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Abstract

The goal of this thesis is to implement a chat application that is able to transmit
messages to other nearby devices without pairing them first.

We use the ability of current smartphones to play and record audio in the near
ultrasonic range to broadcast our messages. We achieve this by using frequency
modulation via ultrasound to encode and transmit our data while nearby devices
listen for any incoming messages.

From our results, we can see that we achieved to reliably send small messages
to other nearby devices over distances of up to 45cm. It is possible to send further
by increasing the duration of a message, although with a decrease in reliability.
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Chapter 1

Introduction

1.1 Motivation

When sharing links or chatting on smartphones, the communication partner
normally has to be known. Sometimes it would be useful to be able to share a
link with your friends or maybe you want to chat with other people in the same
room that you do not know the phone number of. In these situations it would
be useful to have a simple way to communicate between nearby devices.

Modern smartphones are able to play and record audio in the near ultrasonic
range. Therefore, it should be possible to use these signals to communicate and
transmit small chat messages between devices.

Compared to other technologies available on smartphones, this connection
does not need any pairing of the phones. There is no need for the user to learn
the other person’s contact information or scan a code on the other device.

1.2 Related Work

Nowadays, there are many different technologies available that can transmit data
to nearby devices, such as Bluetooth, audio, NFC, QR-Codes or Wi-Fi.

For example, Google’s Nearby Messages API[1] uses a combination of Blue-
tooth, ultrasonic audio and Wi-Fi to reach other devices and transmit data. A
device can listen on some or all of these different channels for messages. It sup-
ports messages of up to 100 KB in size, however they recommend to keep them
around 3 KB to guarantee faster transmission times.

Chirp.io[2] and their SDK provide the ability to transmit data over audio
on a variety of different platforms. Their library implements interfaces to Java,
JavaScript, Python, Android and iOS. It works in either audible or ultrasonic
frequency ranges and transmits data by using frequency modulation. The trans-
mission rate is about 50 to 100 bits per second.
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Chapter 2

Theory

2.1 Frequency Modulation

In signal processing, frequency modulation is the method used to encode in-
formation in a signal by varying the instantaneous frequency. The modulated
signal is created by starting out with a carrier signal at a constant frequency fc,
which is then modified by the amplitude of the modulating signal. An increase
in amplitude of the modulating signal will result in an increase of frequency of
the final modulated signal.

The instantaneous frequency over time finst(τ) tells us which frequency our
signal will have at which moment in time. This is where the information can be
encoded directly by taking the modulating signal as finst(τ).

Alternatively, we can set our modulating signal to be xm(τ). If its amplitude
is not within ±1 we have to scale it down first. Using this method limits the
frequency deviation to a specific range f∆ and the modulated signal can only
take on frequencies within fc ± f∆.

y(t) = A · cos(2π ·
∫ t

0
finst(τ)dτ) (2.1)

y(t) = A · cos(2πfct+ 2πf∆ ·
∫ t

0
xm(τ)dτ) (2.2)

2.1.1 Binary Frequency Modulation

Binary frequency modulation is a special case where finst(τ), and as a result
also the final modulated signal, can only take on two distinct frequencies. A
high frequency represents a binary 1 and a low frequency represents a 0. This
makes transmitting digital data in binary format straightforward. As seen in
Figure 2.1, the final modulated signal has a high frequency where the original
data is 1 and a lower frequency for the other parts.

2



2. Theory 3

In order to demodulate the data, the frequency of each segment in the signal
is checked whether it corresponds to the higher or lower frequency. After we have
done this for the entire signal, we have recovered the data that was originally
sent.

Figure 2.1: Binary frequency modulation[3]. The binary data is converted into
a rectangular signal. In parts where this function represents a binary 1, the final
modulated signal has the higher frequency. And in the other areas, the lower
frequency is used.



