, i.e., we want to obtain a new weight function f

0 and update the fee
matrix accordingly:

f

00(e) = min
s s.t. 9r:e2SP (s,r)

{f 00(e)s | ⇤ }

⇤ ⌘
X

r

Tm(s, r) · (c(SP (s, r), f)� f(e) + f

00(e)s) = B

0 � �

B

0 =

(
B · d, if D > SR, d = k · (D � SR), 0 < k

B, otherwise

f

0(e) =

(
f(e) + (f 00(e)� f(e)) · ⌘, if f 00(e) > 0 with 0 < ⌘ < 1

f(e)� f(e) · ⌘, otherwise

(3.4)

For the input edge e, a set of di↵erent fee proposals for a choice of a new fee
f

0(e) is calculated. For each sender node s, where e belongs to the shortest path
of that node, a proposal f 00(e)s is determined.
The equation inside the curly brackets (⇤) has to be resolved after the unknown,
yet to be determined fee proposal f 00(e)s. The left side of the equation sums up
all shortest paths of sender s routing over e. The actual fee f(e) gets subtracted
from the costs of the shortest path c(SP (s, r), f) and the new possible fee f 00(e)s
gets added to the costs. On the right side of the equal sign is the on-chain cost B0

(modified under a certain condition, which will be explained soon) diminished by
a value �. With the left-hand side being equal to the right-hand side we choose

3. Design Strategy 17

the fee such that the costs do not exceed the modified on-chain cost B

0. Thus,
participants are likely to choose the channel for future transactions.

By the very nature of the equation, a possible fee proposal could be nega-
tive. Therefore, we choose either to advance the smallest proposal if it is pos-
itive, or otherwise we reduce the already existing fee. Choosing the minimum
will guarantee all sender nodes whose fee proposal is bigger to continue sending
transactions over the updated edge. By step-wise advancing the proposed fee,
we set fees along routes more evenly and make the network more robust for fast
changing transactions, i.e., fees are changing more smoothly.

In some networks, far distant nodes (in terms of hops) could dominate fee
prices by sending a lot of transactions to each other, and therefore low fees
are proposed along the route. To prevent this scenario we want participants to
increase B for the calculation of fee proposals of nodes which are not in their
social range. We are going to increase B0 linearly with every hop greater than the
social range, where D denotes the distance from the sender node to the updating
edge and SR the social range. Factor k regulates the linear incline.
As a result, proposed fees will be higher for distant nodes, and hence the incentive
is given to connect in the social range and not route over long routes.

An example on how to calculate the fee with Procedure 3.4: Under the setup
depicted in Figure 3.5 we would arrive at the following two equations (⇤) for
updating edge e = (3, 4). Assuming B

0 � � ⇡ 10, and ⌘ ⇡ 1:

Tm(s, 4)f((s, 3)) + Tm(s, 4)f 00((3, 4))s = B

0 � �

7f((1, 3)) + 7f 00((3, 4))1 = 10 , f

00((3, 4))1 =
3

7

5f((2, 3)) + 5f 00((3, 4))2 = 10 , f

00((3, 4))2 =
5

5
= 1

f

00((3, 4)) = min
f 00(e)

{f 00((3, 4))1, f
00((3, 4))2} =

3

7

The choice for the new fee on edge (3, 4) would be:

f

0((3, 4)) = f(e) + (f 00(e)� f(e)) · ⌘ =
3

7

0

BB@

0 0 0 7
0 0 0 5
0 0 0 0
0 0 0 0

1

CCA

Figure 3.5: From left to right: transaction matrix, and network graph.
Tm(1, 4) = 7, Tm(2, 4) = 5 and f((1, 3)) = f((2, 3)) = f((3, 4)) = 1.

