
Distributed
 Computing

Balanced Routing in Micropayment
Channel Networks

Master’s thesis

Sascha Schmid

saschmi@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Conrad Burchert

Prof. Dr. Roger Wattenhofer

December 20, 2017

Abstract

Cryptocurrencies like Bitcoin have scalability problems. To overcome this, micro-
payment channels have been proposed, which can be used to generate a payment
network where off-chain transactions are forwarded over multiple nodes. This
thesis presents a routing algorithm that has a small memory footprint and bal-
ances the network edges. We use forwarding fees as incentives to participate and
to steer the traffic. The core idea of the algorithm builds on multiple combined
minimum spanning trees providing approximate routing information. Our simu-
lations show that the algorithm scales well to big networks of at least a hundred
thousand nodes and provides balance to the edges to guarantee a long lasting
good performance.

i

Contents

Abstract i

1 Introduction 1

1.1 Lightning Network Channels . 2

2 Algorithm 4

2.1 General Graphs . 4

2.2 Micropayment Channel Networks 7

2.3 Optimization . 12

2.3.1 Fake Tokens . 12

2.3.2 Probe Splits . 13

2.3.3 Reverse Probes . 14

2.3.4 Resilience . 14

2.3.5 Score Computation . 15

3 Simulation 16

3.1 Metrics . 16

3.2 Distance Simulation . 17

3.3 Cost Simulation . 18

3.4 Balancing Simulation . 19

4 Related Work 22

5 Discussion 23

6 Conclusion 26

Bibliography 27

ii

Chapter 1

Introduction

For years now Bitcoin had a problem with its scalability. While other payment
options like Visa are able to handle up to tens of thousands of transactions per
second [1] and over a few hundred transactions per second on average, Bitcoin
supports less than 10 transactions per second and will struggle to scale above
100 transactions per second with known protocol improvements and parameter
changes [2, 3]. Although many different approaches were tried to scale up Bit-
coin, no solution pushed through so far. One approach that sparked quite some
interest in the Bitcoin community were micropayment networks [4, 5, 6] such as
the Lightning Network (LN) approach by Poon and Dryja. Before, all trans-
actions had to be verified by the blockchain, which proved to be a bottleneck.
What they did in their paper was to set up channels between two Bitcoin nodes
that do not need the blockchain to trade funds in between them. The problem
is that building such a channel (and eventually, tearing it down) is an on-chain
transaction, which needs to be verified by the blockchain, and the funds that
are initially committed to this new channel are frozen on this channel, i.e., they
cannot be used for anything else (see Figure 1.1). So, building a LN channel for
only one transaction is inefficient, since it takes at least two on-chain transactions
(actually more when counting the additional transactions used for fraud detec-
tion and response) to establish and tear down the channel as opposed to only one
transaction if the transaction itself was done on the blockchain directly. Also,

0.5

0.5 0.5

0.5Funding Commitment

(a) Nodes A and B (left) open a micro-
payment channel by investing funds in a
transaction with a shared output (middle),
which then can be distributed, but not yet
committed, to both parties in a second
transaction (right).

0.4

0.6

0.5

0.5 0.5

0.5Funding Commitment

Commitment

(b) When updating a channel, the second
transaction is invalidated and a new trans-
action is done with adjusted outputs.

Figure 1.1: Creating and updating micropayment channels. Images from
Burchert et al. [7].

1

1. Introduction 2

when one node establishes x different channels, it has to split its funds on these
channels, e.g., 1

x on each channel, which reduces the size of transactions that can
be sent. Lastly, although some good suggestions have been made, no standard
way of routing transactions in such a payment network has been decided on. The
problem is that routing in such networks has to consider the special nature of
these channels to prevent them from being off balance. We would like to present
an approach to solve routing in such payment networks.
Since the actual network does not yet exist, it is hard to assume any attributes
the network will have. Most Bitcoin supporters would prefer a completely de-
centralized network, i.e., all nodes have similar degree (compare Figure 1.2a),
as opposed to a more centralized hub-and-spoke network (Figure 1.2b) or even
worse, a completely centralized star layout (Figure 1.2c). This is not only due to
the increased robustness of a decentralized network, as there is no single point of
failure (or small set of important nodes in the hub-and-spoke network), but also
increased confidentiality, as spying on the network is easier when most traffic
passes through a small set of nodes.

(a) Decentralized (b) Hub-and-Spoke (c) Star

Figure 1.2: Different kinds of networks

1.1 Lightning Network Channels

As can be seen in Figure 1.1, to set up a Lightning Network channel, two nodes
generate a funding transaction with their respective committed funds as input
and a shared output. The shared output is distributed among both parties with
a (not yet broadcast) commitment transaction. Each commitment transaction
consists of two transactions with identical output, but one can only be broadcast
by A (C1a) and one only by B (C1b), as they are only signed by the other party.
Each commitment transaction also includes a delivery transaction (D1a and D1b

1. Introduction 3

respectively), which allows the non broadcasting node to collect its funds imme-
diately, as well as a breach remedy transaction (BR1a and BR1b) for all outdated
commitment transactions, which is used to grant the non broadcasting node all
funds on the channel if an outdated commitment transaction is broadcast. The
breach remedy transactions are only generated when a new commitment trans-
action is generated, i.e., BR1a is generated when C2a is generated, BR2a when
C3a is generated and so on.
Assume both parties initially invested 0.5 BTC, then the shared transaction out-
put is worth 1.0 BTC and the initial, not yet broadcast, output distribution is
0.5 BTC each (C1a and C1b). Now assume node A is paying node B 0.1 BTC.
A creates a new commitment transaction which sets the distribution to 0.4 BTC
for A and 0.6 BTC to B (C2b). A signs this transaction and sends it to B. B
then creates the same transaction (C2a), signs it and sends it to A. Then A cre-
ates the signed breach remedy transaction (BR1a) for the previous commitment
transaction and sends it to B, while B does the same thing. Now A and B can
delete the previous commitment transaction (C1a and C1b), but keep the breach
remedies (BR1a and BR1b).

