
Distributed
 Computing

Tesselating Switzerland of the Past

Bachelor Thesis

Sebastian Keller

sekeller@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

February 28, 2018

Acknowledgements

I thank my supervisor Manuel Eichelberger for the assistance during the project
by giving helpful hints, asking critical questions and reading this paper. I further
thank Prof. Dr. Wattenhofer for his encouraging comment, that there must exist
a simple solution to this complex task that has just not been found yet. I also
thank my family and all my friends for their patience with me, talking to them
about the ongoing work.

i

Abstract

This project continues to improve an existing framework for positioning historical
aerial images on the current map. The framework consists of three main parts,
an image fetching step, an image matching step and an exporting step, that
converts the processed aerial images in to the needed format to view them on
the included interactive web map.

The main focus was laid on improving the image matching step to get more
accurate results, especially at the borders of the images. A slight improvement
was achieved by respecting the geometrical constraints, such as angles and dis-
tances, between points. Another approach was considered, in which the matching
quality gets improved by displacing, rotating and scaling small image parts until
they fit best.

The framework was entirely written in Python, but to improve the perfor-
mance of the matching step, the software was rewritten in C++. From the
rewriting results a speed-up up to 100 % for the matching step. Considering
that the rewritten matching step uses multiple feature matcher, instead of just
one, the speed-up is not negligible. The overall runtime to process one image
is however about four times slower since an additional part which applies the
matching step recursively to subpatches of the image was introduced.

Moreover the software works with OpenData images which have no copy-
right. Therefore, the resulting images shown on the interactive map can be
made publicly accessible.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Previous Work . 1

1.2 Goals . 1

1.3 Related Work . 2

2 Method 3

2.1 Existing Method . 3

2.2 Improving Feature Based Image Matching 4

2.2.1 Using Multiple Detectors 5

2.2.2 Image Pyramids . 6

2.2.3 Filtering Matches . 8

2.2.4 Geometrical Path Construction 9

2.3 Recursive Search for Matches . 15

2.4 Pixel Data Based Matching . 16

3 Implementation 18

3.1 Programming Language and Libraries 18

3.1.1 Multithreading . 18

3.1.2 WMTS Layer Creation . 19

3.2 Using OpenCV . 19

3.2.1 Feature Based Image Matching 19

3.2.2 Estimating Homographies 19

3.3 Program Components . 21

3.4 Implementing Pixel Data Based Matching 21

iii

Contents iv

4 Results 25

4.1 Feature Image Matching . 25

4.1.1 Matching Quality . 25

4.1.2 Older Aerial Images . 26

4.1.3 Performance Comparison 28

4.2 Pixel Data Based Matching . 29

4.2.1 Optically vs. Mathematically Appealing 29

5 Conclusion 35

5.1 Outlook . 35

5.1.1 Further Improving Pixel Data Based Matching 35

5.1.2 Image Matching Using Multiple Data Sources 35

5.1.3 Accelerating WTMS Tile Generation 36

Bibliography 37

A Appendix A-1

A.1 Using aerialImageMatcher . A-1

A.1.1 Installing Prerequisites . A-1

A.1.2 Building . A-1

A.1.3 Image Downloading Scripts A-2

A.1.4 Usage . A-2

Chapter 1

Introduction

Today aerial and satellite images are used in most online map services but their
goal is to provide the most current data only. To review the development of an
area over time, historical aerial image data has to be taken into account. There
is a large amount of aerial images provided by Open Government Data Zürich [1]
and the Swiss Federal Office of Topography (swisstopo) [2] dating back to the
year 1926. However, there is no easy way to look at larger areas or to compare
images captured at different dates, as the images are only provided individually.

This project tries to ease the process of looking at different dated aerial
images and compare them to any other given point in time by providing a web
based map viewer similar to other map services.

1.1 Previous Work

This project is the third thesis to deal with the subject of temporal maps. The
series started with the semester thesis of Florian Zinggeler [3], in which the basic
framework with the image matching back end and a web based front end was
developed. Markus Roth continued the series with his bachelor thesis [4], where
he optimized several aspects of the matching process, placing the focus on storage
space and computing time reduction as well as increasing matching accuracy.

1.2 Goals

Despite the optimisations worked out by Markus Roth, the matched images still
lack precision at the border of the processed image, such that there are clearly
visible distortions like roads that are not aligned. On the one hand, we try
to optimize the feature matching approach and on the other hand introduce a
second matching stage to calculate a best fit for small tiles of the matched image
to further improve accuracy. To speed-up the matching process even more, we
decided to reimplement the software in C++ instead of Python. The given web
front end is reused with some small changes.

1

1. Introduction 2

1.3 Related Work

Feature based image matching is researched since the early 1980’s. Therefore
many different strategies to find good features have been developed. A detailed
overview and comparison between the different strategies is described by Us-
man Muhammad Babri et al. [5]. They compared Speeded Up Robust Features
(SURF) [6], Features from Accelerated Segment Test (FAST) [7] and the Scale
Invariant Features Transform (SIFT) [8]. Although SURF and FAST are faster
than SIFT, they lose precision in the matching. Therefore, SIFT was the choice
for this work.

The FLANN-based matcher developed by Muja and Lowe [9, 10], provides
fast matching of features between images, without compromising the result qual-
ity compared to linear matching, which is the textbook solution to find the best
match by comparing every found feature to each other.

Yingjie Xia et al. [11] propose an algorithm to find discriminative structures
in aerial images by creating region connected graphs (RCG) of the aerial image.
This approach is most useful in urban regions, since it requires clearly defined
segmentation in the image to find the borders of the extracted regions. They
tested it on two datasets but included only the results for one of them, which
is indeed completely within urban areas. The idea to search for geometrical
structures in images has influenced the development of the geometrical path
construction algorithm described in Section 2.2.4.

With regard to aerial images there exist approaches that combine different
data sets to get a good georeferencing quality or content discretisation. The used
additional sources are digital surface/terrain models ([12, 13, 14]), LIDAR im-
agery ([14, 15]) and four channel images with near infrared spectral data ([13]).
Another technique used by Karel et al. [12] is to combine the gathered informa-
tion of multiple aerial images and store them into a database, against which each
new referenced image can be compared.

Chapter 2

Method

In this chapter we present the existing method and then show our changes and
improvements.

The term aerial image is used in the following chapters to refer to an image
captured by plane somewhen in the past, where as the term base image refers to
the most recent satellite image of the region the aerial image was taken in.

2.1 Existing Method

The existing method from previous work uses a collection of Python scripts. This
collection contains scripts to download the aerial images from swisstopo [2] and
the base image from the Web Map Service1 server of the canton of Zurich [17].
Furthermore, there are scripts to automatically determine the geographic coor-
dinates of the aerial images with respect to the base image’s coordinate reference
system, in brief called georeferencing the aerial image, and to add the resulting
image to an interactive web map.

To georeference the aerial image, the provided bounding box from swisstopo,
which is defined by the top-left and the bottom-right geographic coordinates, is
used as an initial placement of the aerial image on the base image. Then feature
based image matching is applied in multiple steps to further refine the positioning
of the aerial image. A more detailed overview can be found in Figure 2.1.

The feature based image matching part uses low resolution versions of the
aerial image and the base image to only find features that are clearly visible in
both images. This approach was chosen since it diminishes the influence of fine-
grained structures, such as street crossings or trees, on feature image matching.
For these fine-grained structures exist too many possible candidates in an image,
which can lead to imprecise matches being reported by the feature detector. To
further improve the matching, a new bounding box based on the found features is
calculated. With the more precise base image, a second feature matching step is

1A Web Map Service (WMS) is a standard specified by the Open Geospatial Consortium
for serving georeferenced map images over the Internet [16].