3. Design Strategy 18

Algorithm 2 implements Procedure 3.4:

Algorithm 2 Fee Update

1: Input: G = (V,E), Tm, Fm, f
2: while not all edges e in E are updated do . e = (u, v)
3: SPs = list()
4: for all s in V do

5: for all r in V do

6: if e 2 SP (s, r) then
7: add(SP (s, r)) to SPs

8: if SPs = ; then . disconnection rule
9: E

0 = E \ {e}, channel parties close channel e
10: F

0
m(u, v) = F

0
m(v, u) = f

0((u, v)) = 1
11: else

12: calculate f

0(e) with the help of Proc. 3.4, SPs and Tm

13: F

0
m(u, v) = F

0
m(v, u) = f

0(e)

14: continue with next edge e in E

15: return G

0 = (V,E0), F 0
m, f 0

The algorithm is going through all edges of the network graph and proposes a
new fee for each, returning a new weight function f

0 and updated fee matrix F

0
m

in the end. The order in which edges are being updated depends on the imple-
mentation. Individual participants would only consider their own channels being
in the edge set. Channel parties should arrive at same fee proposals for common
channels.
If an edge has no tra�c, i.e., there exists no shortest path using that edge,
we want to delete it. In our strategy, any edge without tra�c will contribute
unnecessarily to the loss (3.2) which we still want to keep at a possible minimum.

After the fee update, we can optimize our network graph again. To update
the network, we can use the following Algorithm 3 which is identical to the last
part of Algorithm 1.

Algorithm 3 Network Update

1: Input: G = (V,E), Tm, Fm, f
2: for all s in V do

3: for all r in V do

4: if c(SP (s, r), f) · Tm(s, r) > B then . connection rule
5: E

0 = E [{(s, r)} . e = (s, r)
6: s and r decide on channel fee f

0(e)
7: F

0
m(s, r) = F

0
m(r, s) = f

0(e)

8: return G

0 = (V,E0), F 0
m, f 0

3. Design Strategy 19

Algorithm 2 and Algorithm 3 can iteratively be applied to a network graph.
The ultimate goal is to obtain a network graph in which participants agree on fees
being paid on all channels in the network, i.e., our solution converges to a stable
network where fee update di↵erences are negligible. To analyze convergence we
need a reasonable quantity to express the network state. We use the fee being
paid in the whole network as such quantity. We suggest the following scoring
function to represent the network state:

S(Tm, f) =
X

s2V

X

r2V
Tm(s, r) · c(SP (s, r), f) (3.5)

The scoring function S : (Nn⇥n
, f) ! R sums up all fees being paid by all

transactions in the network.

Algorithm 4 iterates fee update and network update until a limit of iterations
is reached, or di↵erences in the scoring functions are considered negligible:

S

t(Tm, f

0)

S

t�1(Tm, f)
 ✏

Where t indicates the current iteration step. Note, the weight function is
updated in consecutive iterations.

Algorithm 4 Network Convergence

1: Input: G = (V,E), Tm, Fm, f
2: while not converged or iteration limit reached do

3: update fees Fm, f according to Alg. 2 and Tm

4: update network G = (V,E) according to Alg. 3 and Tm

5: return G

0 = (V,E0), F 0
m, f 0

Note, the same transaction matrix Tm is used throughout the iteration oth-
erwise fees could not be decided due to the nature of our fee updating procedure.
The convergence behavior is going to be discussed in Section 4.1.

3.2.3 On Entering/Leaving the Network

With algorithms for network creation and network update, we realized a strat-
egy to connect participants in a micropayment channel network and set fees on
micropayment channels. We briefly want to mention how new participants can
connect to/leave the network. Leaving the network can have di↵erent reasons,
either a node leaves voluntarily or crashes. For our strategy, the reason does not
matter.

3. Design Strategy 20

Participants entering should connect to the network in the same fashion of
Algorithm 1. The first connection should be established to the node where most
transactions are going to be sent to. To other receiving nodes the shortest path
is calculated, and direct connections created if the costs for sending transactions
according to the algorithm are improved. The newly added node can immediately
be calculated in for updating fees in the extended network graph containing the
node and its newly created edges.
Alternatively, the entering participant tries every possible first connection and
eventually finds an optimal solution minimizing his fee payments. This approach
needs a longer run time and knowledge about all participants in the network, not
only the ones a transaction is going to be sent to, which is somewhat unrealistic.