Chapter 2

Algorithm

As our main contribution we present a routing algorithm which can be used
in general graphs as well as in special graphs such as micropayment channel
networks. First we describe the algorithm for general graphs and later adapt
it to micropayment channel networks. The core idea behind our algorithm is
using multiple Minimum Spanning Trees (MSTs), e.g. 20 at a time, to route
the transaction at every node to the appropriate neighbor, e.g., the neighbor
with minimum known distance to the goal node. The node then considers the
distance from all its neighbors on all MSTs to the goal node. Figure 2.1 shows
how two trees may find an optimal path.

2.1 General Graphs

For general graphs G = (V,E) and two nodes S,D ∈ V, S 6= D, the goal is to
find the shortest path from S to D on G.

Definition 2.1. Given a Graph G = (V,E) with a MST T , with maximum depth
dT and root R, a start node S and a goal node D. The distance distT (S,D)
of S and D on T is the minimum number of hops required on T to get from
S to D. The depth dT (node) of any node is defined as distT (R,node). A node
K = KT (S,D) with depth dT (K) is a lowest common ancestor of S and D if K
is an ancestor of S and of D and no node K ′ exists that is an ancestor of S and
D with depth dT (K ′) > dT (K).

The MSTs are calculated with an adapted version of Dijkstra’s algorithm.
Since we want the cheapest (here: shortest) paths from the root to all other
nodes and the tree does not have to be available instantly, but as soon as possible,
Dijkstra’s algorithm can be adapted to find such trees by gradually increasing
the distance in a flood and echo setup for the case where all edge costs are one,
or by e.g. adding timeslots in the case where edges have different costs. This
allows for generating such trees without global view. While it is possible that,

4

2. Algorithm 5

A

D

S

R1

R2

Figure 2.1: Example of two trees in a network with roots R1 and R2. Dotted
lines imply multiple nodes on the path. Assuming the distance from S via R1 to
D is smaller than the distance from S via R2 to D, then the algorithm finds the
shortest path S-A-D

with a wait time of, e.g., 5 seconds, a non optimal edge (i.e., an edge from node
A to node B, which results in a cost from the root to B which is not minimal)
might be chosen because the edge on the cheapest path had a delay of more than
the wait time, the optimal edge should be neglected as it is unreliable with such
delays (at least at the moment).
When the next hop needs to be found from some node S to reach node D,
for each neighbor Nj of S and each MST Ti, distTi(Nj , D) can be computed
and the next hop is the neighbor with the minimum distance. If the minimum
distance is achieved by multiple neighbor-tree-pairs, the next hop can be chosen
randomly from these neighbors. Assuming, for a tree Ti, that the lowest common
ancestor of S and D is Ki, then distTi(S,D) = distTi(S,Ki) + distTi(Ki, D). If
at any node A on the path a neighbor N of A is chosen as next hop, with
distT (N,D) < distT (A,D) − 1, then the originally estimated path length is
reduced by distT (A,R) + distT (R,N)− 1.

Lemma 2.2. If Ki is equal to S or D, the direct path from S to D on Ti will
have optimal length.

Proof. Because all Ti are MST, the path from the Ri to any other node on Ti
is optimal. For any subtree of Ti, the path from the root of the subtree to any
other node in the subtree will be optimal.

Note: If the number of trees is equal to the number of nodes, every path will
be optimal.

Lemma 2.3. Given two nodes S and D and a set of MSTs T1...Tn with lowest
common ancestors Ki. A lower bound for the optimal path length from S to D

2. Algorithm 6

is given by max
i

(|dTi(S) − dTi(D)|). An upper bound is given by min
i

(dTi(S) +

dTi(D)− dTi(Ki)).

Proof. Due to how the MSTs are generated, for any two nodes A and B that are
connected, the depth can only differ by at most one. Using this, the difference
in depth between nodes S and D implies a minimum of edges needed between
S and D. Since this holds for all trees, the maximum difference over all trees
defines the lower bound. The upper bound follows from routing only over the
tree with minimal initial distance. The upper bound is tight, since the network
could actually be a tree.

Note: If S 6= D, the minimum distance is 1, even if dTi(S) = dTi(D) ∀Ti.
Also, if the network is actually a tree (or close to a tree), having more trees will
not increase performance while increasing computational cost (i.e., the number
of trees should be higher if the network has many edges).

Lemma 2.4. The achieved cost to go from some node S to some node D is
bounded by the optimal cost + min

i
(min(dTi(S), dTi(D))− dTi(KTi(S,D)))× 2

Proof. Assuming only one MST (as additional MSTs only reduce the upper
bound and increase the lower bound). Given nodes S and D, with depths dTi(S)
and dTi(D), and lowest common ancestor Ki = KTi(S,D). The minimum dis-
tance is |dTi(S) − dTi(D)| as given by Lemma 2.3. The worst case cost when
routing from S over Ki to D are (dTi(S) − dTi(Ki)) + (dTi(D) − dTi(Ki)) =
dTi(S)+dTi(D)−2×dTi(Ki). Assume dTi(S) < dTi(D), then the additional cost
is equal to (dTi(S) + dTi(D)− 2× dTi(Ki))− (dTi(S)− dTi(D)) which is equal to
(dTi(S)− dTi(Ki))× 2. Likewise for dTi(S) > dTi(D).

Definition 2.5. When generating a MST, each node is assigned an Address.
Each node sends address propositions to all its prospective children. When
receiving multiple propositions at the same time, a node can choose freely which
proposal to use (in general, being closer to the root is better for the node, since
the cost will probably be smaller to send transactions).