3

2. Method 4

performed, in which the image is divided into patches and the process described
before, is repeated for the whole image with every single patch. Then the matches
of those patches are combined to calculate the final, relatively precise bounding
box.

Figure 2.1: Overview of the existing method by Florian Zinggeler. Markus Roth
optimized the process in terms of storage space requirements and execution speed
but did not change the sequencing of the method. (Image from [3])

2.2 Improving Feature Based Image Matching

The new method presented in this work uses a SIFT keypoint detector2 to extract
features from the images. The keypoints and descriptors returned by the SIFT
keypoint detector must be further processed with a feature matcher, to know
which features in the first image correspond to the ones in the second. The
resulting matches should be filtered to obtain a set of good matches. An overview
over the filtering techniques applied in this method can be found in Figure 2.2.
After filtering, the good matches can be used to calculate a perspective transform
between the two images.

In computer vision this perspective transform is called a homography and
is mathematically described by a 3x3 matrix. This matrix is used to map the
homogeneous coordinates of every point from the source to the destination plane
(with a possibly different coordinate system). An in-depth explanation can be
found in [18].

2A detector that uses the Scale-Invariant Feature Transform algorithm described by Lowe [8]
to find keypoints in the given images

2. Method 5

Figure 2.2: Overview over all the steps involved in the feature based image
matching. These steps are performed for each of the differently configured SIFT
keypoint detectors.

2.2.1 Using Multiple Detectors

A feature detector computes an abstraction of the provided image to find loca-
tions of special interest within the image. Such locations of special interest can
be corners or edges of objects or other structures that can easily be recognised,
like a single tree in a grass field.

To improve the number of found features, we decided to use multiple SIFT
keypoint detectors (Figure 2.2 Step 2). Each of them is configured in a different
manner. The variable parameters are the number of octave layers created by
SIFT keypoint detector, the contrast threshold, the edge detection threshold
and the parameter σstart of the Difference of Gaussian (DOG) method used by
the SIFT keypoint detector.

2. Method 6

The number of octave layers determine how many times the input image gets
downsampled by a factor of two to detect local extrema in the image. Each
octave consists of multiple DOG image layers, which are generated by taking the
difference of two adjacent Gaussian blur smoothed input images at the octaves
current scale (see Figure 2.3). Each image in the set of blurred images is calcu-
lated using a different value for the standard deviation σi(= σstart + δi) of the
Gaussian blur function, which corresponds to varying the intensity of the blur.

Figure 2.3: The creation of octave layers in the SIFT keypoint detector. On
the right are the sets of blurred Gaussian images, each blurred with a different
value of σ, and on the left the resulting Difference of Gaussian layers. (Image
from [8])

To derive good keypoints from the detected extrema, the keypoints having
a too low contrast, namely below the given contrast threshold parameter, are
rejected, because these keypoints are too sensitive to noise in the image. The
edge threshold is used to reject false-positive extrema that lie on edges in the
image. This filtering needs to be applied because the DOG method gives large
values around edges and therefore reports extrema along edges, despite it might
be no extremum at all or the exact position of the extremum along the edge can
not be clearly determined because it is biased by the high value of the DOG
around the edgy structure.

2.2.2 Image Pyramids

The provided aerial images have a high resolution, of up to 20.000 by 20.000
pixels, so we need to scale them down to get matches in an acceptable amount

2. Method 7

of time. As in the previous work to improve the number of matches, we build
image pyramids (see Figure 2.4) of both images and then match each layer of
one image pyramid against the corresponding layer of the other image pyramid
(Figure 2.2 Step 1). This way, we can detect features that are only detectable at
a certain resolution. Despite the fact that the SIFT keypoint detector already
creates image pyramids by its own to extract feature descriptors, the use of image
pyramids increases the number of matches found (see Figure 2.5).

Figure 2.4: Image pyramids are generated by repeatedly sampling down the
bottom layer by a constant factor to get the next higher layer. A factor of

√
2 is

used in this method. (Image from [19])

Figure 2.5: The matches are drawn in a color depending on the layer of the
image pyramid. (Left image from [1], right image from [17])

2. Method 8

2.2.3 Filtering Matches

A matcher decides which keypoint in the first image belongs to another keypoint
in the second image by comparing the extracted image feature descriptors.

To match the keypoints we use a FLANN-based matcher3 (Figure 2.2 Step
3). This matcher was chosen since it is faster than a simple linear search for
the best match. The FLANN-based matcher can also be configured to internally
use different indexing approaches. The used index influences the speed and the
precision of the matches. Since we find complex image structures in aerial image
and aim to have precise matches, the choice was made for the k-means index [10].
The use of this matcher allows us to speed-up the matching process but still get
good precision compared to the brute force matcher4 used in previous work.

Nearest Neighbours The matcher provides us with an interface to extract
the two nearest neighbours of any found feature. This allows us to test the best
match of every found feature in the set of matched featuresM against the second
best match (Figure 2.2 Step 4 a)).

When the best two matches have about the same distance according to the
distance function used by the matcher, both of them are either equally likely to
be the correct match or both of them are presumably a wrong match. But when
the best match has a far lower distance than the second best match, we know
that there is no better match for this feature. Therefore we only add matches to
the set of accepted matches Mdist when the distance of the best match is more
than a factor l lower than the second best match.

Mdist = {x, x ∈M∧
(
distance(x.snd)

distance(x.best)

)
− 1 < l}

The factor l is chosen to initially be 0.5, but if more than two thirds of all
matches are discarded, it will be reduced in small steps to at least 0.1. This
way, we always get the best possible matched features relative to all other found
matches but still discard features of the aerial image that cannot clearly be
assigned to a single feature in the base image.

To further refine the matches, additional filtering steps are performed, which
are explained next.

Feature Size The filtering based on the feature size (Figure 2.2 Step 4 b))
compares the size of the found feature located at a keypoint in the aerial image

3A matcher that uses a fast approximation for the nearest neighbour problem as described
by Muja and Lowe [9]

4A matcher implementing a linear search approach by comparing every keypoint to all others
to find the two best matching keypoints.

2. Method 9

to the size of the feature in the base image. A match in the set Mdist only gets
added to the set Mpt if the size difference is below a chosen threshold p.

Mpt = {x, x ∈Mdist ∧
|sizeaerial(x)− sizebase(x)|

max(sizeaerial(x), sizebase(x))
− 1 < p}

|a| denotes the absolute value of a and max(a, b) returns the bigger value of a and b.

The threshold p is also varied between 0.1 and 0.35 to prevent rejecting all
matches.

Distance After applying the nearest neighbour filter, the keypoints may all
have a good ratio to their second best match but compared to other points
in the set they may have a large distance. To reject keypoints that match
worse relative to other keypoints in the set, which is indicated by a large dis-
tance relative to the minimum distance. Therefore, the minimum distance
distmin := minx∈Mdist

(distance(x)) is identified and then all keypoints with
a distance greater than d · distmin are rejected. (Figure 2.2 Step 4 c))

Mmin = {x, x ∈Mdist ∧
(
distance(x)

distmin

)
< d}

The factor d is also chosen in a range to still get more than just the minimal
point, when all but one point have a distance � distmin.

Rotation After finishing the first step of calculating a more precise bounding
box for the aerial image, the rotation of the aerial image compared to the base
image is approximately known. Therefore, in any further processing we assume
that the found matches also must not be significantly rotated. So from this step
on another filter is added (Figure 2.2 Step 4 d)), that ensures that the matched
features are located in about the same region in the image. To achieve this,
the location of the keypoints is normalized to the range [0, 1]2, with respect to
the dimension of the aerial image or the base image, respectively. The distance
between the two keypoints in this normalized space must be below a threshold
to be added to the set Mrot.