When a node crashes or leaves, there are several options on how to proceed:
either the network is created anew, or a connecting edge is created as the crashed
node might have been a connecting node, or in the best case, the network is still
connected and can be just updated regularly.
Algorithm 5 proposes a repairing solution if the network should get disconnected:

Algorithm 5 Network Repair (local)

1: network structure changes e
G = (eV ,

e
E), e

Tm, e
Fm, e

f

2: while some nodes R ✓ e
V not reachable do

3: connect to unreachable node r in R with max(eTm(s, r))
4: E

0 = e
E [{(s, r)} . e = (s, r)

5: s and r decide on channel fee f

0(e)
6: F

0
m(s, r) = F

0
m(r, s) = f

0(e)

7: update with Algorithm 4

Participants check with the algorithm if some nodes are not reachable. If so,
a connection to the unreachable node where most transactions are going to be
sent is established.

Creating the network anew results in a better-optimized network, compared
to the other two solutions, but will stall the whole transaction flow by creating
and closing channels, which is highly impractical for many reasons.
Repairing the network locally allows the transaction flow which is not influenced
by the crashing node to continue. Further, only local timeouts are expected for
creating new connecting channels.

For any option, the transaction matrix and fee matrix can be reduced by
the sender row and receiver column of the crashed node. For network updates,
a crashing node and its channels can be ignored for the time being. If a node
returns after a timeout, the network can easily be extended back to the old
network state by applying the developed algorithms.

Chapter 4

Analysis

In this chapter, the performance of the developed algorithms for network creation
and update is analyzed, especially the convergence behavior of Algorithm 4. All
the algorithms have been implemented in the statistical programming language
R:1

• Algorithm 1, for network creation

• Algorithm 2, for fee update (implements Procedure 3.4)

• Algorithm 3, for network update

• Algorithm 4, for iteratively applying Alg. 2 & Alg. 3

Various parameters are adjustable:

• n: number of participants

• r: number of transactions, e.g., Tm(i, j) 2 [0..10]

• finit: initial weight function (3.1) on network creation in Alg. 1

• B: blockchain transaction fee cost (on-chain cost)

• �: how close to B should the fee be determined in Proc. 3.4

• update mode: update edge-wise/node-wise, and in-order/randomly

• ✏: convergence tolerance in Alg. 4

• i: iteration limit in Alg. 4

• ⌘: step-size in Proc. 3.4

1https://www.r-project.org/

21

4. Analysis 22

In Figure 4.1 an example of an network graph (3.3) created by Algorithm 1
and updated afterwards by Algorithm 4 is displayed. Table 4.1 shows the con-
vergence behavior. The network score is calculated by scoring function S (3.5).
Afterwards, all choices of parameters are discussed in order.

Figure 4.1: Network graph with 10 participants, the initial fee is 1 for all
channels and B = 10. On the left side is the network graph created by
Algorithm 1 depicted. On the right side is the network graph updated by
Algorithm 4 with newly calculated fees. Each participant has a unique
node ID. Fees are displayed on each edge, and only the first four decimal
digits are shown due to readability. Note, edge e = (4, 1) was removed
during the update phase.

Iteration Score Di↵erence
Initial 198.602933 -
1 181.721089 16.881844
2 177.101706 4.619383
3 178.960943 1.859237
...
15 181.263752 0.009077
16 181.269899 0.006147
17 181.274053 0.004154

Table 4.1: Convergence behavior of Algorithm 4 applied to the network
graph in Figure 4.1. Edges are updated in-order. On average a transaction
costs 1.258848.

n = 5/10/20: For micropayment channel networks with 5, 10, or 20 partic-
ipants, results could be found in a reasonable time frame. These numbers seem
insignificant compared to expected real-world networks of thousands or even mil-
lions of nodes. Here, we analyzed the whole network on a global scale. Usually,
participants will only deal with a fraction of other network participants, and the