A simple approach would be to use the depth of the node in this tree, an id
(or hash) of the root of this tree and then the path from the root to the node,
e.g. a node with address 3|Ri|2|1|3 would be a node with depth 3 and the path
from the root Ri would be the second child and then the first child and then the
third child.
There are possibilities to reduce the memory usage of these addresses by using a
compressed form of address. Compressing the address would save memory, but
would increase the computation for the next hop, since the address would have
to be decompressed to get important information about the node.
An actual implementation of this addressing scheme could be using 10 bits for

2. Algorithm 7

A B A B
c

t1, f1

t2, f2

Figure 2.2: New edge type.
Each edge now consists of two edges, one in each direction, with separate capac-
ities (amount of tokens) and fees.

the depth (which allows trees with a depth of up to 1023), 32 bits (or even less)
for the root id (or a hash thereof) and depth × 16 bits for the path encoding.
While this in theory allows for big addresses, when a node has depth 1023,
our simulations showed that with random graphs of size 1 million, the maximum
depth was rarely over 60, so, with high probability, even huge graphs will not use
the whole 1023 depth layers. Also, having 16 bits per level for the path encoding
allows for trees with over 65000 children per node, which is probably too much
and should be adapted to the size and connectivity of the actual implemented
network.

2.2 Micropayment Channel Networks

Moving on to micropayment channel networks. While the nodes in the graph are
still the same, new edges are needed to fit this model. A payment network edge
consists of funds or Tokens (Definition 2.6) on either side of the edge (compare
Figure 1.1). Each transaction passing this edge pushes some tokens from one
side to the other. If the amount of tokens on an edge in one direction is smaller
than the transaction size, the transaction cannot be routed over this edge. This
increases the amount of edges from E to 2×E.Westill use the same notation for
start node S, goal node D, and for an edge, the endpoints A and B. The goals
of the algorithm are now not only to find the path, but also keep the tokens on
the edges in balance and minimize the cost for S (see Definition 2.7).

Definition 2.6. On every payment network edge, funds have to be used to
create the edge. These funds are then distributed between the two endpoints.
We call these funds Tokens and the relative distribution of these tokens to both
nodes the Balance.

Definition 2.7. Whenever a transaction is sent over an edge from A to B, a Fee
FAB has to be paid. The receiving end of the transaction, B, decides, how big
the fee is. The fee is paid half and half by S and A to B.

The fee is used as a incentive to get nodes to join the routing scheme. Alter-
natively, the fee could be paid by S alone (which would result in higher cost for

2. Algorithm 8

0 0.2 0.4 0.6 0.8 1
0

1

2

3

fee

β1 before TX.

β2 after TX.

β

co
st

(β
)

Figure 2.3: A possible cost function. Cost functions should be decreasing and if
possible reward multiple small transactions as opposed to one big transaction.

any sender of transactions) or by A alone (which would make it hard for nodes
to actually gain from routing transactions). To decide, how big a fee is, a cost
function should be used. Every edge could have its own cost function. Although
having a globally defined cost function would make the routing algorithm per-
form better (as edges would be balanced around 0.5, thus allowing for bigger
transactions), having possibly different cost functions on all edges just shifts the
resulting balance, since then the balance on one edge potentially also depends on
the cost functions of all neighboring edges, i.e., edges that share one endpoint,
because they could be a lot cheaper even if the path afterwards would be more
expensive.

Definition 2.8. Given a directed graph G = (V, 2 × E), MSTs are generated
using Dijkstra’s algorithm. For each tree, an αT , generated when generating
the tree, can be used as a fee estimator when going down in the tree, which is
generally cheaper, and α′T for going up in the tree, which is generally expensive.
The α’s should be adjusted to the age of the tree, i.e., the longer a tree exists,
the more we expect to pay using this tree.

Note: In this case, only paths from any node to its descendants (not vice
versa) are optimal wrt. cost.
The MSTs have a time to live and have to be redone after some time. In our
simulation, we used a global cost function similar to the one in Figure 2.3, but
instead of taking the difference between the cost of β1 and β2,weset the cost as
the function value of β1, and then implemented the age by estimating a base
α = 0.5 and increasing this with the age a of the tree, i.e., α = 0.5 + a

100 until,
at age 100, α = α′ = 1.5, which is the cost of an edge with half of all tokens
on either side (cost of β = 0.5). Based on available memory on devices, some
costs or capacities of edges in the neighborhood of node A can be stored at A to

2. Algorithm 9

increase performance. Also, depending on the rate with which fees are adjusted,
an exact α can be stored.

Definition 2.9. When looking for a path, a probe is sent from S to D to find
a path. The probe contains the destination address, as well as the path so far
with the cost of each edge.

The size of the probes should be as small as possible. Assuming an address
size per node A of number of trees × the size of one tree address, where one tree
address consists of 10 + 32 + dT (A)× 16 bits (Definition 2.5f.), and assuming an
average depth of ca. 47 (this would be for huge networks), this would yield an
average tree address size of just under 800 bits or 100 bytes. Multiplying this
with the number of trees (e.g., 50) yields 5000 bytes for the destination address.
With a maximum payload of about 65500 bytes per ip packet, we would still have
more than 60000 bytes for the path, where one hop in the path can be stored
with two tree addresses plus one byte for the cost, which amounts to around 200
bytes. So, even long paths can be stored in a probe while it still fits in one ip
packet.

Definition 2.10. To decide on the next hop for a probe, a scoring function is
used. For any pair of neighbor N and tree Ti, a score is computed based on the
fee from A to its neighbor plus the estimated cost from the neighbor to D on Ti.
score = FAN + α′Ti

× distTi(N,KTi(N,D)) + αTi × distTi(KTi(N,D), D).

At any point on the path, every tree could provide the optimal path. One
could stop checking every neighbor tree pair once a pair is found where the neigh-
bor is a ancestor of D, if the tree is reasonably new.

Definition 2.11. Given two nodes A and B, connected by an edge with fees FAB

from A to B and FBA from B to A. The rate at which the two fees are updated
is decided by the two endpoints A and B, but should lie between updating after
every transaction and updating with every new tree generation.