Chapter 3

Implementation

3.1 Start Symbol

In order to receive a message, it is necessary for the receiver to somehow know
that a message was sent in the first place. It is impractical to try to demodulate
all incoming audio data in the hope that it may contain one. Moreover, we need
to know where the beginning of the payload is for the demodulation. This is
both accomplished with the help of a start symbol.

startSym(t) =

cos
(

2π · (fs1t+ k
2 t

2)

)
, if 0 ≤ t ≤ T

0, otherwise
(3.1)

k =
fs0 − fs1

T
(3.2)

The start symbol consists of a down-chirp that starts at a higher frequency
fs1 and ramps down linearly to fs0 over the duration of T seconds. Such a
frequency sweep has a very good auto-correlation, as seen in Figure 3.1. There
is a single clearly defined peak and even the slightest displacement in either
direction causes the correlation coefficient to decrease. That makes it easy to
check whether or not the symbol is present in the audio data and it gives us the
exact position in time where the coefficient peaks.

Additionally, to increase the chance that the start symbol was heard suc-
cessfully it has a duration of 125ms, which is far longer than a normal payload
symbol of around 1 to 2ms.

In our implementation, we use a frequency of 20.1kHz for fs1 and 19kHz for
fs0.

4



3. Implementation 5

Figure 3.1: Auto-correlation of the start symbol. There is a clearly defined peak
at index zero, since the highest similarity is achieved when the signal overlaps
itself perfectly and there is no displacement.

3.1.1 Finding the Start Symbol

On the device, incoming audio data is checked for the presence of the start sym-
bol. This is done by calculating the cross-correlation coefficient of the recorded
audio signal x with the start symbol y. This gives us a normalized coefficient
for the degree of similarity between the two signals in the range of [0, 1]. With
1 meaning the signals match perfectly.

xcorrCoeff(x, y) =
xcorr(x, y)2

max(|xcorr(x, x)|) ·max(|xcorr(y, y)|)
(3.3)

Performing this calculation over the entirety of the audio data is very costly.
To combat this, we can use the convolution theorem, which tells us that taking
the point-wise multiplication of the Fourier Transform (frequency-domain) is the
same as a circular convolution in the time-domain. However, because we do not
want the circular convolution, we pad both x and y with zeroes to get the linear
convolution. Lastly, in order to get the correlation and not the convolution,
we take the complex conjugate of the second term. This lets us calculate the
cross-correlation efficiently as follows.

xcorr(x, y) = IFFT (FFT (x)� conj(FFT (y))) (3.4)

Finally, this gives us the correlation coefficient of the start symbol with the
audio signal at every position in the recorded data. If the maximum coefficient
(see Figure 3.2) is above a certain threshold, we say that the start symbol was
found at that point in time.



3. Implementation 6

For the implementation, the multi-threaded Java-library JTransforms[4] was
used for the Fourier Transform. This way, calculating the coefficient is fast
enough to keep up with the recorded audio in real-time.

Figure 3.2: Cross-correlation of the start symbol over the entire audio signal. The
coefficient has a clear and well defined peak where the start symbol is located.
The background noise has a coefficient of nearly zero and the payload of the
message can be seen as having a very weak correlation.

3.2 Message Format

Figure 3.3: A message consists of a payload that is zero-padded to a length of 50
bytes followed by a checksum and then the error correction. This entire block is
then repeated three times.

Overall, the transmission is split into two parts. Firstly, every transmission
begins with the start symbol to mark the beginning of a message. What follows
is the message itself as specified in Figure 3.3.

The data we send is made up of the content of a single message repeated 3
times as a repetition code to correct small and individual bit-errors based on a
majority decision. A single message consists of a payload, checksum and error-
correcting codes. The forward error correction used here is Reed-Solomon which
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is able to correct errors in the payload. More details on this can be found in
Section 3.5.

Because the message we send has a fixed size, the payload has to be zero-
padded to the proper length. The length of one message including error cor-
rection is 171 bytes. This gives us a payload length of 50 bytes which is large
enough for us to send small text messages in a chat. Transmitting messages of
a fixed size makes it simpler to receive them because there is no need to include
information about the length prior or within the message, making it overall more
robust.

As an example for how long a transmission takes, a message with a symbol
duration of 50 samples is 5.6 seconds long and one with 80 samples is 8.2 seconds
long.