4. Analysis 23

algorithms are applied locally by participants.
Nonetheless, the convergence criteria should not change for larger networks, ex-
cept that the running time is exponential in the number of participants.
We choose the social range to be 4. E.g., participant 6 interacts with participants
2-5 and participants 7-10. For shortest paths which route over more than 4 hops
to some updating channel, a higher modified on-chain cost B0 is therefore used
as described in the Section 3.2.2.

r = [0..5]: Each entry in the transaction matrix Tm (3.8) is sampled uni-
formly random from [0..5]. Parameter r solely scales the amount of fees being
paid on each edge but has no further implication on the network structure.

B = 10, finitfinitfinit = 1: The ratio B/finit between on-chain cost B and the in
average occurring initial fee finit decides how high the connectivity in the initial
network is. If the ratio is high, the resulting graph will be sparsely connected.
Figure 4.2 shows the network creation with B = 100 for the same transaction
matrix used in Figure 4.1. In contrast, if the ratio is small or even 1-to-1, the
resulting graph has an edge between all trading participants.

Figure 4.2: Network graph creation by Algorithm 1 with B = 100. The
network graph has the minimum amount of edges (9) as the initial ratio
B/finit is higher compared to Figure 4.1.

�

�

� = 0.1: The parameter � can be seen as a factor which deviates the fee
settings by Procedure 3.4, i.e., a certain deviation is added to the already pre-
dicted transaction matrix. If more transactions are expected on average, � can
be increased to lower fees in general. Alternatively, � could also be negative to
increase fees as predictions might be overconfident. We use � = 0.1 to obtain
slightly smaller fees. Varying � has no impact on the convergence.

4. Analysis 24

update mode = edge-wise in-order: In all di↵erent update modes (edge-
wise in-order, edge-wise randomly, node-wise in-order, node-wise randomly) re-
sults were converging. Generally, in-order updates converge faster. Random
updates could lead to di↵erent converging states as the order of updating nodes
matters. The convergence behavior is mostly not as smooth compared to in-
order updates. In some rare cases, random updates would find a convergence
limit faster by chance. We chose edge-wise in-order-updates which yield results
in the shortest time frame.

i = 100: We choose i = 100 as all found results are converging within this
iteration limit.

✏

✏

✏ = 0.005, ⌘

⌘

⌘ = 0.5: Both parameters ✏ and ⌘ influence the convergence
of Algorithm 4. We believe ✏ = 0.005 is small enough to conclude convergence.
For step-size ⌘ we chose the value 0.5. Higher choices will by tendency result
in a faster convergence, but fees are set less evenly. With a lower choice of ⌘, a
possible limit is determined more accurately but the time for convergence takes
longer as update steps are smaller.

4.1 Convergence

All simulations produced by Algorithm 4 were converging. We try to give an ex-
planation. Therefore we first look at one particular fee being updated iteratively
with Procedure 3.4. Other fees in the network remain unchanged.

We distinguish between two cases for updating, either a negative (including 0)
or a positive minimum is proposed. Note, all fee proposals belong to sender nodes
which already have the shortest path routing over the updating edge. Thus, if
the fee proposal is negative, the actual fee on the edge will be reduced in any case
because the shortest path of the node proposing the negative fee is not going to
change. With other fees in the network being static, the fee would converge to 0
during the iterative updates:

f

0(e) = f(e)� f(e) · ⌘, with 0 < ⌘ < 1,

lim
i�>1

f

0(e) = 0

Having zero fee is an edge case, which is very unlikely for di↵erent reasons.
Mainly because nodes, for which a negative fee is proposed, would create at some
point a direct connection instead of continuing to send over the unprofitable edge.
But nevertheless, the fee converges.
If the fee proposal is positive the minimum is approached:

f

0(e) = f(e) + (f 00(e)� f(e)) · ⌘, with 0 < ⌘ < 1,

lim
i�>1

f

0(e) = f

00(e)

4. Analysis 25

In both cases, additional shortest paths could route over the edge if the new fee
proposal is smaller than the original fee, i.e., f 0(e) < f(e). Newly calculated in
shortest paths will never increase the fee proposal.
We conclude that iteratively updating one edge of a network converges to a stable
network state.