Note: If no transaction passed the edge between two tree generation events,
the fees do not have to be updated (but could be non the less). Setting the
fees too low will send to many transactions over the edge, thus potentially gath-
ering all tokens on one side, whereas setting the fee too high will prevent any
transaction from taking that edge. The rate should be slow enough to prevent
overreaction to small bulks of transactions in one direction, but fast enough to
prevent the edge from being one sided.
Our proposition is to either update the fees every x transactions and every time a
new tree is generated or every time some threshold is passed in the balance (e.g.,
when node A only holds 40%, 20%, 10%, etc. of the tokens). In the balancing
simulations, the fees were updated after every transaction.

2. Algorithm 10

A

B1

B2

D

Figure 2.4: two possible paths from A to D
The fee FAB1 influences the amount of traffic B2 gets from A, since A chooses
based on FAB1 and FAB2 when the paths from B1 or B2 respectively to D are
similarly expensive.

Definition 2.12. The global minimum and maximum fees are called F− and
F+ respectively. These are not explicitly given but depend on the network.

Note: it is perfectly legal to demand a negative fee to attract transactions or
to have a really high fee to divert transactions.

Definition 2.13. An edge between nodes A and B is called balanced, if the ratio
between tokens on either side of the edge are almost constant (β ∈ [c− ε, c+ ε]
during some time frame ∆t, for some small ε).

The balance of the edges depends on two factors. The first is, during some
time frame ∆t, all nodes might pay or receive some transactions. The resulting
net gain/loss of some nodes can influence the balances of all edges. An example
would be a network with only two nodes A and B, where in some time frame, A
pays B some amount of tokens while B does not pay A. But, this is expected to
happen gradually and can be countered by renegotiating the edges every once in
a while. The second factor is the cost function(s) that is (are) used. If a global
cost function is used (and we ignore net gain/loss), then the edges should balance
around even distributions. With no globally used cost function, the edges will
balance toward some other value, based on the cost functions used.

Lemma 2.14. With adjusted fees after every x transactions, this algorithm pro-
vides load balancing, i.e., if there is a node A with neighbors B1 and B2, and
multiple transactions going to some destination D, where both B1 and B2 achieve
similar scores as next hop, A will distribute the transactions among both neigh-
bors.

Proof. For a pair S and D, assume that there is a node A on the path from S to
D, with two neighbors B1 and B2 and potential paths from B1 to D and from

2. Algorithm 11

A1 A2 A3

B1 B2 B3

R

Figure 2.5: Upper bound on Cost

B2 to D (see Figure 2.4). Depending on the cost from A to B1 and from A to
B2, as well as the expected cost from B1 to D and B2 to D, a path is chosen
and the fees are adapted. WLOG, assume B1 was the cheaper next hop. B1

will be chosen as next hop in future transactions as long as it is expected to be
cheaper. As soon as the score of B1 is worse than the score of B2 because of the
adapted fees, the transactions will be routed over B2. As long as the two costs
are similar, transactions will be equally distributed over both possible paths. If
other transactions change the fees on these edges (e.g. by going from B1 to A),
A will route its transactions to rebalance the two edges.

The order in which transactions arrive at a node A can influence the cost,
if after every probe the cost is adapted. Assume, for some edge between nodes
A and B, 10 transactions arrive almost at the same time, 5 going from A to B,
the other 5 in the opposite direction. If the 5 transactions from A to B arrive
at A before any of the other transactions arrived at B, then the last transaction
going from A to B will have a much higher fee than the first one. Whereas, if the
transactions arrive alternately, all fees will be relatively low. This implies that
waiting on other transactions might reduce cost and improve the performance,
but the wait time should be really small, as even a small wait time could lead to
big delay if the path is long.

Lemma 2.15. Given a start node S and goal node D on a payment network with
newly generated MSTs Ti and lowest common ancestor K = KTi(S,D). Assume
the optimal path wrt. cost has cost optcost. Then the upper bound for the cost
of the found path is min

i
(optcost+ (dTi(S)− dTi(K))× 2× F+).

Proof. Let cost(A) be the cost to go from root Ri to node A on a single tree
Ti. If the optimal path is entirely on a given tree Ti, then the optimal path is
found, as any path lying entirely on a tree is known from the start. Assume
the optimal path is not entirely on a tree. Let there be nodes B1, B2, B3 and

2. Algorithm 12

A1, A2, A3 as shown in Figure 2.5, Ai being the parent of Bi in this tree. Based
on Definition 2.8 we know that cost(B1) = cost(A1) + FA1B1 and cost(B1) ≤
cost(B2) + FB2B1 , i.e., going from R to any Bi via the corresponding Ai is
cheaper than (or equally expensive as) via any other Bj . From this it follows
that FBiBj ≥ cost(Bj)−cost(Bi). Let S = B1 and D = B3 and the optimal path
from B1 to B3 be the direct path via B2. The obvious found path is from B1 to
B3 via K. Let us call the optimal path p1 and the path via K p2. Then cost(p1) =
FB1B2+FB2B3 ≥ cost(B3)−cost(B2)+cost(B2)−cost(B1) = cost(B3)−cost(B1).
The cost of the second path can be approximated by cost(p2) ≤ (d(B1)−d(K))×
F+ + (cost(B3)− cost(K)) (going from B1 to K plus going from K to B3). Since
cost(p1) = optcost, the worst case additional cost of p2 is p2 − p1 which is
(d(B1)−d(K))×F+ + cost(B1)− cost(K). Because no matter the cost function,
all fees are less or equal to F+, this is less or equal to 2×(d(B1)−d(K))×F+

Note: In our simulations, the factor 2 × F+ was actually equal to 3 (F+ in
our cost function, because cost(β) + (cost(1 − β)) = 3∀β because of our cost
function. Also, our simulations showed that the average distance of all nodes
to the root nodes was around 4.5 with 100’000 nodes and 10 trees, so even for
big graphs the average distance to any root will be < 10 with high probability.
Obviously, for MSTs that are not newly generated, additional costs may arise.

2.3 Optimization

In this section we would like to present some improvements to the algorithm
to increase the performance and resilience against malicious or non responsive
nodes in the network.