A keypoint is considered a good match if it is at least in two of the three sets
Mpt, Mmin and Mrot.

2.2.4 Geometrical Path Construction

To get more stable homographies, all matching features found are tested with
respect to whether the keypoints form the same geometrical shape in the aerial
image as in the base image.

2. Method 10

Algorithm 2.1 Calculate the Homography error and the coverage of the inliers

Input: P := set of points in path, H := homography matrix, areaimage,
displacementThreshold

Output: errorproj , coverage, I := inliers, O := outliers
1: errorproj ← +∞
2: I ← {}
3: O ← {}
4: if |P| ≥ 4 then
5: E ← {} // Array of all errors
6: for all pi in P do
7: a← Homogeneous coordinates of the point pi in the aerial image
8: b← coordinates of the point pi in the base image
9: h← H · a

10: h′ ← h converted back to Euclidian coordinates
11: err ← ‖b− h′‖ // Euclidian distance between b and h′

12: if err ≤ displacementThreshold then
13: I ← I ∪ pi
14: E ← E ∪ err
15: else
16: O ← O ∪ pi
17: end if
18: end for
19: numInliers← |I|
20: if numInliers ≥ 4 then
21: errMed← median of E
22: errAvg ← average of E
23: errorproj ← (errMed+errAvg)/2
24: areaI ← area of the convex hull of I
25: coverage← areaI/areaimage

26: end if
27: end if

2. Method 11

Figure 2.6: On the left side are the image features found (dots) in the aerial
image, on the right side the ones found in the base image. In both point sets a
path is found in order that the right one is a scaled and rotated version of the
left one. The dashed lines show which image features were matched.

To test for the same geometrical shape, a path is constructed through each
of the two point sets, one belonging to the feature locations in the aerial image
and the other to the feature locations in the base image, so that all triplets of
points approximately have the same angles in between on both paths and that
the ratio of the line lengths between all lines in the two paths is approximately
constant up to a scaling factor (see Figure 2.6).

From the good matching keypoints obtained from the previous filtering (Fig-
ure 2.2 Step 4) a min-heap is constructed. A min-heap is a data structure that
allows insertion and deletion of items to be performed in logarithmic time and
always keeps the minimal element at the root. To build the heap, a partial order
on the elements contained needs to be specified. The order is defined by adding
state information to each matched keypoint about the number of times it was
included or discarded in a path candidate. If a matched keypoint was included
less than three times in a path and discarded less than a hundred times, the
order value is set to the number of times it was included. Otherwise, the order
value is the sum of the number of times it was included and discarded. This
way, it is ensured that matched keypoints with a low included count get tested
more often and matched keypoints that were discarded many times get tested
less frequently, as they have a longer distance until they moved to the root of
the heap.

The values 3 and 100 were chosen arbitrarily, but there is a reasoning behind:
if a matched keypoint is rejected more than a hundred times, the probability that

2. Method 12

its contribution to a new path candidate will lead to a usable path is converging
to zero. Also if a matched keypoint which is already used in more than two
candidate paths is added to a new one, the new path candidate will most likely
resemble the two previous ones. By using the previously sketched partial ordering
and by reinserting the points to the heap as long as their order value is less than
200, we have assured that every point gets tested at least once.

The procedure starts searching for path candidates by removing the mini-
mal element of the heap and choosing two other randomly selected matching
keypoints. For this start triple the angle between the three points and the ra-
tio between the two line segments in both images are compared. If they have
about the same value, the search is continued among the remaining matched
keypoints. Each of these matching keypoints is tested on fulfilling those condi-
tions and therefore can be appended to the current path candidate. No matter
If a path candidate was found or not, the matching keypoint is then added back
to the heap with an updated included and discarded count.

aerial image base image

projected
aerial image

enclosing
minimal
area rect

Figure 2.7: The difference quotient of the area of the (dark grey) enclosing
minimal area rectangle divided by the area of the (light grey) projected aerial
image is defined as the area error.

Using this technique we might get different paths, therefore to each of the
found paths an error value (epath) is assigned . The total error value is the
weighted sum of the average error of the angle and line ratio differences (egeom)
along with the projection error (eproj) (calculated as shown in Algorithm 2.1)
of the resulting homography using only the points in the path candidate. Also

2. Method 13

the difference quotient of the areas (earea) of the projected image quadrilateral5

and the minimal enclosing rectangle of the before mentioned quadrilateral (see
Figure 2.8) is added to the total error value.

To calculate a homography between two bases, at least 4 points are needed.
If the calculated projection error of a path contains 4 points, its error value
is going to be zero, since every point will match exactly the projected one. A
homography calculated from a path with more than 4 points is an approximation.
In Homographies estimated from many points, every point contributes with a
small error but a better projection results than using a homography that is
estimated using just 4 points.

To take this into consideration also the coverage factor (bcov) is calculated
in Algorithm 2.1 alongside the projection error. This factor is the ratio of the
matching image’s area and the area that is covered by the convex hull of the
points used to calculate the homography. A higher coverage means a better
distribution of the points in the image plane, which leads to lower aberrations
at the borders of the image. When the different found path are compared, the
coverage factor serves as a bonus in the ranking.

W =



4 4 4 4 4 4 4 4
4 2 2 2 2 2 2 4
4 2 1 1 1 1 2 4
4 2 1 0 0 1 2 4
4 2 1 0 0 1 2 4
4 2 1 1 1 1 2 4
4 2 2 2 2 2 2 4
4 4 4 4 4 4 4 4


Besides the coverage, we also want to know about the distribution of the

points inside the image since two different distributions of points can lead the
same coverage factor. Therefore the image gets divided in 64 sectors and each
sector is marked if a matching point lies inside. Then the associated weight of
each marked sector is summed up and divided by the value of a perfect distribu-
tion to get a second bonus value (bdistr). The weights, shown in the matrix W,
are chosen in such a way, that points further away from the center lead a higher
contribution in the bonus.

5A four-sided figure

2. Method 14

The total error of a path is then calculated as following:

epath =

(
1− (1− earea)2

)
+ 4

(√
4 · (1 + egeom)− 2

)
+ e′proj

3
−

3 (bcov + bdistr)
(√

1 + e′′proj − 1
)

where d :=displacementThreshold,

e′proj :=

eproj eproj < d√
e3proj
3 d ≤ eproj

and e′′proj :=

{
eproj eproj < d

d d ≤ eproj

The functions applied to each error component influences its contribution to
the total error in a characteristic way. The area error is bounded within the
interval [0, 1] and after applying the function, it grows towards 1 quicker than
linear (see Figure 2.8). The geometrical error grows slower than linear after
applying the function, but the value is multiplied by a factor of 4 to keep the
influence on the total error (see Figure 2.9). The projection error is treated
in two different ways. Values below the displacementThreshold grow linear but
all values greater than the displacementThreshold are made to grow faster than
linear that to too high errors get sorted out quickly (see Figure 2.10).

A projection defined by only 4 points gets no bonus at all. The values of e′′proj
are bounded above by the displacementThreshold (see Figure 2.11), such that the
size of the bonus becomes more and more irrelevant as eproj and therefore also
e′proj grows. The bonus values are both bounded within the interval [0, 1] and

therefore, the maximal bonus given is 6
(√

1 + displacementThreshold− 1
)
.