3.3 Modulation

To begin a message, the start symbol is generated (as in Section 3.1) and then
played. Afterwards, we take the text that we want to send and generate our
message as specified in Section 3.2. That includes the text itself, a checksum
and the error correction.

To transmit our data over an audio signal we use binary frequency modula-
tion. Because we are only working with two frequencies, a single symbol that we
send is 1 bit. Our two symbols for 1 and 0 are generated as follows.

s1(t) = cos(2πf1 · t), 0 ≤ t ≤ Ts , for bit 1
s0(t) = cos(2πf0 · t), 0 ≤ t ≤ Ts , for bit 0

(3.5)

The symbols consist of a cosine-wave with the frequency f1 for the value 1
and f0 if the bit is 0. The symbol duration Ts, for both of them, is a fixed value
to ensure that we know the exact position of every symbol when receiving. They
usually have a duration of 1 to 2ms.
The symbol length and both frequencies can be changed by the user in the
settings of the app, as shown in Figure 3.7.

To generate the instantaneous frequency finst(τ), we take the binary data of
our message. For every bit in the message we send the appropriate symbol s1 or
s0. Meaning, if the bit is 1 the instantaneous frequency at that point would be
the higher frequency f1 for the duration Ts of one symbol.

Between each symbol a small transition of duration Ttransition is inserted to
make the frequency curve more smooth and avoid any undesired noises that
result from having such large frequency jumps. Note that if the next symbol
remains on the same frequency, this transition is also inserted to ensure that
all symbols (including the transition) have the same duration. The next symbol
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always follows Ts + Ttransition seconds after the current one, regardless what the
previous symbol was.

After we have generated finst(τ), we can create our final modulated signal
according to the Equation 2.1. An example of this process is shown in Figure
3.4.

Figure 3.4: Example message of 1010011. First, the binary data is converted into
a rectangular signal. Then we generate finst(τ). If the bit is 1 we use the higher
frequency f1, otherwise f0. The instantaneous frequency over time follows the
pattern of our binary data with small transitions added in between. Note that
in this example the length of the transition is increased to make it more visible.
The final modulated signal is shown beneath.

3.4 Demodulation

Internally, recording audio data on the device works by periodically receiving a
filled buffer that contains the audio data. The first thing we have to do when
receiving a message is to find the starting position of it. This is done by looking
for the start symbol as explained in Section 3.1.1.
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However, because we now have to work with split segments of audio data,
we run into the problem that the start symbol might span across the border of
such a buffer into the next one. To avoid this problem, we set an overlap for
every incoming buffer that contains the ending of the previous one. If the start
symbol is partially present at the end of the current buffer, it will be completely
within the overlap of the next buffer and we are able to find it.

After we have found the starting position of our message, we begin the de-
modulation. Because we have chosen to send every symbol with a fixed duration,
we know exactly how many audio samples a symbol occupies in the buffer. We
then take the data that contains a symbol plus a small additional overlap on
either side of it, to account for the fact that the phase might not be aligned and
we get a bad correlation coefficient. On this data we perform a cross-correlation
with both symbols s1 and s0 (from Equation 3.5). The maximum correlation
coefficient tells us which symbol was most likely present.
This is performed for all symbols in the signal until we have reached the amount
of bits necessary for a message.

Now, we have received the entire binary data of our message and need to
extract the text inside. Firstly, with the help of our error correction in the
message, we are able to fix some errors (see Section 3.5) and reconstruct the
original message. Lastly, we verify if the checksum matches, meaning we have
received the message correctly and were able to successfully fix all errors that
occurred.

3.5 Error Correction

Sending data over audio is not highly reliable and errors might occur for various
reasons, such as echoes, background noise or a too large distance. Therefore, we
introduce error-correcting codes in our message which allows us to recover the
data perfectly even if some errors are present.

A Reed-Solomon library[5] was used. For n error-correcting symbols added,
it is able to correct up to n

2 symbols. In this context, a symbol refers to 8 bits
of data in our message. This allows us to correct some bit-errors. It also deals
with burst-errors well, because as long as at most 8 bits in a row were affected
it only counts as a single symbol-error.