2.3.1 Fake Tokens

The first addition are fake tokens to increase the capacity of edges if both end-
points of an edge trust each other sufficiently.

Definition 2.16. Given an edge in the network between nodes A and B. The
amount of real tokens on this edge is limited by the funds both parties were
willing to invest in this edge. The fake tokens can be used just like real tokens,
without the need to actually invest them (or even owning any funds). If one
endpoint wants to add fake tokens to the edge, the other endpoint has to first
accept this, i.e. A gives B the possibility to spend more than he invested. This
signals also the willingness to lose funds if the counterpart acts malicious.

Note: With fake tokens, edges have more capacity, thus being able to route
more transactions, gain more fees and being more resilient to bulk transactions in
one direction. Also, nodes can create edges between them with only fake tokens

2. Algorithm 13

and no real tokens, which they would not even need to confirm with on-chain
transactions.

Lemma 2.17. Given some edge between nodes A and B using fake tokens. Tear-
ing down the edge with fake tokens out of balance only affects the funds of A and
B.

A B

S

D

0/5 0/5

0/0 0/10
5/0

5/0

10/0

0/0

5/0

5/0

0/0

10/0

Figure 2.6: Before (black) and after (gray) a transaction from S to D of size
5. The tokens are written as (tokens/fake tokens) as stored on each side of the
edge.

Proof. As shown in Figure 2.6, given a transaction of 5 tokens from node S to
node D over the edge e between nodes A and B, any fake token used on e is first
translated from real to fake token at A and then from fake to real token at B.
S and D have their desired balance (S spent its tokens, D received the tokens),
but A has 5 real tokens actually belonging to B.

Fake tokens can be viewed as loans given between endpoints of an edge to
increase the edge’s performance. Having more tokens on the edge allows the two
nodes to route more transactions over the edge which increases their income.
Also, edges with more tokens (fake or not) can generally be cheaper to attract
more transactions since transactions do not affect the balance that much.

2.3.2 Probe Splits

The next improvement concerns probes. Assume a probe is sent along the op-
timal path based on cost, but one of the nodes on the path is offline, or worse,
malicious. This is why we need multiple probes that probe different paths.

Definition 2.18. Each probe that is sent out is sent with a split potential sp ∈ N.
At any point, if the split potential sp > 1, sp ∈ N, a probe can be split randomly
in two probes with split potentials sp1 + sp2 = sp, where sp1, sp2 > 0.

2. Algorithm 14

In our simulation, we allowed up to 4 probes. Results might be improved if
more probes are allowed, but computational cost rises too. More probes imply
more found paths but also a reduction in actual throughput, since only one
transaction is sent no matter how many probes are sent to find the best path.
The original sender can choose the best one from the resulting paths. This
decision can be based on total cost, path length or any other factor. Also, when
finding two paths p1 and p2, if they share at least one node, a combination of
the paths will also yield a valid path.

Definition 2.19. The split chance depends on the estimated distance to the
goal and the remaining split potential. If the distance is short, the split chance
is reduced, while a big remaining split potential increases the chance of a split.

Reducing the chance of a split based on the estimated distance helps to pre-
vent cases where the distance between S and D in hops is small, e.g. 2, but still 8
splits are done. In such cases, one or two splits at most usually find the best path.

2.3.3 Reverse Probes

Definition 2.20. Similar to the normal probe, sent from S to D to find the best
path from S to D, a Reverse Probe is sent from D to S to find the best path
from S to D. Since S decides on the actual path used for the transaction, one
message from D to S containing the found paths can be omitted.

This would also mean that the scoring function should be adapted. First of
all, the considered fee is not FAB but FBA, since the transaction would traverse
the edge from B to A. Secondly, the remaining part of the scoring function would
have to swap α for α′, since going down and going up in the tree would be the
other way around when probing reversely.

2.3.4 Resilience

Another big optimization is making probes (and the routing scheme all together)
tamper proof. For this, at least two parts of the scheme should use signatures:

• The address generation, where each node signs the address propositions for
its children and sends the signed addresses for all ancestors along with an
address proposition.

• The fee on each edge in the found path, as stored in the probe.

If the address propositions are not signed and passed along with new address
propositions, it is possible for malicious nodes to choose their address, which

2. Algorithm 15

could lead to transactions being routed in an inefficient way or not at all.
Also, if the fees that are written in the probes are not signed or protected in
some other way, malicious nodes could change these fees to whatever value they
want.

2.3.5 Score Computation

Finally, concerning the computation of the scoring function, a node does not
have to compute the score for every possible tree-neighbor pair.

Lemma 2.21. Given a graph G = (V,E) with one MST Ti and a node A with
neighbors N = NTi + NNTi, where NTi are A’s neighbors on Ti and NNTi A’s
neighbors in G that are not in NTi. For any node D 6= A, with dist(A,D)
known, there is exactly one node n ∈ NT where dist(n,D) = dist(A,D)− 1, for
all others, the distance is higher than A’s distance to D.

Proof. The MST Ti with root Ri can be rewritten as a tree with root D. All the
edges and distances stay the same. Now the depth of a node gives the distance
of this node to D (as opposed to the distance to Ri before). Since any node in a
tree can have at most one parent (exactly one parent if the node is not root), A
can have only one parent. So, the shortest path from A to D on this tree is via
A’s parent.