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 2.8: The red plot shows the

function y :=
(

1− (1− x)2
)

ap-

plied to the area error term earea.
The dashed plot shows the linear
contribution as a comparison.

� � � � � ��

�

�

��

��

Figure 2.9: The red plot shows the

function 4
(√

4 · (1 + x)− 2
)

ap-

plied to the geometrical error term
egeom. The dashed plot shows the
linear contribution as a comparison.

2. Method 15

� � � � � ��

�

�

��

��

Figure 2.10: The partially de-
fined function applied to projec-
tion error e′proj plotted in red shows
the penalty for values greater than
the displacementThreshold which is
fixed at a value of 3 in the plot.

� � � � � ��

�

�

�

�

�

��

Figure 2.11: The red plot shows the
function y :=

(√
1 + x− 1

)
applied

to e′′proj , which is clipped to the dis-
placementThreshold. The displace-
mentThreshold is fixed at a value of
3 in the plot.

2.3 Recursive Search for Matches

After finishing the initial georeferencing step, the rotation of the aerial image
compared to the base image is known and the images are more or less aligned.
Therefore, we can use this information and restrict the search space for the
paths in the image to those which have about the same orientation in both
images. Additionally the thresholding distance displacementThreshold used to
differentiate inliers from outliers is reduced (see in Algorithm 2.1).

Then, the matching process is continued with the goal to increase the total
number of matched points. This is done by splitting up the image into 4 patches.
In each of these patches the procedure described in Section 2.2 is reapplied.

Since it is now searched for matches only in a certain part of the image,
chances increase for some matches to survive the filtering step described in Sec-
tion 2.2.3 although they were discarded before. Either they were rejected because
the nearest neighbour was reported in another part of the image and the match
would therefore not meet the requirements to be added to a path or there were
more similar features in other parts of the image and therefore the nearest neigh-
bour filtering would have rejected the point.

If the number and quality of the matches is above some predefined threshold
or the patch size gets to small, the recursion is stopped. Otherwise, the patch
is again split in 4 smaller subpatches and the matching continues with these
subpatches.

When the recursion terminates, all found points are combined and used to
estimate the final perspective transform between the aerial image and the base
image.

2. Method 16

2.4 Pixel Data Based Matching

To augment the matching quality further, especially around the borders of the
image, an approach to find the best positioning of the image by using a template
matching based approach working deterministically on the images pixel data has
been considered.

The standard template matching approach only searches for the optimal 2D
displacement of the template (in our case the aerial image patch) against the
reference image (in our case the base image) inside a rectangular window [20].
In addition to that we also want to evaluate the best scaling and rotation of a
patch. We achieve this by iteratively applying the template matching to scaled
and rotated versions of the template. Since we already have an approximation of
the scale and rotation of the whole aerial image after georeferencing, only small
scaling and rotation factors are considered. In concrete terms a scaling between
90% and 110% of the original patch size and a maximal rotation of ±2 degrees
are tested.

To reduce the influence of noise in the image and to minimize the effects of
different lightning conditions between the two images, an edge image represen-
tation of the aerial image and the base image are generated. Then the original
and edge images are used simultaneously in the matching process. Both images
are used to overcome the problem that template matching will give bad results
when the template or the reference image have too less diversity in the image
data.

The used template matching approach provides several different methods to
calculate a weighted sum over all pixel of the template image but only two of
them support an image mask. We need this functionality since we need to mask
out the black borders around the image which are unavoidable when rotating an
image as shown in Figure 2.12.

The two usable methods are the Normalized Sum of Squares Difference (NSSD)
method and the Normalized Cross Correlation (NCC) method. The NSSD
method is computationally simpler than NCC since it only involves addition
and multiplication operations, but the NCC method is more robust to lightning
changes between the template and the reference image. We will therefore use
the NCC method to match the single patches.

2. Method 17

Figure 2.12: On the left side of the Figure is a test image rotated about 2 degrees
anticlockwise. The black border around the rotated image results from crop free
the rotation applied to the image. On the right side the corresponding mask
used to only match inside the white area is shown.

Chapter 3

Implementation

3.1 Programming Language and Libraries

The tool is written in C++ using the C++141 version of the language. To read
and manipulate images with associated geospatial information, like the GeoTIFF
file format, or to create virtual geospatial information files referencing images
that cannot have associated data, GDAL, the Geospatial Data Abstraction Li-
brary [21] is used. The OpenCV library [22] and its contribution libraries [23]
are used to do image manipulation tasks, the feature based image matching and
template matching. For auxiliary tasks, such as parsing program arguments,
reading and writing JSON and XML files, parts of the boost library [24] are
used.

3.1.1 Multithreading

C++ provides an interface to create threads via std::thread. In a first approach
when entering a section that can be parallelized, a bunch of std::threads were
created and then released right after leaving said section. Using this approach
up to over 1,000 threads were created and destroyed for matching a single im-
age. This introduces an unnecessary overhead for creating and destroying the
threads. To fix the number of created threads a thread pool is used. The thread
pool creates a bunch of worker threads, to which workloads can be submitted,
but which are not destroyed after finishing a single workload. Since the C++
standard library does not provide an implementation of a thread pool, an open
source header-only thread pool implementation from Progsch and Zeman [25] is
used with small modifications to support prioritized tasks.

1ISO/IEC 14882:2014 https://www.iso.org/standard/64029.html, https://en.

wikipedia.org/w/index.php?title=C++14&oldid=822817064

18

https://www.iso.org/standard/64029.html
https://en.wikipedia.org/w/index.php?title=C++14&oldid=822817064
https://en.wikipedia.org/w/index.php?title=C++14&oldid=822817064

3. Implementation 19

3.1.2 WMTS Layer Creation

To display an image on the web interface, the image has to be split up according
to the Web Map Tile Service (WMTS) standard [26]. The Open Source Geospa-
tial Foundation provides a Python script (gdal2tiles.py2), which is directly called
from within C++ via the Python C API [27].

3.2 Using OpenCV

3.2.1 Feature Based Image Matching

When using any feature based image matching in OpenCV, the library exposes
the Keypoint class to deliver information about a matched point. This class has
an attribute angle which is the computed orientation of the keypoint according
to the documentation3.

Given this information, we tried to estimate the orientation of the aerial image
compared to the base image. The difference of the angles between two matching
keypoints was first stored in a list and naively sorted by angle. Since a histogram
produced from the sorted data did not reveal any clear peak, a 1D k-means
clustering algorithm was applied to the gathered data. Neither using random
initial centers nor setting the initial centers based on the histogram helped finding
a converging solution. Therefore the idea to determine the rotation of the aerial
image directly from the keypoint data was dropped.

3.2.2 Estimating Homographies

To estimate the projection between two images, the OpenCV framework pro-
vides three different methods which all can be invoked over the single interface
cv::findHomography. The regular method estimates a homography by solving a
system of linear equations using all provided points. The second method uses
a least median square (LMEDS) approximation. The third method uses the
random sample consensus approach (RANSAC) [28]. Both methods start with a
subset of 4 points, estimate a first homography and then add more points that fit
the estimation, either by comparing the median of the projection error (LMEDS)
or by thresholding on the distance between the points real position and the esti-
mated position (RANSAC). The latter two methods are called robust methods,
because they can handle a certain number of outliers.