Unfortunately, a drawback of this particular library is that a symbol is always
defined to be 8 bits, even tough Reed-Solomon could work with other symbol
lengths too.

Additionally, we repeat our message three times as shown in Figure 3.3. This
form of redundancy lets us repair additional errors.
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3.5.1 Reconstruction

Firstly, we use the repetition of the message to correct small bit-errors based on
a majority decision. This gives us a single message with the binary data that
was most likely sent according to the repetition.

To further repair that message, we give it to the Reed-Solomon decoder.
The library then performs the reconstruction as specified. If it is successful it
gives us the original message we entered into the encoder back. If too many
errors occurred it might fail, in which case it will return an error letting us know
that no proper solution to the underlying mathematical problem was found.
Additionally, the checksum of our message will not match the content, further
letting us know that the message was not recovered properly.

To get an idea for how the error correction performs, we ran a simulation
that corrupts and reconstructs messages directly without transmitting them. In
our case, the error correction is able to successfully reconstruct a message about
76% of the time with a bit-error rate of 15% (see Figure 3.5). To calculate this
we randomly generated 1000 messages. In these messages, we then randomly
corrupted individual bits with a fixed bit-error rate and decoded them directly.

Figure 3.5: Graph that shows the rate of successfully reconstructing a message
given a fixed bit-error rate. Usually, all errors can be corrected if the error rate
is smaller than 15%. However, error rates above 20% are never recoverable.
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3.6 Chat App

The home screen of the application is shown in Figure 3.6. In the top right corner
there is a button that leads the users to the settings (see Figure 3.7), where they
can change the frequencies and symbol duration for the modulation. Moreover,
the users have the option to go to a screen that allows them to either send or
receive data separately. Or they can go directly to the chat view (see Figure 3.8)
that lets them do both simultaneously.

The chat application consists of two parts, a receiver and a sender, which
both run concurrently.
The sender is responsible for taking the user’s input from the text field and
passing it along to be converted in the appropriate message format and played
as audio. While doing so, it pauses the receiver to avoid listening to incoming
messages as long as we are in the process of sending one ourselves.

The receiver checks all incoming audio buffers for the start symbol and de-
modulates them if a message is found, as seen in Section 3.4. If the receiver is
in the process of demodulating a message, it prevents the sender from sending
one. This prevents a collision of the incoming message with a possible outgoing
message, which would make them both unrecoverable.

All received messages are displayed in the chat window together with the
time they arrived.

Figure 3.6: Home screen of the application.
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Figure 3.7: Settings where the user can change frequencies, symbol-length and
buffer-size. Checks are performed to only allow valid values.

Figure 3.8: This is the chat screen of the application. The correctly received
and sent messages are displayed here. The bar above the text field shows the
progress of the ongoing transmission.



Chapter 4

Results

For our tests, the devices that were used are a LG Nexus 5X, a Huawei Nexus 6P
and a LG Nexus 5. The LG Nexus 5 was always used to send the messages in our
tests. This lets us directly compare the results of the two receiving devices since
they receive the message from the same smartphone under identical conditions.

4.1 Symbol Size

We wanted to know what effect the duration of a symbol has on the transmission.
We take one device and send messages to two other nearby devices over a distance
of roughly 10cm. Every message was sent 15 times and we repeated this process
with symbol durations ranging from 20 to 90 samples. A symbol of 20 samples
is 0.42ms and one with 90 samples is 1.9ms long.

These tests were performed in three different set-ups. With the devices lying
parallel on a desk, facing away from each other and also in such a way that the
speaker of the transmitting device directly points towards the microphones of
the others. The results are shown in Figure 4.1.

13
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Figure 4.1: This graph shows the effect of varying the symbol size in combination
with the device’s orientation on messages sent over a distance of 10cm. We
perform the test three times with the devices placed parallel, facing away from
and towards each other. For every symbol size, we send a message 15 times.

In the test where the devices directly face one another the symbol size has no
significant impact since all messages were received successfully. Similarly, when
the devices lie adjacent on a desk the success-rate is overall almost as good as
under the ideal circumstances from before and we can very reliably transmit our
messages. However, if the duration of one symbol is shorter than 1ms (≤ 50
samples), we can see that not quite all messages are received successfully.

