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A B S T R A C T

We present an energy efficient implementation of a convolutional neu-
ral network (CNN) for acoustic event (AE) classification on a low power
microcontroller. This system may be adopted on the edge nodes of a
wireless sensor network (WSN) where energy-efficiency is of utmost
importance. The benefits of a classification on the sensor side rather
than in the cloud are, for example, diminished data transmission
costs, lower latency and reduced network congestion. For the imple-
mentation, incremental network quantization (INQ) is used to reduce
the memory footprint of the CNN model. The implementation is op-
timized for a fast forward inference by taking into account hardware
limitations like the number of general purpose registers available in
the CPU core. A pipelining-like data movement strategy is adopted
in order to perform the complete forward inference only on energy-
efficient on-chip memory.
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1
I N T R O D U C T I O N

Currently, WSNs are extensively used in a variety of monitoring and
tracking applications [1]. Monitoring may for example facilitate the
development of new early warning systems [2]. Within the PermaSense
project [3] such a WSN was developed for environmental monitor-
ing in the Swiss Alps where geological phenomena are analyzed. An
overview of this system is shown in figure 1.1.

Multiple sensor nodes are mounted on the rock wall. Among other
sensors, every node features a geophone that senses acoustic signals
in the low frequency range up to 500 Hz. The sampled data is contin-
uously streamed to a server through the WSN. A CNN for AE classifi-
cation is used to analyze the received data in order to automatically
discard unwanted signals.

Because edge devices like the sensor nodes of the WSN are usually
battery-driven it is of utmost importance for them to work as energy-
efficiently as possible. However, wireless data transmission is an energy-
consuming task [4].
Therefore, AE classification directly on the sensor nodes using an em-
bedded platform may reduce data transmission and thus energy con-
sumption considerably. Instead of sending the raw data, only the cor-
responding label, which signifies the class of a given AE, has to be
sent through the WSN. With a reduced payload that must be transmit-
ted per sensor node the WSN may also comprise a larger number of
nodes without the risk of network congestion. Additionally, the sys-
tem may become more responsive because the data of the different
nodes can be processed in parallel rather than sequential like on the
server.

Because the classification task itself is a power hungry computation
a low power MCU is a very attractive choice for this application [5].
However, state of the art CNNs that achieve reasonable prediction ac-
curacies often consist of millions of parameters which on the one
hand cause a large memory footprint and on the other hand involve
an extensive amount of arithmetic and data access operations that
need to be performed. Thus, they are usually implemented on pow-
erful general purpose CPUs or GPUs.

In contrast, MCUs usually have very limited computation power which
makes real-time applications with CNNs challenging. Apart from the
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limited flash memory these platforms provide to store CNN model
parameters the deployment of CNNs on MCUs is further exacerbated
because of limited working memory. This makes it challenging to han-
dle the large inputs and intermediate results that occur during the
classification task and may require the use of off-chip memory. How-
ever, off-chip memory accesses consume about two orders of magni-
tude more energy than on-chip SRAM accesses [6].

In recent years, various quantization techniques have been developed.
One of their goals is to reduce the memory footprint of the CNN

model parameters while maintaining their original classification ac-
curacy. Other techniques focus on lowering the necessary computa-
tion power to allow real-time processing [6]. However, many of the
developed techniques require dedicated hardware like FPGAs. There
has only been limited research in implementing CNNs on MCUs [5, 7,
8].

In this work we first use INQ in order to reduce the memory foot-
print of the acoustic CNN mentioned above. With a reduced model
size we implement the CNN on the STM32F469NI MCU.
Thereby, we focus on an efficient implementation of the convolution
algorithm which is known to be the bottleneck regarding the execu-
tion time of forward inference. A thorough analysis of the implemen-
tation will be performed on assembler level showing the need to take
into account subtle hardware characteristics like the number of regis-
ters that are available in the MCU core.
We then address the challenge of small on-chip memory with a dedi-
cated data movement strategy that helps to avoid using power-hungry
off-chip memory.
Finally, an estimation will give a first impression whether performing
the classification directly on the edge nodes of the WSN effectively re-
duces the overall energy that is consumed on a given sensor node.

Although the focus of this thesis will be on low frequency geophone
data we will also consider more general audio data which may greatly
increase the scope of application of such a WSN.

Wireless Sensor Network ClassificationAcoustic Emission Sensors

Figure 1.1: Simplified overview showing the current state of the PermaSense
WSN. Geophone data is sampled and streamed continuously to a
server for classification.
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T H E O RY

2.1 neural networks

Inspired by the biological nervous system, a NN, in machine learn-
ing, consists of artificial neurons and synapses. Consider for example
the NN shown in figure 2.1 which is structured into three layers, an
input layer, a hidden layer and an output layer. The neurons are rep-
resented by circles, while the synapses are represented by the lines
between them.

w21 w32

Figure 2.1: Illustration of a small neural network that consists of an input
layer (red), a hidden layer (blue) and an output layer (green).