2https://github.com/OSGeo/gdal/blob/123adbbe121c175d1721b531cfe48f3b4ad5b6b2/

gdal/swig/python/scripts/gdal2tiles.py
3https://docs.opencv.org/3.3.1/d2/d29/classcv_1_1KeyPoint.html#

a4484e94502486930e94e7391adf9d215

https://github.com/OSGeo/gdal/blob/123adbbe121c175d1721b531cfe48f3b4ad5b6b2/gdal/swig/python/scripts/gdal2tiles.py
https://github.com/OSGeo/gdal/blob/123adbbe121c175d1721b531cfe48f3b4ad5b6b2/gdal/swig/python/scripts/gdal2tiles.py
https://docs.opencv.org/3.3.1/d2/d29/classcv_1_1KeyPoint.html#a4484e94502486930e94e7391adf9d215
https://docs.opencv.org/3.3.1/d2/d29/classcv_1_1KeyPoint.html#a4484e94502486930e94e7391adf9d215

3. Implementation 20

Each method has its benefits and drawbacks. The regular method should only
be used when there are no outliers in the provided point set, but it returns a
homography that approximates all given points and so respects the distribution
of the points on the plane. LMEDS works best if not more than 50% of the
points in the set are outliers. RANSAC works with any ratio of outliers but is
conservative with the points it adds to the set of inliers, which can be seen in
Figure 3.1. Many homographies calculated by the RANSAC method are only
determined by the minimum of 4 points required to calculate a homography.

60 85 109 134 159 183 208 232 257 282 306
0

10
20
30
40
50
60
70
80
90

100

d (Distance)

%
in

lie
rs

LMEDS

RANSAC

REGULAR

100 121 141 162 182 203 223 244 264 285 305
0

10
20
30
40
50
60
70
80
90

100

d (Distance)

%
in

lie
rs

LMEDS

RANSAC

REGULAR

Figure 3.1: The fraction of inliers (points used in homography vs. points selected
in the geometrical path construction) compared to the distance returned from
the image feature matching phase. Slightly outstanding example on the left
where RANSAC considers a lot less points as inliers. The image on the right
shows a more common case.

The points in a constructed path (see Section 2.2.4) are considered to contain
only a small number of outliers. The homography is estimated initially using the
regular method. After calculating the projection error (see Algorithm 2.1), it is
compared to the projection errors using LMEDS and finally RANSAC method.
The homography with the least projection error and the best distribution will
then be selected. Thereafter, we reestimate the homography using only the inliers
but this time using the regular method, which yields a better estimation if more
than 4 points are considered inliers.

Under bad circumstances even recalculating the homography will not im-
prove the quality of the estimated transform. Such a situation can be seen in
Figure 3.3, where all the found matches lie nearly on a line or clustered to near
together. Therefore, the distribution bonus is taken into account in the path
finding algorithm described in Section 2.2.4.

The OpenCV library does not provide an direct way to get the projection
error of a homography estimation, wherefore Algorithm 2.1 was implemented.

3. Implementation 21

3.3 Program Components

The structure of the program, its required input data and the generated output
data are shown in Figure 3.4. The border cropping, georeferencing and WMTS
tiles phases are executed after each other, but they can also be invoked separately
by specifying the corresponding program argument. The program also keeps
track of its progress, so it can be stopped and restarted at will and resumes from
the last good known state.

The program accepts two different types of input file formats. Either an al-
ready georeferenced GeoTIFF format or any image format supported by OpenCV4

together with a metadata file. Multiple input files can be specified at once.

3.4 Implementing Pixel Data Based Matching

For the implementation of the pixel data matching phase the cv::matchTemplate
method of the OpenCV library was used. This method implements different
types of matching algorithms, as already explained in Section 2.4. Since the
library version 3.0 the method allows to specify a mask to specify which regions
should be used from the template to match against the reference.

Random forests, as proposed by P.Dollar et al. [29], are used to detect edges
in the aerial image and the base image. To be able to use random forests for
edge detection, a model file containing basic information about edges and cor-
ners is required. The already trained model available from the OpenCV Github
repository5 is used in this work.

Since the results of the template matching with the generated edge images
were poor in the beginning, the idea to mask all pixel values greater than a
threshold was tested. Since the edge images only contain grayscale color values
it was a relatively simple task to extract a thresholded intensity mask using the
OpenCV library. The returned values using this intensity mask, which should
lie between −1 for a total dis-match and 1 for a total match, were greater than
1. Therefore this idea was abandoned. Further testing showed that the provided
mask must be a continuous connected plane to get results in range.

The bigger the difference between the size of the template and the reference
image is, the more meaningful results are returned. Hence we split the aerial
image into small patches and provide a corresponding tile of the base image
which has double the area than the aerial image patch as shown in Figure 3.2.
Then all possible rotations between plus and minus two degrees are matched at

4https://docs.opencv.org/3.3.1/d4/da8/group__imgcodecs.html#

ga288b8b3da0892bd651fce07b3bbd3a56
5https://github.com/opencv/opencv_extra/blob/master/testdata/cv/ximgproc/

model.yml.gz

https://docs.opencv.org/3.3.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/3.3.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://github.com/opencv/opencv_extra/blob/master/testdata/cv/ximgproc/model.yml.gz
https://github.com/opencv/opencv_extra/blob/master/testdata/cv/ximgproc/model.yml.gz

3. Implementation 22

different scales. The results are then collected and statistical analysis is applied.
We calculate the mean x and the standard deviation σ of the returned results
and only further process those results which are at least two times the standard
deviation away from the mean.

Figure 3.2: The constructed patch pairs are shown on the left. The base image
patch is created with additional padding compared to the aerial image patch.
This padding is needed, that the template matching algorithm can move the
template around. The black dots in the right image show which values of the
resulting matrix are calculated for two given displacements of the template.

We apply the template matching to the normal aerial image patches and
the edge image patches simultaneously to get matches from both types. Unless
there are clearly visible, some pixel wide edges in an image patch, the results
from template matching with edge images are distributed less then once the
standard deviation around the mean. Therefore, the results from the edge image
patches consisting of only forest or other regions, where edge detection fails to
extract clear edges, are unusable and discarded.

The current implementation is incomplete as it just gathers the data but
will not apply any correction to the aerial image since the resulting data is still
too noisy. By too noisy is meant that the scales, rotations and displacements
gathered with this approach are a mix of all possible values, apart from a few
exceptions like images consisting of roads or urban areas. Even when comparing
two neighbouring patches, for which the template matching reported clearly
significant data, one is estimated to have a rotation of 2 degrees while the other
one is estimated to have -2 degrees of rotation. Therefore, further filtering and
sorting must by applied to the results to handle cases with totally different
resulting values for the scale, rotation or displacement.

3. Implementation 23

(a) regular method

(b) LMEDS

(c) RANSAC

Figure 3.3: Comparison of the different homography estimation methods. On
the left side is the aerial image, the base image is on the right. The aerial image
has a red-green-white marker cross overlaid to track where it is mapped in the
base image. Neither of the three methods can perform a proper estimation of
the transform in the case where the points are nearly lying on an a straight line.

3. Implementation 24

aerialImageMatcher

Border cropping

Georeferencing

WMTS Tiles

downloadBaseImage.py

 Base Image

download_all_opendata_zh_pictures.sh

Input Data (variant 2)

image fle (any format)

LV03 (EPSG:21781) coordinates

 of top-left and bottom-right corner of the image

additional metadata

downloadImages.py

Input Data (variant 1)

GeoTIFF image fle

additional metadata

 (like fying heigth or focal length)

Create a GeoTIFF fle

 from the given data

Crop border from image

Feature based image matching

Estimate the rotation and rough

 placement of the aerial image

Recursively divide the image

 into parts and match on these

 parts to increase the total

 number of good matches

Estimate fnal positioning

 from the collected good matches

Calculate Ground Control Points

 from the found matching features

Matching by analyzing pixel data

detect edges in image

 using random forests

template matching

 to get the best position

 of an image patch

Collect single displacements and

 apply to the whole image

Combine images from same

 period into one layer

gdal2tiles.py

 invoke

Rendered Tiles Web Interface

Figure 3.4: Overview of the current implementation. (The dotted box indicates
a partial implementation, see Section 3.4)

Chapter 4

Results

4.1 Feature Image Matching

4.1.1 Matching Quality

The matching quality greatly depends on the structure of the ground. When
an image lies completely in an urban area, like the city center of Zurich, then
the program finds dozens of good matches and achieves good precision (see Fig-
ure 4.1).