On the other hand, when the devices are facing away from each other, there is
a noticeable difference. Error rates are too high to properly recover the message
in those cases. Interestingly, with an increase in symbol size the rate of success
does not always increase but rather peak and then decrease again. This might be
caused by reflections coming from a different direction that hit the microphone
directly and interfere with the actual signal.

4.2 Microphone Orientation

From the previous test, we can clearly see that the relative orientation of the
smartphones has a massive influence on the transmission. Shown in Figure 4.1,
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we can see that over the same distance and with an identical symbol size, our
message might arrive most of the time or only 45% of the time depending on
where the signal is coming from.

It is best to always place the devices parallel next to each other or even
better if the speaker is directly pointed at the microphone of the receiving device.
Otherwise, we run into the problem that the signal is heard poorly.

4.3 Distance

We want to see at what range our chat application can still reliably operate. To
test this we place two devices side by side while the third device is a set distance
away. We then send a message 15 times and count how often it successfully
arrived. This process is then repeated for the distances of 10, 30, 45, 60 and
100cm and with a symbol duration of 50 and 80 samples. A message with a
symbol duration of 80 samples has a transmission time of 8.2 seconds, whereas
one with a symbol duration of 50 samples is 5.6 seconds long. The results are
shown in Figure 4.2.

Figure 4.2: Messages transmitted from one device to two others over distances
of 10, 30, 45, 60 and 100cm. These tests were performed with symbol durations
of 50 and 80 samples. The results are based on 15 transmissions to both devices.

As one might expect, the amount of successful arrivals of our message declines
the further away the source is. More symbols are not heard properly and the
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number of mistakes rises which increases the probability that the message will
not be recovered. In all our tests, it was never the case that the start symbol
was not found.

As to be expected, transmissions with a larger symbol size have a greater
reach than messages with a smaller one. This is because a larger symbol is
played for a longer duration and as a result, has more energy. Disturbances
would have to occur for a longer time to corrupt the majority of a symbol.

However, our results also strongly depend on the device itself as shown in the
Figure 4.3 below. This is where the hardware of each device makes a difference
based on the orientation of the microphone on the device itself, what the fre-
quency response of the device is and if the audio is processed or filtered among
other factors.

Figure 4.3: The results of the measurements vary from device to device. Here, all
the measurements from the previous tests are shown per device. For the Nexus
5X, it still holds true that the longer a symbol is, the greater range the signal
has. For the Nexus 6P, both symbol durations perform similarly.

Overall, both symbol sizes perform reliably up to a distance of 45cm. On
average, the longer symbol duration is able to better transmit messages over a
greater distance compared to the shorter symbol duration. But in our case, only
one of the two devices was able to still reliably receive messages over a distance
of 60cm even with a larger symbol size.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

From our results, we can see that the chat application is able to send messages
over short distances of up to 45cm reliably with a symbol duration of around
1ms, as long as the smartphones are not pointed away from each other. Under
good circumstances the symbol duration can be lowered slightly to achieve a
higher transmission-rate.

However, greater distances of 55cm or more result in unrecoverable messages
most of the time in our tests. It is possible to counteract this somewhat by
choosing a longer symbol duration. But this does also vary depending on the
device with some being able to receive messages from further away.

5.2 Future Work

The biggest room for improvement lies in making the transmission more reliable.
That could mean a wider range, faster transmission times, allowing for a bigger
payload and making it overall more robust to interference. This could be done
by choosing an error correction method that is more equipped to deal with
large number of individual bit-errors. In the current implementation the use of
repetition codes results in the message being three times as large for a small
bonus in reliability, which is not very efficient and could be improved.

Moreover, the frequency modulation scheme could be adapted to support
more frequencies, instead of only two. This would allow for more information
to be sent in a single symbol increasing the transmission-rate. It is also possible
to use a different method to transmit data over audio, as opposed to frequency
modulation. For example, minimum-shift keying or phase-shift keying.

Additionally, the available frequencies could be divided into separate channels
to allow for simultaneous transmissions between devices.

17
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