Now we want to analyze the convergence behavior for a dynamic network,
updated by Algorithm 4, where di↵erent update-interleavings are possible, i.e.,
an update-interleaving describes the change in the proposed fee:

i) from a positive to a negative fee proposal ! fee is decreased

ii) from a negative to a positive fee proposal ! fee is increased/decreased

iii) from a minimum to a smaller fee proposal ! fee is decreased

iv) from a minimum to a larger fee proposal ! fee is increased

Again, the shortest path is given for each transaction. The shortest path can
change during the update phase if a cheaper alternative route appears. Further-
more, all nodes consider the same transaction and fee matrix (3.9) for updating
their fees.

We consider the update of one edge once more and discuss how each inter-
leaving could occur:

i) Due to a fee update, where a positive proposal decreases the channel fee, a
new shortest path could route over the edge for which its sender proposes a
negative fee.

ii) If the sender who proposes a negative fee finds a better alternative and
switches its shortest path, the newly proposed positive fee is either smaller
or bigger compared to the actual fee, and increases/decreases the channel
respectively.

iii) If due to dependencies a fee somewhere else is increased, i.e., if a fee is in-
creased on some edge, on the updating edge the fee might be decreased if the
increased edge fee is used to determine the proposal. In case of an increased
fee some precautions, which are discussed in Section 4.2, are necessary.

iv) If the minimum fee proposal of a sender disappears and the new proposal is
larger than before. Or again, due to dependencies on other updated edges.

It is worth mentioning that a negative fee proposal could turn into a positive pro-
posal if the fees on a dependent route change accordingly. Mostly, this happens
at the beginning of the update rounds.

4. Analysis 26

Because all edges are updated with the same procedure, the di↵erence in
updating each fee becomes smaller and smaller. Only when edges are cre-
ated/deleted, or shortest paths route di↵erently, the successive update round
might result in a higher di↵erence, e.g., a newly proposed negative fee on some
edge with ⌘ = 0.5 would halve the previously set fee. This behavior could be
registered during the performance of the algorithms.

To prevent the network from being unstable (non converging), infinite updat-
ing cycles, where the fee is incremented and decremented by some interleavings
should not be possible, e.g., interleaving i) and ii) subsequently occur with the
same fee proposals. Infinite cycles are not possible because this would mean that
some sender would switch to a more expensive route at some point.

Lemma 4.1. Any network graph, while being updated by Algorithm 4, converges
to a stable network state, where fee update di↵erences are negligible.

Proof. We prove that no infinite cycle of equal fee update di↵erences can exist.
We consider a node which switches its shortest path if an alternative path is
cheaper regarding fees being paid. For an infinite cycle to occur the fees on an
alternative path must therefore always be smaller. Now we know that channels
will only set fees almost to 0 in the worst case. With fees being 0 a cheaper
path cannot exist and therefore update di↵erences must become smaller and
smaller.

So eventually, the network converges to a stable network state where fee
updates are negligibly small. This result is supported by the performance of
Algorithm 4.

4.2 Misbehavior

In this section, we loosen our Assumption 3.7 and want to analyze the impact on
the network when some participants ignore the proposed strategy and set fees on
their channels di↵erently, see Figure 4.3. Ultimately, misbehaving participants
want to increase profits.