In more rural areas or more generally spoken in areas with less structured
content, such as grass, lakes, fields or forests the matching quality diminishes
(see Figure 4.2). The same is true for areas where a pattern is repeated multiple
times, like many railway lines next to each other, the platforms at railway stations
or garden plots.

For the less structured rural areas, the problem is that matches are likely
to be rejected by the filtering described in Section 2.2.3. A patch without a
clear structure inside it, for instance a patch inside a grass field, which is even
optically really hard to distinguish from another randomly selected patch of grass,
contains no meaningful data to be used in feature based image detection. The
SIFT keypoint detector and the FLANN-based matcher rely on the structural
content of the image patches to classify and match them with each other. The
FLANN-based matcher is not able to clearly distinguish two features both lying
in unstructured patches of the given image and therefore assigns about the same
distance to the these features, if the features even get detected by the SIFT
keypoint detector as an image feature in the first place.

For areas with repeating patterns inside of them the matches can be clearly
assigned to a specific region, but due to the highly repetitive pattern the correct
location of the match within that region can only be estimated by the detec-
tor. Therefore this points will be treated as outlier or impair the quality of the
estimated homography. See Figure 4.4 for examples.

25

4. Results 26

Figure 4.1: A pretty decent amount of images features are detected in the center
of a city. The Figure shows the output of the geometrical path finding algorithm
(see Section 2.2.4). The found matches are numbered and the fine blue lines
show the found path. Below the image the angles between any three points
on the path are listed. The green-red-white marker cross helps keeping track
of the applied perspective transform. The thick blue lines around the marker
cross in the base image on the right show the minimal area rectangle around the
projected aerial image and the containing upright bounding rectangle.

4.1.2 Older Aerial Images

In past theses old images were a big problem for the feature based image matching
approach implemented there. With the techniques implemented in this work it
depends less on the age of the image as on the difference of the structural data
in the images. The image shown in Figure 4.1 is from the year 1957 but the
matcher has no problems to identify enough features to get a good projection.

Even an image from the year 1931 has been tested multiple times and in one
run an initial placement was possible. But the further processing stage was not
performed, because the match uses too few points and covers a too small area.
The found initial placement is shown in Figure 4.3.

4. Results 27

Figure 4.2: When most of the image is in a rural area, only a few good matches
are found. Also the minimal area rectangle and the aerial image projection
do not match up since the projection is under-determined in the area covered
completely in forest.

Figure 4.3: Visually good matching result with an image from the year 1931.

4. Results 28

Nevertheless, the changes in the structure of the image grow with the age of
an image, but the age of an image is not the main reason causing bad matching
results.

4.1.3 Performance Comparison

Both implementations were tested using five different images. Multiple runs were
performed with each image deleting all processed data between the runs. The
values shown in the table below are the averages of the performed tests.

year previous work this work

georefe-
rencing

applying final
positioning

georefe-
rencing

recursive
search

applying final
positioning

1931 46 s n / a 495 s* n / a n / a

1955 16 s n / a 113 s* 813 s 15 s

1978 63 s 99 s 64 s 653 s 12 s

1990 500 s 610 s 90 s 897 s 60 s

1998 28 s n / a 228 s* 854 s 19 s

2005 122 s 150 s 97 s 1485 s 126 s

* The current implementation adapts its internal filtering state as described
in Section 2.2.3 when no matches are found instead of directly aborting. But the
additional effort pays off as a match is found for the images of the years 1955
and 1998, where the old implementation fails.

previous
work

this work (all
steps)

this work
(excluding
recursive
search)

averaged total over all runs 179 s 1004 s 220 s

averaged total only successful
test runs

329 s 1106 s 165 s

minimum only successful
test runs

190 s 731 s 77 s

speed-up average of
successful test
runs

-70 %
(≈ 4 times
slower)

99 %
(≈ 2 times
faster)

speed-up minimum of
successful test
runs

-74 %
(≈ 3.5 times
slower)

147 %
(≈ 2.5 times
faster)

4. Results 29

The matching step in previous work used only one SIFT keypoint detector
while in this work seven differently configured SIFT keypoint detectors are used.
This means there is seven times the work performed per execution of the match-
ing step. Also accounting for this, the speed-up of about 100 % in run time can
be compared to a speed-up of roughly 700 % in terms of performed calculations.

However, the total run time is approximately 4 times slower. This is due
to the newly introduced recursive search step, that applies the matching step
multiple times to only parts of the image.

4.2 Pixel Data Based Matching

The pixel matching approach is not yet finished, although some partial quite
promising results can be presented. The same problems are faced in the template
matching approach as with feature base image matching when the ground does
not have any clearly defined structural elements. Since template based matching
“somewhat merge[s] the feature detection step with the matching part” of feature
based image matching, as stated by Guido Bartoli in his survey about different
image matching techniques [20], the two techniques are clearly related to each
other and therefore when one fails on an image the other has a bad chance to
deliver good results.

4.2.1 Optically vs. Mathematically Appealing

Despite implementing statistical filtering using the standard deviation, results
which have a high correlation value can be placed far away from the correct
position and results with a smaller correlation value are nearer to the ‘optical
truth’ but rejected due to the small correlation value. Therefore the current
approach needs to be refined to take this irregularities in the results into account.

In Figure 4.5 the visualisation of the calculated date is shown. There is a
white spot around the maximum value in the results considered a good match.
The Figure 4.6 shows the results of template matching a single aerial image patch
and the Figures 4.7 and 4.8 show the results for two different aerial images.

4. Results 30

(a) An area with a repetitive pattern which causes the matches to be slightly
displaced.

(b) An area with similar structural texture which causes matches to be in totally
wrong places.

(c) The two images were taken at two different times of the day, therefore the
shadow is cast in other directions.

Figure 4.4: Examples of patterns that cause the feature based image matching
to fail.

4. Results 31

(a) good results by template matching
the aerial image

(b) good results by template matching
the edge image

(c) discarded results by template
matching the aerial image

(d) discarded results by template
matching the edge image

Figure 4.5: The visualized data returned by template matching. The blue square
denotes the maximum value, the yellow ones are greater than x + 2σ and the
green squares are above the median. In Figure 4.5a and 4.5b a clearly visible
bright spot indicates good results.

4. Results 32

(a) (b)

(c)

(d)

Figure 4.6: This single patch shows the advantage of an edge image to match the
patches, when there are enough structures to detect dominant edges in the image.
The Figure 4.6a shows the results from template matching for the aerial image
and Figure 4.6b for the edge image. Below in Figure 4.6c, the best match placed
onto the base image patch is shown using the aerial image as the template image
and in Figure 4.6d for the edge image used as the template image, respectively.

4. Results 33

Figure 4.7: The image contains a lot of forest and from this results a rather bad
placement of the matched tiles.

4. Results 34

Figure 4.8: The best result of all tested images. The tiles in nearly the whole
image are well aligned.