This network is essentially a function that maps a set of input num-
bers to some output. Each neuron contributes to this function by
scaling its inputs by the corresponding weights, which represent the
strength of the synapse. A nonlinear function is then applied to the
sum of these products. Mathematically this can be expressed as y =

f (∑n
i=1 xi · wi) where y is the neuron’s output, f is the nonlinear func-

tion and xi and wi are the inputs and weights respectively.

In order to compute something useful, the NN must first learn the
desired input output relation. This can be achieved by training the
network which means that a set of input data as well as the corre-
sponding desired output values are presented to the network. Start-
ing with random weights, the network can compute its output for a
given input. The resulting output is taken to compute the loss which
measures the distance of the actual from the desired output. Based on
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this loss, the weights are updated using the well known backpropaga-
tion algorithm [9] in order to minimize the loss. Repeating the process
with a large number of training samples, the network may eventually
find appropriate weights which allow not only to compute the correct
output on the training data but also to predict the output for previ-
ously unseen input data. Computing the output for a new input is
also referred to as forward inference.

2.1.1 Convolutional Neural Network

A CNN is a special kind of NN which usually contains more than 3

hidden layers. The particularity of a CNN is that they mainly consist
of conv layers. While a neuron in a fully connected layer is connected
to every neuron of the preceding layer, the neurons in conv layers are
only connected to a subset of them. Additionally, all neurons of a
given layer share the same set of weights. These weights build the so-
called filter kernel which is used in a mathematical operation called
convolution which coined the name of this layer type. The set of neu-
rons in the input layer that affect the given neurons output are ref-
fered to as the receptive field (RF) of that neuron.

During training, the depth of this architecture allows the network
to learn features of increasing complexity, similar to the neurons in
the visual cortex of the brain. Therefore, the output of a given layer is
usually called feature map which in turn serves as input for the next
layer. The nonlinear function in CNNs is often the ReLu which maps
negative values to zero.

2.2 incremental network quantization

Various techniques have been developed with the goal to manipulate
NNs in order to reduce their memory footprint for both model param-
eters and intermediate results. Reducing the memory footprint may
help to fit a CNN smaller and thus cheaper MCUs thereby also increas-
ing the number of MCUs that can be used for a given application.

The difficulty of this task is to maintain a reasonable network accu-
racy. Recently, INQ has been developed which enables to reduce the
memory footprint of a given NN from the original 32-bit values to 4

bits without accuracy loss [10]. In fact, for some models INQ achieves
even an improved model accuracy compared to the original 32-bit
versions. The strategy of INQ is to only quantize small portions of
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the model parameters at a time while using re-training between suc-
cessive quantization steps. Thereby, the original weights are mapped
onto a limited set of numbers which are the different quantization
levels. This mapping allows to introduce an encoding for the quan-
tized weights such that each weight can be represented by a reduced
number of bits. The number of quantization levels is defined by the
bit-width parameter b.

The algorithm can be divided into three steps, namely weight par-
tition, group-wise quantization and re-training which are illustrated
in the top row of figure 2.2. In order to quantize a given model these
three steps are repeated until all weights are either powers of two or
zero as illustrated in the bottom row of the figure.
During the partition step a subset of the weights in each layer is se-
lected to be quantized. In our work this selection is always random.
In [10], however, they also used a selection mechanism where smaller
weights are selected first. This idea is based on [11] where it is argued
that smaller weights are less important than larger ones.
During quantization the weights are mapped to powers of two or
zero, therefore enabling to replace multiplication by cheaper bit-shifting
which may be interesting for cheap MCUs that are not equipped with
digital signal processing (DSP) units.
After each quantization step the network is re-trained for a certain
number of epochs. These three steps are repeated until, ultimately,
all weights of the network are quantized.

Figure 2.2: Illustration of the the three steps in INQ on a 2D weight matrix.
First, a subset of weights is selected to be quantized. Second, the
selected weights are quantized. Third, the remaining weights are
re-trained to account for the quantization error in the previous
step. These three steps are repeated until finally the complete
weight matrix consists only of quantized weights. Figure from
[10].
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S Y S T E M O V E RV I E W

The main goal of this thesis is to implement a CNN for AE classifica-
tion efficiently on a MCU. This system may then be adopted on the
edge nodes of the WSN introduced in section 1. This section describes
the working principle of a given sensor node and introduces both the
acoustic CNN and the MCU that are used.

CNN Transceiver

Storage

Figure 3.1: Block diagram showing the simplified processing chain of a sen-
sor node which is equipped with the CNN to perform data classi-
fication in real-time.

The block diagram in figure 3.1 shows the simplified working princi-
ple of a given sensor node. During the data acquisition (DAQ) phase
the analog voltage levels that are generated by a geophone sensor are
amplified, filtered and converted into a digital signal.
A digital thresholding scheme is then applied to the samples. Only a
signal that exceeds the threshold is on the one hand stored on mem-
ory and on the other hand subject to a fast Fourier transform (FFT)
followed by Mel-scaling.
The resulting spectrogram is then processed by the CNN for classifica-
tion and the determined label is sent through the WSN.

As already mentioned in section 1, we are interested to not restrict
ourselves to the low frequency geophone data. We also consider the
scenario of more general microphone data which contain higher fre-
quency components.
A summary of all relevant signal information and DSP parameters is
shown in table 3.1.