Other channel parties, which set their fees according to the strategy, will
adapt to the misbehaving fee by including it in their calculations if there are any
dependencies. Therefore, setting a lower fee will increase, and setting a higher
fee will decrease other fees in the network to some extent. If the fee is too high,
the network will respond in creating either new channels or routing transactions
di↵erently. If the fee is set lower, neighboring nodes will increase their fee, and
hence, more transactions are not necessarily attracted. Besides, attracting more
transaction for lower fees does not lead to more profit. Nevertheless, there are
some setups in which more profit could be made, see Figure 4.4. To prevent

4. Analysis 27

Figure 4.3: Node u and v do not set the fee on their channel, indicated by
the red edge, according to the fee updating strategy of Algorithm 2. The
strategy is followed by all other participants and also in cooperation with
nodes u and v by other participants. Dotted lines represent possible longer
indirect routes and connections in the network.

this scenario, participants should check if nodes along shortest paths include
all information (transaction count, fees on the shortest path) in their updating
procedure. If the fee on some edge is increased, it can be verified whether the
fee setting is justified or not. E.g., in Figure 4.4 node i could check if edge (u, v)
is considering the 4 transactions of node i and the shortest path from i to j. As
the fee is increased, node i knows that the fee is not set according to the strategy
and the misbehavior is detected. Node j can perform this check as well.
Since the network structure is driven by the transaction flow, the setup for more
sophisticated attacks is even more complicated, i.e., channels must be set up by
attackers, and participants will not put funds in a channel they do not want
to send over to. Crashing channels with a lot of tra�c on purpose can lead to
timeouts from which the network can recover eventually with one of our presented
solutions in Section 3.2.3.

It can be concluded that ignoring the strategy is not profitable if the network
is adapting and participants check if increased fees are justified.

Figure 4.4: Node i sends 4 transactions to node j, with B = 12, ⌘ ⇡ 1.
Edge e = (u, v) sets the fee not according to the strategy. In a first step
edge f((u, v)) is set to 2, as a result f((i, u)) is updated to 0. In a second
step f((u, v)) is set to 3 and f((v, j)) updated to 0. In the end nodes u and
v earn all fees. Setting the fee f((u, v)) directly to 3 would result in node
i creating a new edge to node j.

Chapter 5

Results and Discussion

With our algorithms converging to a stable network state, we designed a viable
strategy for connecting participants and setting fees in a micropayment channel
network.

Since the transaction flow influences the network structure, a centralized net-
work is not favored but also not necessarily prevented. For example, a company
which provides products for participants could unintentionally become a cen-
tralized hub as a lot of customers want to create a direct connection to make
payments on a regular basis. Thus, the strategy does not guarantee a decentral-
ized network.

We want to do a reality check on our model from a technical side. The model
provides basic functionalities for a micropayment channel network, i.e., creating
channels and sending transactions over the network. To be tried and tested
in a real-world network some components are still missing. Firstly, capacities
are also important for routing. The capacity of channels could also implicitly
determine the initial fee setting and influence the fee update. Secondly, channels
in micropayment network are probably directed and have di↵erent fees depending
on the direction a transaction is sent over the channel.

5.1 Routing

To set our design of the micropayment channel network and the underlying strat-
egy into context, we consider routing transactions in a micropayment channel
network. We distinguish between three di↵erent routing strategy levels: short-
term, mid-term and long-term routing strategy.

The short-term strategy deals with the routing of every single transaction
separately, where a decision has to be made within seconds. The sender of the
transaction wants to find the best possible route to the receiver node. In our
model, this would solely concern the cost of the route being minimal. Par-
ticipants could also be concerned about the length of the route, where each
additional hop is a potential node to fail. The capacity is also a critical factor

28

5. Results and Discussion 29

for route selection as we have seen. Thus, our strategy also applies least to the
short-term strategy.

The mid-term strategy is about determining the fee on a payment channel
for which the time range is within minutes. Participants use the developed
algorithms to set their fees accordingly. The period in which a fee on a channel
will be updated depends on the change in the transaction flow. Fast changing
transactions need more frequent fee updates in order to adapt in the best possible
way to the network graph (3.3).

In the long-term strategy, participants decide on opening and closing chan-
nels. On this level decision and corresponding execution are in the range of
hours. Our strategy provides a solution for when to open or close a channel.
Di↵erences in the solution found by Algorithm 4 will occur with the change of
transaction flow. For di↵erent transaction matrices (3.8) and resulting network
graphs, a trade-o↵ has to be evaluated. For example, picking the top k channels
which are created the most overall di↵erent network graphs simulated by our
algorithms.