Chapter 5

Conclusion

The goal of this work was to improve the image matching part of the previ-
ously written framework. To reach this goal the whole image matching part
was on one hand rewritten in C++ on the other hand we started implementing
new approaches like the path constructing algorithm or the pixel matching ap-
proach. We were able to slightly improve the level of accuracy and speed of the
matching phase. Although the improvements made, aerial imagery taken from
unfavourable terrains make the process still fail.

5.1 Outlook

Despite the effort put in this project, it is not yet complete. We use this section
to wrap up open problems and give an outlook on what could be done to further
improve this work.

5.1.1 Further Improving Pixel Data Based Matching

The pixel matching approach introduced in this work is a promising start to
overcome some of the accuracy problems still faced. To overcome the weaknesses
of the current approach, tools used for panorama stitching might be helpful.
Furthermore, instead of using a pre-trained model for edge detection, a new
model could be trained using only aerial images to achieve better edge extraction.
The guide available from the OpenCV website1 is unfortunately incomplete and
partially outdated.

5.1.2 Image Matching Using Multiple Data Sources

The information provided by a single 2D image is limited and the most promising
available methods to process a single image are by now implemented. Instead
of analyzing just a single image at the time, multiple neighbouring images could

1https://docs.opencv.org/master/d2/d59/tutorial_ximgproc_training.html

35

https://docs.opencv.org/master/d2/d59/tutorial_ximgproc_training.html

5. Conclusion 36

be analyzed together. Using such a technique regions with poorly defined image
features could then be approximated with the information gathered from the
neighbouring images. Also completely different data sources, for instance digital
terrain models, LIDAR data or infrared imagery, could be used to improve the
matching quality.

5.1.3 Accelerating WTMS Tile Generation

The WMTS tile generation is done by a helper script called gdal2tiles.py. Despite
the recently added support to split up the workload onto multiple processes, the
generation of an image layer still takes an excessive amount of time. Maybe
there exists another solution to generate WMTS tiles more efficiently. Or if not,
the WMTS tile generation process could be implemented in C++ following the
WMTS standard [26].

Bibliography

[1] Geographisches Informationssystem des Kantons Zürich (GIS-ZH): Luft-
bilder 1981-2000 (HistLuftZH). http://geolion.zh.ch/opendata /
http://maps.zh.ch/?topic=HistLuftZH / https://opendata.swiss/

de/dataset/luftbilder-zh-1981-2000

[2] Bundesamt für Landestopografie swisstopo: Swisstopo lubis
viewer. https://map.geo.admin.ch/?topic=swisstopo&layers=

ch.swisstopo.lubis-luftbilder_schwarzweiss&bgLayer=ch.

swisstopo.pixelkarte-farbe&layers_timestamp=99991231&lang=

en&catalogNodes=1430

[3] Zinggeler, F.: Temporal map of switzerland. (June 2016)

[4] Roth, M.: Accurate temporal map of switzerland. (April 2017)

[5] Babri, U.M., Tanvir, M., Khurshid, K.: Feature based correspondence: A
comparative study on image matching algorithms. International Journal of
Advanced Computer Science and Applications(IJACSA) 7(3) (2016)

[6] Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:
Computer Vision – ECCV 2006, Springer Berlin Heidelberg (2006) 404–417

[7] Rosten, E., Drummond, T.: Machine learning for high-speed corner detec-
tion. In: Computer Vision – ECCV 2006, Springer Berlin Heidelberg (2006)
430–443

[8] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. (Jan-
uary 2004)

[9] Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic
algorithm configuration. In: International Conference on Computer Vision
Theory and Application VISSAPP’09), INSTICC Press (2009) 331–340

[10] Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimen-
sional data. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 36 (2014)

[11] Xia, Y., Chen, J., Li, J., Zhang, Y.: Geometric discriminative features for
aerial image retrieval in social media. Multimedia Systems 22(4) (Jul 2016)
497–507

37

http://geolion.zh.ch/opendata
http://maps.zh.ch/?topic=HistLuftZH
https://opendata.swiss/de/dataset/luftbilder-zh-1981-2000
https://opendata.swiss/de/dataset/luftbilder-zh-1981-2000
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss&bgLayer=ch.swisstopo.pixelkarte-farbe&layers_timestamp=99991231&lang=en&catalogNodes=1430
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss&bgLayer=ch.swisstopo.pixelkarte-farbe&layers_timestamp=99991231&lang=en&catalogNodes=1430
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss&bgLayer=ch.swisstopo.pixelkarte-farbe&layers_timestamp=99991231&lang=en&catalogNodes=1430
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss&bgLayer=ch.swisstopo.pixelkarte-farbe&layers_timestamp=99991231&lang=en&catalogNodes=1430

Bibliography 38

[12] Karel, W., Doneus, M., Verhoeve, G., Bries, C., Ressl, C., Pfeifer, N.: Ori-
ental – automatic geo-referencing and ortho-rectification of archaeological
aerial photographs. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences II-5/W1 (2013) 175–180

[13] Salehi, B., Zhang, Y., Zhong, M., Dey, V.: Object-based classification of
urban areas using vhr imagery and height points ancillary data. Remote
Sensing 4(8) (2012) 2256–2276

[14] Nebiker, S., Lack, N., Deuber, M.: Building change detection from histori-
cal aerial photographs using dense image matching and object-based image
analysis. Remote Sensing 6(9) (2014) 8310–8336

[15] Korpela, I.: 3d treetop positioning by multiple image matching of aerial
images in a 3d search volume bounded by lidar surface models. (05 2012)

[16] de la Beaujardiere, J.: OpenGIS Web Map Server Implementation Specifi-
cation, v. 1.3.0. Open Geospatial Consortium Inc. (2006)

[17] Geographisches Informationssystem des Kantons Zürich (GIS-ZH): Luft-
bildkarte des Kantons Zürich. http://wms.zh.ch/OrthoZHWMS?service=

WMS&request=GetMap&version=1.1.1&layers=orthophotos&srs=EPSG:

21781&format=image/tiff&width=w&height=h&bbox=xmin,ymin,xmax,

ymax

[18] Dubrofsky, E.: Homography estimation. Master’s thesis, The University of
British Columbia (March 2009)

[19] OpenCV team: OpenCV documentation. https://docs.opencv.org/3.

3.1/d4/d1f/tutorial_pyramids.html

[20] Bartoli, G.: Image registration techniques : A comprehensive survey. (2007)
16–18

[21] Open Source Geospatial Foundation: GDAL - Geospatial Data Abstraction
Library. https://www.gdal.org

[22] OpenCV team: Open Source Computer Vision Library. https://opencv.
org, https://github.com/opencv/opencv

[23] OpenCV team: Open computer vision library - patented and non-free mod-
ules. https://github.com/opencv/opencv_contrib

[24] Boost.org team: Boost C++ Libraries. http://www.boost.org

[25] Progsch, J., Zeman, V.: A simple C++11 Thread Pool implementation.
https://github.com/progschj/ThreadPool (2012)

http://wms.zh.ch/OrthoZHWMS?service=WMS&request=GetMap&version=1.1.1&layers=orthophotos&srs=EPSG:21781&format=image/tiff&width=w&height=h&bbox=xmin,ymin,xmax,ymax
http://wms.zh.ch/OrthoZHWMS?service=WMS&request=GetMap&version=1.1.1&layers=orthophotos&srs=EPSG:21781&format=image/tiff&width=w&height=h&bbox=xmin,ymin,xmax,ymax
http://wms.zh.ch/OrthoZHWMS?service=WMS&request=GetMap&version=1.1.1&layers=orthophotos&srs=EPSG:21781&format=image/tiff&width=w&height=h&bbox=xmin,ymin,xmax,ymax
http://wms.zh.ch/OrthoZHWMS?service=WMS&request=GetMap&version=1.1.1&layers=orthophotos&srs=EPSG:21781&format=image/tiff&width=w&height=h&bbox=xmin,ymin,xmax,ymax
https://docs.opencv.org/3.3.1/d4/d1f/tutorial_pyramids.html
https://docs.opencv.org/3.3.1/d4/d1f/tutorial_pyramids.html
https://www.gdal.org
https://opencv.org
https://opencv.org
https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
http://www.boost.org
https://github.com/progschj/ThreadPool

Bibliography 39

[26] Masó, J., Pomakis, K., Julià, N.: OpenGIS Web Map Tile Service Imple-
mentation Standard, v. 1.0.0. Open Geospatial Consortium Inc. (2010)

[27] van Rossum, G., Python Dev Team: Python 3.6 C API. Samurai Me-
dia Limited (12 2016) Available also online in the Python 3.6 documenta-
tion: https://docs.python.org/3/c-api/, https://docs.python.org/
3/extending/.