Given t = (T1...Tt) trees and neighbors N = NTi + NNTi , the number of
computed scores is

∑t
i=1 (|NNTi |+ 1)

Chapter 3

Simulation

We simulated three different versions of our algorithm. In the first simulation,
we looked at general graphs, where edges have unlimited tokens and all fees are
equal to 1, thus the goal was to find the shortest path. In the second simulation,
we calculated the resulting cost on a snapshot of a payment channel network
with a global cost function similar to the one shown in Figure 2.3, but with fees
based on cost(β1) ∈ [0, 3] and not the difference of the two costs of betas (pre-
and post- transaction), because the transactions did not yet have sizes. We did
not adjust the tokens or fees after a transaction. The goal was to see if, with
all newly generated trees, the algorithm could find paths with cost as close to
the optimal as possible. In the third simulation, we adapted the fees after every
transaction and initialized the trees with ages, i.e., potentially non optimal trees.
The goal there was to demonstrate that the algorithm balances the edges even
if some trees are not optimal.
The simulation had two stages. Firstly, we did the simulation with networks
of 1000 nodes where one node was flagged as offline (it did take part in MST
generation, but not in transaction routing). Secondly, we did the same simula-
tions again with networks of 100’000 nodes, where 31 nodes were offline in the
distance simulation, 48 in the cost simulation and 82 in the balancing simulation.
Then we repeated the three simulations for both sizes of networks ten times with
increasing numbers of trees T = 2, 4, ..., 20. The trees were generated with the
network and not changed when increasing the number of trees (i.e., the two trees
used when T = 2 were the same trees as the first two when T = 20). For each
pair of simulation and network size, a new network was generated. This resulted
in some networks of the same size in terms of nodes having different amounts of
edges. For each simulation, 100’000 random transactions were done.

3.1 Metrics

The collected metrics were the average cost of found paths (or distance in the
first simulation), the average optimal cost (distance) and the percentage of trans-
actions that cost more than the optimal cost, more than twice the optimal cost,

16

3. Simulation 17

more than three times and more than five times the optimal (although the per-
centage of transactions that cost over five times the optimum was rarely more
than 1%, usually much less. Additionally, we tracked the standard deviation of
the balances of all edges in the network for the balancing simulation. Since ev-
ery edge actually consists of two edges, from A to B and vice versa, the average
balance is always 0.5, since any balance from A to B is mirrored by the edge in
reverse direction. We also tracked various other metrics such as number of paths
found or number of splits done (but these stayed almost constant), the amount
of edges in the taken path that had a balance β > 0.5, i.e., that did not help
balancing the network (which was less than 0.002% in the worst case), a tree
rating, where the rating was higher if the tree influenced more decisions in the
scoring process (if all trees had the same age, all had almost the same rating, else
the rating was proportional to the age). In the distance simulation, we observed
a correlation between a node being close to a root and the same node observing
more traffic, but, in the later two simulations, no such correlation was observable
(mainly because in the second and third simulation, going down in a tree was
preferable, so transactions tried to avoid going towards a root).

3.2 Distance Simulation

Figure 3.1 shows the results of the distance simulation with 1000 nodes. In Fig-
ure 3.1a it is shown that, even with only a few trees, the amount of non optimal
transaction might be big, but almost all of them are less than two times the
optimal. Using 20 trees we even achieve a rate of non optimal paths of slightly
more than 10%. As can be seen in Figure 3.1b, the average Distance of the found
paths is almost the same as the average optimal distance. This shows that even
if the found path is not optimal, the additional cost is, on average, low. It also
shows that increasing the number of trees only improves performance up to some
point.
For the distance simulation with 100’000 nodes, the results in Figure 3.1 show
that even if the network is one hundred times the size of the previous simulation,
the results are not much worse. In Figure 3.1d, the average extra distance is
almost equal to 1, implying that, on average, the found path is only one hop
longer than the optimal. In Figure 3.1c, the amount of non optimal transactions
is worse than before, but we expect the results to improve when even more trees
are used. Also, the amount of transactions that are worse than twice the opti-
mum is less than 1% when using only 20 trees.

3. Simulation 18

Figure 3.1: 1st Simulation: Distance

(a) Percentage of optimal and non optimal
transactions depending on the number of
trees with 1000 nodes.

(b) Distances of found paths vs. optimal
distances with 1000 nodes

(c) Percentage of optimal and non optimal
transactions depending on the number of
trees with 100’000 nodes.

(d) Distances of found paths vs. optimal
distances with 100’000 nodes

3.3 Cost Simulation

In the second simulation, edges were generated with a random capacity c ∈ [1, 10]
and a random balance β ∈ [0, 1], which split the capacity (or total amount of
tokens) on both endpoints of the edge. In Figure 3.2 we can see the results of
the second simulation. As was expected, the percentage of non optimal paths
(Figure 3.2a) was higher than in the distance simulation. This is mainly because
in the cost simulation, usually only one optimal path exists, whereas in the dis-
tance simulation, because all edges have cost one, potentially multiple paths of
optimal length exist, so the probability to find at least one of those paths is
higher.
The cost simulation with 100’000 nodes (Figure 3.2) achieved comparable results
to the 1000 node simulation. Again, most transactions were not optimal, but
most cost less than twice the optimum, and only 1% cost more than three times
the optimum (at 20 trees). Also, the average cost was at 169% of the average
optimal cost when using 20 trees (as opposed to 141% of the optimal cost in

3. Simulation 19

Figure 3.2: 2nd Simulation: Cost

(a) Percentage of optimal and non optimal
transactions depending on the number of
trees with 1000 nodes.

(b) Cost of found paths vs. optimal cost
with 1000 nodes.

(c) Percentage of optimal and non optimal
transactions depending on the number of
trees with 100’000 nodes.

(d) Cost of found paths vs. optimal cost
with 100’000 nodes.

the smaller simulation). Similar to the distance simulation, the performance can
be expected to improve if more than 20 trees are used, although the increase in
performance per added tree will soon be small.

3.4 Balancing Simulation

The third simulation is closest to an actual working network. When generating
the trees, a random age between 1 and 100 was assigned to each tree (mean age:
49.3, sd: 28.3). Then, for each tree generation, a new network was generated
where each edge’s balance β was changed randomly to a value β′ ∈ [β−x, β+x],
where x depends on the age of the tree and β′ ∈ [0, 1]. On this new, distorted
network a MST was generated which then was copied into the actual network,
thus generating potentially non optimal MSTs in the original network. During
the routing process, the age of the MST was accounted for when computing the
score of a neighbor-tree-pair (as described in Definition 2.8f.). While in previous

3. Simulation 20

Figure 3.3: 3rd Simulation: Balancing

(a) Percentage of optimal and non optimal
transactions depending on the number of
trees with 1000 nodes.