Our strategy applies to the mid-term and long-term strategy.

5.2 One Owner vs. Many Owners

An interesting question for real-world applications arises when considering who
actually could implement our micropayment channel design and underlying strat-
egy. We distinguish between the network having one owner who controls the
network, and many owners who in collaboration form the network.

For one owner, our strategy practically functions like in our simulation. We
have a global view of the users and also a known transaction matrix, for which
users indicate how much transactions they want to send to whom. The strategy
only concerns the owner. For example, the developers of cryptocurrency X,
which implements a fully distributed blockchain, o↵er the service for entering
their micropayment channel network, which provides low fees and immediate
payments to other users. The charged fees will pay the developers for maintaining
the service. (In this setup users do not need to bother about locked-in funds,
which are also managed by the owner.)

As we have seen, the strategy could also work for a majority of participants
paying attention to justified fee increases and adapting to decreased fees. But,
the border of how many participants follow the strategy and how many not is
in a gray area. Thus for many owners, one has to assume that everybody does
not follow the strategy and we enter the field of game theory. In this scenario
participants, do not only compete with the blockchain, like in our approach, e.g.,
for fee calculation in Procedure 3.4, but also compete with other channels and
routes in the network. Though, obtaining up-to-date information about other

5. Results and Discussion 30

channels and routes might not be that easy (which is an argument to use our
design strategy).
The creation of a micropayment channel is still costly. Thus, a minimal con-
nected network is created in a first phase, where participants compete with the
blockchain. For every additional created channel a competition emerges. The
premise, under which a channel is established, is:

�transactions · f(e) > B

s.t. the transaction flow times the fee on the channel is at least greater or equal
to the costs for opening the channel. Predicting a future transaction flow on a
channel is highly speculative, and profit is not guaranteed (which again speaks
for our design). Players in game theory are unaware of the eventual reaction
of their opposing players. Therefore, it is predictable that competing channels,
once created, will race their fees to the bottom as channels want to steal the
tra�c from competitors. In the worst case, a fully connected graph with 0 fees
on the edges is created.

We end up in a well-known dilemma for which this thesis does not deliver
a solution, but, in comparison to the worst case, o↵ers a viable alternative. A
crude approximation for an upper bound of the Price of Anarchy (PoA) could
look as follows:

n(n�1)
2

|E|
Where in the worst case a fully connected graph for n participants with 0 fees is
created leading to a Nash Equilibrium, and a possible solution from our strategy
proposes to create |E| edges leading to a stable network state. For the example
in Figure 4.1 the PoA would be 45

15 = 3.
A Social Optimum is achieved by creating only n � 1 many channels. Such a
network design though is in many aspects inferior to our design as it does not
consider anything, e.g., the transaction flow is not considered.

5. Results and Discussion 31

5.3 Related Work

Extensive research has been made to improve micropayment channels in various
aspects. Here are some listed providing interesting ideas by which our model
and strategy could be extended.

Burchert et al. propose a new layer between the blockchain and the payment
channels [9]. By introducing an intermediate layer, they tackle the problem of
reallocation of locked-in funds to di↵erent channels. In their approach partici-
pants need only to be part of a group of shared accounts to perform reallocation.
Thereby, transactions on-blockchain are drastically reduced compared to tradi-
tionally opening and closing payment channels via the blockchain.

Prihodko et al. came up with a routing algorithm, Flare [3], which could be
used for payment routing in the Lightning Network. The goal of the algorithm
is to gather for each node information about the network topology. To achieve
this, beacon nodes are selected to be able to reach distant nodes in the network.
Their algorithm applies to the short-term strategy and complements our strategy.

Rohrer et al. improve route selection by considering payment channel net-
works as flow networks [7]. Their algorithm provides multiple paths to route
transactions of larger volumes.
Their work is also an improvement for the short-term strategy.