[28] Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy. Commun. ACM 24(6) (June 1981) 381–395

[29] Dollár, P., C Zitnick, L.: Structured forests for fast edge detection. In:
Proceedings of the IEEE International Conference on Computer Vision. (12
2013)

https://docs.python.org/3/c-api/
https://docs.python.org/3/extending/
https://docs.python.org/3/extending/

Appendix A

Appendix

A.1 Using aerialImageMatcher

All paths referred to in this section are relative to the project root directory further called
$PROJ ROOT.

A.1.1 Installing Prerequisites

The software comes with an install script to install all prerequisites on an Ubuntu Linux. To
invoke the install script, execute the following line in a bash compatible shell:

cd $PROJ_ROOT && ./INSTALL-UBUNTU.sh

This script installs the required dependencies including GDAL, the latest release of OpenCV 3,
npm and sets up and starts an nginx web server instance to run the web interface.

A.1.2 Building

To build the main binary, the CMake build environment is used. There are two prepared scripts
to either build a debug or a release version. The scripts can be run from any bash compatible
shell:

source $PROJ_ROOT/code/cpp/aerialImageMatcher/buildRelease.sh

or

source $PROJ_ROOT/code/cpp/aerialImageMatcher/buildDebug.sh

After a successful build operation the path to the executable is copied to the shell variable
$AIM PATH.

Build Flags The build of the executable can be influenced by the build flag DRAW IMAGES,
which enables all graphical output of the program. The purpose of this build flag is to visualize
the progress of the matching phases. Use this build flag only for debug executables as a massive
amount of image data is produced.

A-1

Appendix A-2

A.1.3 Image Downloading Scripts

Download the Base Image To download the base image from the WMS server of the
canton of Zurich [17], edit the file $PROJ ROOT/code/python/downloadScript/downloadBaseImage.py
and adjust the region of interest (the variable is called ‘bbox’). Also the hardcoded output path
has to be changed if the default location ../../../data/base/ is unavailable. Then execute the
script:

/usr/bin/env python $PROJ_ROOT/code/python/downloadScript/downloadBaseImage.py

Download Aerial Images from OpenData Zurich In the directory
$PROJ ROOT/OpenData Zurich/scripts/ there is a download script located, which downloads
all available images from the OpenData Zürich data set. The script can be used directly but it
is not recommended to do so.

Instead use the PHP script located in $PROJ ROOT/code/php/generateDLBashScript.php
together with a filtered version of the CSV file downloadable from [1] to generate a new down-
load script. This way the amount of data downloaded can be controlled. The whole image set
is about 2 TB in size!

A.1.4 Usage

The program can either be invoked directly or via a helper script.

Processing Images from OpenData Zurich The PHP script located in
$PROJ ROOT/code/php/generateDLBashScript.php also generates a script to process all (pre-
viously) downloaded files in one go.
The script will be written to $PROJ ROOT/OpenData Zurich/scripts/.

Appendix A-3

Program Options

Usage: aerialImageMatcher [--v|--vv] [-o] [-t maxNumberOfThreads]

[--pyProcesses maxNumberOfSpawnedPythonProcesses]

[-g] [-l logFile] [--save_storage_space]

[-c] [-r [--pixel_matching]]

[-w --web-root serverRoot --web_layer layerName]

[-b] baseImageDirectory

[-a] aerialImageFile [[-a] aerialImageFile2 [...]]

Usage: aerialImageMatcher --version

Usage: aerialImageMatcher -h

Options:

--version print version

-h [--help] print this help message

-v [--v] verbose logging

--vv extra verbose logging (WARNING: slows down program

execution drastically!)

-o overwrite existing cropped, extracted or referenced

files created by an earlier run of

aerialImageMatcher.

-l arg use given file as log file (new log entries will be

appended).

-g search for a file <aerialImageFilename.ext.georef>

to initially georeference the aerial image

The file must be a text file containing the

top-left and bottom-right corner coordinate in LV03

(EPSG:21781) in the following format:

top-left east / x coordinate\n

top-left north / y coordinate\n

bottom-right east / x coordinate\n

bottom-right north / y coordinate\n

Example:

600000.000\n

230000.000\n

620000.000\n

200000.000\n

--save_storage_space delete all unnecessary files to save space.

-c If specified, execute the image border cropping

step. If none of -c, -r or -w are specified, all

steps are performed.

-r If specified, execute the georeference step. If

none of -c, -r or -w are specified, all steps are

performed.

--pixel_matching If specified, the georeference step also performs

pixel matching.

-w If specified, execute the WMTS layer creation step.

Needs --web_layer and --web_root to be specified.

If none of -c, -r or -w are specified, all steps

are performed.

Appendix A-4

--web_layer arg Specify the date of the image (series) [YYYYMMDD]

(to store the resulting WMTS layer).

--web_root arg use given folder as web server root directory (to

store the WMTS tiles).

-b arg The directory containing the base image to compare

the aerial images to. Directory must contain a

"merged.vrt" file.

-a arg Path to an aerial image. Should be a GeoTIFF file,

otherwise the -g option must be specified.

-t [--threads] arg set the capacity (number of threads) of the thread

pool.

--pyProcesses arg the number of processes that python is allowed to

spawn.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Goals
	1.3 Related Work

	2 Method
	2.1 Existing Method
	2.2 Improving Feature Based Image Matching
	2.2.1 Using Multiple Detectors
	2.2.2 Image Pyramids
	2.2.3 Filtering Matches
	2.2.4 Geometrical Path Construction

	2.3 Recursive Search for Matches
	2.4 Pixel Data Based Matching

	3 Implementation
	3.1 Programming Language and Libraries
	3.1.1 Multithreading
	3.1.2 WMTS Layer Creation

	3.2 Using OpenCV
	3.2.1 Feature Based Image Matching
	3.2.2 Estimating Homographies

	3.3 Program Components
	3.4 Implementing Pixel Data Based Matching

	4 Results
	4.1 Feature Image Matching
	4.1.1 Matching Quality
	4.1.2 Older Aerial Images
	4.1.3 Performance Comparison

	4.2 Pixel Data Based Matching
	4.2.1 Optically vs. Mathematically Appealing

	5 Conclusion
	5.1 Outlook
	5.1.1 Further Improving Pixel Data Based Matching
	5.1.2 Image Matching Using Multiple Data Sources
	5.1.3 Accelerating WTMS Tile Generation

	Bibliography
	A Appendix
	A.1 Using aerialImageMatcher
	A.1.1 Installing Prerequisites
	A.1.2 Building
	A.1.3 Image Downloading Scripts
	A.1.4 Usage