(b) Cost of found paths vs. optimal cost
with 1000 nodes.

(c) Percentage of optimal and non optimal
transactions depending on the number of
trees with 100’000 nodes.

(d) Cost of found paths vs. optimal cost
with 100’000 nodes.

simulations all trees equally influenced the routing decisions, in this simulation
the newest tree influenced most decisions, while the oldest tree influenced hardly
any decision. Figure 3.3 shows the resulting average costs and optimal costs
and the percentage of non optimal transactions. The results of the balancing
simulation on a 100’000 node network are shown in Figure 3.3. This simulation
was by far the worst performing simulation, achieving only an average cost of
234% of the optimal average cost using 20 trees, thus being the only simulation
that had an average of more than two times the average optimal cost.
In Figure 3.4, the change in standard deviation over all edges is shown for five
of the ten tests (T = 4, 8, ..., 20) in the small network. It should be noted that,
even with only four trees, the standard deviation after 100000 transactions is
still lower than it was in the beginning. Looking at the changes in the bigger
network (Figure 3.4b), the standard deviation changes a lot slower than before,
due to more edges existing in the network and therefore each transaction having
a smaller influence on the total standard deviation. It should be noted that,
even for the case with only 4 trees, the standard deviation was still sinking after
100’000 transactions.

3. Simulation 21

Figure 3.4: Standard Deviation in 3rd Simulation

(a) Change of Standard Deviation of edge
balances per 100’000 transactions when
using t = 4, 8, ..., 20 trees.

(b) Change of Standard Deviation of edge
balances per 100’000 transactions when
using t = 4, 8, ..., 20 trees.

Chapter 4

Related Work

There have already been some suggestions on how to tackle this routing problem,
but many of those did not emphasize enough the special nature of edges in a
payment channel network as opposed to more common graphs.
For example, the global beacon-/ or landmark-approach[8] was suggested as an
option to handle the routing problem in the Lightning Network. The problem
with this approach is that for a transaction from some node A to some node B
(that do not know the path to each other), each possible path passes a beacon
node, which might result in a sizable detour. Also, since all traffic will be routed
over at least one beacon node, edges close to the beacon node suffer from a po-
tentially high traffic load, which could throw them off balance.
A second beacon approach [9] was made using local beacons, i.e., each node
chooses randomly, e.g.,

√
n personal beacon nodes. When nodes A and B need

to route a transaction, they just exchange their beacon sets and hope that they
have a beacon in common. While this approach might remove the high traffic
load for the global beacon nodes, it suffers from questionable scalability and does
not address the case when two nodes do not share a beacon.
Another approach that, at least partly, uses beacons, is Flare[10]. This algo-
rithm uses a hybrid of proactive and reactive protocols. First, it stores some
amount of edges in the network (generally the neighborhood of that node), as
well as paths to some beacon nodes. Then, as soon as a transaction needs to
be routed, it dynamically scores the different possible paths, after probing them,
based on, e.g., the fees on these paths. It then routes along the best path. If,
for some reason, the path does not work, the second best path is tried and so
on. If no path works, beacons are used to find new paths. Our improvement
on this method is that we do not rely on storing parts of the network on every
node, mainly because this information might be volatile, but also to save on
memory consumption. Additionally, for nodes that are relatively far away from
each other, this algorithm still has the problems that the previous attempts had,
that potentially big detours arise based on the beacon approach for long distance
transactions.

22

Chapter 5

Discussion

When trying to tackle the routing problem in micropayment channel networks,
being able to balance the edges in the network is an important factor that should
not be neglected. The three stated goals for a routing algorithm in these kind of
networks, finding a path, balancing the network and minimizing the cost, sum-
marize the results of the simulations.We have shown that our algorithm can find
a path of nearly minimal length in the first simulation, that the algorithm can
minimize the cost in the second and third simulation and that it balances the
network edges if new trees are generated fast enough.
Although the algorithm did not perform as good in the second and third simu-
lation as it did in the first one, reaching an average cost of less than 200% of the
average optimal (except the last simulation, which was under 300%) is still ac-
ceptable.We did an additional balancing simulation on a different network with
100’000 nodes and 50 trees to see if better results are possible. While the average
cost was 188% of the average optimal cost, the percentage of transactions that
cost more than twice the optimum sank to 39%, while only 4.6% cost more than
three times the optimum.
While this algorithm was designed with payment channel networks in mind, it
does work well with other routing problems. If balancing of edges is not a con-
cern, then the algorithm can be used after generating a set of trees with no need
to frequently generate new trees (unless the network itself changes). Then per-
formance could be optimized by using an ideal set of roots. Ideas on how to find
these roots can be adapted from Thorup [11]. One should focus on distributing
roots such that all nodes have a small distance to at least one root.
Interestingly, in the 1000 node networks, the second simulation did worse in terms
of average cost than the third, even though the third simulation was expected to
do worse because of the change of fees. This is most likely due to the different
amount of edges in the networks, as the networks were randomly generated, the
network in the second simulation had an average degree of 18 while the average
degree in the third simulation was around 7. So, because of more edges in the
network, it was harder to find the optimal path with only a few trees.
Looking at the results of the balancing simulation in figure 3.4, it is interesting
to see that the standard deviation (SD) of all edges in the network is still lower

23

5. Discussion 24

1

n

N(1,1)

N(N,1)

N(1,M1)

N(N,MN)