Fabrikant et al. introduce a game that models the creation of Internet-like
networks by selfish node-agents without central design or coordination [5]. Their
approach is based on game theory where the cost for each player in the network is
the cost of the total edges laid down by this player, plus the sum of the distances
from the node to all others, which is not a criterion in our strategy.

Chapter 6

Conclusion and Further
Research

Despite the lack of a real-world network implementation and testing to this
end, we managed to develop a strategy which yields promising first results in
simulations. The strategy, when applied by micropayment channel network par-
ticipants, converges to a stable network state in which fee update di↵erences are
negligible. Furthermore, fees on channel are chosen in a way such that they are
still a↵ordable by participants with a high transaction count, thus, providing
an average transaction cost which is much smaller compared to the blockchain
transaction fee cost.

We believe that a strategy to set fees on channels is a di↵erent approach to
improve micropayment channel networks and that our design of a micropayment
channel network makes the first step into a new research direction.

Although our model provides basic functionalities, it can surely be extended
further. In a next step capacities and undirected edges could be added to the
model and the strategy adjusted accordingly.

To simulate our strategy in a network originating from real data, one could
analyze the tra�c on the blockchain and could try to extract the transaction
matrix (3.8), and apply our algorithm to compare resulting costs. This task could
be quite challenging because transactions cannot easily be mapped to identities,
as arbitrarily many identities can be created.

32

Bibliography

[1] Joseph Poon, Thaddeus Dryja. The Bitcoin Lightning Network: Scalable
O↵-Chain Instant Payments (2016). [Online; accessed June 2017]. URL:
https://lightning.network/lightning-network-paper.pdf.

[2] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
[Online; accessed June 2017]. URL: https://bitcoin.org/bitcoin.pdf.

[3] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostro-
vskiy, Olaoluwa Osuntokun. Flare: An Approach to Routing in
Lightning Network (2016). [Online; accessed September 2017]. URL:
http://bitfury.com/content/5-white-papers-research/whitepaper_

flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf.

[4] Chris Pacia. Lightning Network Skepticism (2015). [Online; accessed
October 2017]. URL: https://chrispacia.wordpress.com/2015/12/23/
lightning-network-skepticism/.

[5] Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadim-
itriou, Scott Shenker. On a Network Creation Game. International Sym-
posium on Principles of Distributed Computing (PODC), Boston, Mas-
sachusetts, 2003.

[6] Mike Hearn, Jeremy Spilman. Bitcoin contracts. [Online; accessed June
2017]. URL: https://en.bitcoin.it/wiki/Contract.

[7] Elias Rohrer, Jann-Frederik Lass, Florian Tschorsch. Towards a Concur-
rent and Distributed Route Selection for Payment Channel Networks. Inter-
national Symposium on Research in Computer Security (ESORICS), Oslo,
Norway, 2017.

[8] Christian Decker, Roger Wattenhofer. A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels. International Symposium on
Stablization, Safety, and Security of Distributed Systems (SSS), Edmonton,
Canada, 2015.

[9] Conrad Burchert, Christian Decker, Roger Wattenhofer. Scalable Funding of
Bitcoin Micropayment Channel Networks. International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), Boston, Mas-
sachusetts, 2017.

33

https://lightning.network/lightning-network-paper.pdf
https://bitcoin.org/bitcoin.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
https://en.bitcoin.it/wiki/Contract

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation and Goals

	2 Background
	2.1 Micropayment Channels
	2.1.1 Timelocks and Revocable Transactions
	2.1.2 Hashed Timelocked Contracts

	3 Design Strategy
	3.1 Model
	3.2 Fee Strategy
	3.2.1 On Network Creation
	3.2.2 On Network Update
	3.2.3 On Entering/Leaving the Network

	4 Analysis
	4.1 Convergence
	4.2 Misbehavior

	5 Results and Discussion
	5.1 Routing
	5.2 One Owner vs. Many Owners
	5.3 Related Work

	6 Conclusion and Further Research
	Bibliography