Figure 5.1: Lists of neighbors

than the original SD, even after 100’000 transactions. However, the original bal-
ances were generated randomly, so a fast decrease in the first few transactions
is to be expected. Assuming an average usage of 100 transactions per second,
this means that even with only 2 MSTs, the network will be balanced after 16.6
minutes or 100’000 transactions. Than means that it suffices to generate a new
tree every 10 minutes or every new block on the blockchain. In the large net-
work simulation, no matter the amount of used trees, after 100’000 transaction,
the standard deviation was still sinking. Since all transactions were done ran-
domly, i.e., start and goal node were decided randomly, this was to be expected.
However, if used in a real environment, the transactions will probably not be
randomly distributed, but rather mostly localized, i.e., transactions will tend to
repeat themselves or at least transactions involving one specific node will include
a limited set of other nodes in most cases (e.g., the same people shopping at the
same store).
Also, because the results on average cost in the third simulation were just as
good as the results of the second simulation, we can conclude that older trees
do not limit the functionality of the algorithm. This, together with the change
in standard deviation, implies that having more trees (up to some point) will
increase the performance of the algorithm, even if the trees are old and the in-
formation stored in them is deprecated.
When comparing our approach to storing the whole graph at every node, it is

apparent that storing the whole graph will produce better paths, as the whole
information is available at every node. However, our algorithm uses less mem-
ory. Let us look at three different ways to store the whole network. The simplest
one is using a bitmap to store, which nodes are connected to which (one bit is
enough in the distance approach, for the cost approach it would need more than
one bit to not only store an existing edge, but also the cost). This leads to a
usage of at least n2 bits. The second approach would be to store all edges as
a list of neighbors (Figure 5.1), where for every node all neighbors are stored
in a list. This approach needs for the neighbors alone at least 2 × E × log2(n)
bits. The third approach would be storing all edges as pairs (A,B), which uses
E × 2× log2(n) bits.
Say we have a network with 100’000 nodes and 50 trees. Also, assume that the
average depth of any node in any tree is 60 (which is an overestimation), then
the memory consumption of one node address is the number of trees times the

5. Discussion 25

tree address size, or 50 × (10 + 32 + 60 × 16) = 50′100 ≈ n
2 bits. The average

memory consumption is therefore the addresses of the node plus the addresses of
all neighbors, 2E

n ×
n
2 = E. This beats the other solutions by a factor of 2log2(n).

This is obviously an overestimation of memory consumption of our algorithm,
since an average depth of 60 is really high and also 16 bits per level of depth is a
lot. Still it can be seen that the memory consumption is lower than storing the
whole graph.
However, there are limitations to our algorithm. Firstly, if the average degree
of the nodes is high, that is, the network contains many edges, the algorithm
is less effective. The performance could be increased by adding more trees, but
this would also increase the computational cost, message size and memory usage
and therefore is only useful up to some point. A second problem is that, with
malicious intent and enough nodes under control, an attacker might damage the
network by, e.g., having a set of nodes that try to separate two sets of nodes such
that any transaction from a node in one set to any node in another set will pass
over at least one malicious node and is then routed for a high cost to a different
malicious node before being routed to the destination.
There are still some problems left which could be tackled in future work. Some
examples would be increasing the security, that is, adding more signatures and
other control mechanisms to prevent attacks like the one described above, finding
an addressing scheme that uses less memory than our approach while still pro-
viding the information necessary without decoding, using different probes such
as slower probes, which could allow nodes to store or hold probes for a very short
amount of time to increase the balancing and decrease cost if another transaction
going in opposite direction is found or building completely trust based networks
(i.e., only edges with fake tokens) and the resulting possibilities and problems.

Chapter 6

Conclusion

In this thesis we looked at newly emerging routing problems in micropayment
channel networks. Because of the special nature of these networks, mainly the
volatility of the edges, the usual routing algorithms do not work as intended.
If the balancing factor is not accounted for, algorithms run the risk of render-
ing edges one sided and thus increasing the difficulty to find appropriate paths.
Our algorithm showed that it is capable of solving the routing problem in gen-
eral graphs as well as in these special networks, while the memory usage and
computational cost scales well with increasing sizes of networks. It really shines
when working with big networks with a relatively small number of connections.
While for small networks, storing a routing table still outperforms our approach
(by using a lot more memory), this solution is not possible for large networks,
because the table would be too big and because of the volatile character of the
edges, the number of status update messages would congest the channels.

26

Bibliography

[1] Trillo, M.: Stress test prepares visanet for the most wonderful time of the
year (2013)

[2] Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller,
A., Saxena, P., Shi, E., Gün, E.: On scaling decentralized blockchains. In:
3rd Workshop on Bitcoin Research. (2016)

[3] Decker, C., Wattenhofer, R.: Information propagation in the bitcoin net-
work. In: 13th IEEE International Conference on Peer-to-Peer Computing.
(September 2013)

[4] Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain
instant payments (2016)

[5] Russell, R.: Reaching the ground with lightning (2015) https:

//github.com/ElementsProject/lightning/blob/master/doc/

deployable-lightning.pdf.

[6] Decker, C., Wattenhofer, R.: A fast and scalable payment network with
bitcoin duplex micropayment channels. In: Symposium on Stabilization,
Safety, and Security of Distributed Systems. (2016)

[7] Burchert, C., Decker, C., Wattenhofer, R.: Scalable Funding of Bitcoin
Micropayment Channel Networks. In: 19th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), Boston,
Massachusetts, USA. (November 2017)

[8] Russel, R.: Ionization protocol: flood routing. in: Lightning network devel-
opment discussion. (2015)

[9] Bairn, A.: Ionization protocol: flood routing. in: Lightning network devel-
opment discussion. (2015)

[10] Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare:
An approach to routing in lightning network. (2016)

[11] Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and archi-
tectures. (2001) 1–10

27

https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf
https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf
https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf

	Abstract
	1 Introduction
	1.1 Lightning Network Channels

	2 Algorithm
	2.1 General Graphs
	2.2 Micropayment Channel Networks
	2.3 Optimization
	2.3.1 Fake Tokens
	2.3.2 Probe Splits
	2.3.3 Reverse Probes
	2.3.4 Resilience
	2.3.5 Score Computation

	3 Simulation
	3.1 Metrics
	3.2 Distance Simulation
	3.3 Cost Simulation
	3.4 Balancing Simulation

	4 Related Work
	5 Discussion
	6 Conclusion
	Bibliography