3.1 acoustic convolutional neural network

For the AE classification task we use the CNN-CNP network that was
developed in [12]. This network was inspired by the CNNs introduced
in [13]. Two modifications, however, resulted in a new architecture
that is optimized for embedded platforms. An overview of this net-
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geophone data microphone data

Sample rate 1 kHz 16 kHz

FFT window size 1000 ms 32 ms

FFT hop size 512 ms 16 ms

Mel-frequency bins 64 64

Table 3.1: Signal information of geophone and microphone data.

work is shown in table 3.2.

The network can be divided into two sections, one for feature ex-
traction and one for classification. The first section consists of four
conv layers. The usual max pooling operation was removed and in-
stead, the stride parameter of the respective layers has been set to
two. This is the first of the above mentioned modifications which was
proposed in [14] and resulted in a reduced number of MAC opera-
tions. The second section uses three conv instead of fully connected
layers for classification. Together with a global average (avg)-pooling
layer this is the second of the above mentioned modifications which
drastically reduced the number of model parameters and hence the
memory footprint of the CNN. The softmax activation function gener-
ates the output vector that consists of 28 elements which correspond
to the 28 classes present in the acoustic event classification dataset
that was generated in [13]. The complete network has about 452k
parameters and achieves an accuracy of 85.1% [12]. After every conv

layer a ReLu activation is performed.

Throughout this work we assume an input shape of (FxT) = (64x400),
where F is the number of Mel-bins and T is the number of Mel-
frequency vectors. For this input the resulting number of MAC op-
erations is 1239M.
Given the network architecture, the biggest intermediate result is
defined by the output of the first conv layer which has the shape
(64x400x64). This intermediate result is in turn the input for the sec-
ond network layer which computes a new output of shape (32x200x64).
In order to compute this output the memory of a MCU must at least
contain the former intermediate result while providing some space
for the new output. Therefore, the necessary amount of memory is at
least 6.25 MB1.
To estimate the computation power that is necessary for real-time
processing the duration of an AE must be known. With a hop size
th, f f t and a window size tw, f f t the duration can be calculated as L =

tw, f f t + (T − 1) · th, f f t. For the geophone and microphone data this

1 32-bit data
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layer type # params . # mac

conv 3, 1, 64 640 14.8M

conv 3, 2, 64 36.9k 236.0M

conv 3, 1, 128 73.9k 471.9M

conv 3, 2, 128 147.6k 236.0M

conv 3, 1, 128 147.6k 236.0M

conv 1, 1, 128 16.5k 26.2M

conv 1, 1, 28 3.6k 5.7M

avg pool 0 0

softmax 0 0

Total: 452k 1239M

Table 3.2: Structure, parameter count and number of required MAC opera-
tions of the acoustic CNN. Convolutional layers are defined as fil-
ter size, stride, number of filters. The horizontal line separates the
section for feature extraction from the classification section.

geophone data microphone data

Model parameters 1.73 MB 1.73 MB

Intermediate results 6.25 MB 6.25 MB

MAC-speed 6M MAC/s 193M MACs/s

Table 3.3: The first two rows show the size of the model parameters and the
biggest intermediate result during forward inference. The third
row shows the MAC-speed required for real-time processing for
both geophone and microphone data. Data size is shown in 32-bit
format.

formula evaluates to 205.312 s and 6.416 s respectively (table 3.1).
Hence, the necessary MAC-speed for real-time processing is about 6M
MACs/s and 193M MACs/s respectively. To summarize, the most rele-
vant numbers are listed in table 3.3.
Remember that one of the motivations to deploy the CNN on the sen-
sor nodes rather than on the server is the reduced amount of data
that needs to be streamed through the WSN which may reduce the
energy consumption of a sensor node considerably. With the above
computed AE-duration and the sample rates provided in table 3.1 the
size of an AE can be found to be 401 kB and 802 kB for microphone
and geophone data respectively2. Compared to the 5 bit label needed
to encode the 28 classes this is a reduction by more than factor 105.

2 32-bit data
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3.2 microcontroller unit

For our investigations we use an STMF469NI MCU which is integrated
on the STM32F469I discovery board from ST [15]. This MCU features
a 32-bit Cortex-M4 CPU with 12 general purpose registers, a floating
point unit (FPU) with additional 32 single precision registers and it im-
plements a full set of DSP instructions including the MAC operation for
fixed point numbers, that is the operation that must be performed ex-
cessively in a CNN. Furthermore, the MCU features 320 kB SRAM, 64 kB
core coupled memory (CCM) and 2 MB Flash memory. The CPU clock
ranges up to 180 MHz. At a 3.3 V power supply the typical current
consumption of the MCU lies between 2 mA and 103 mA depending
on the selected clock speed and the peripherals that are enabled. The
discovery board provides an additional 16 MB off-chip synchronous
dynamic random-access memory (SDRAM).

Given the above specifications the question arises whether the acous-
tic CNN from the previous section can be implemented while satisfy-
ing the processing and memory requirements of the application. The
relevant information to answer this question can be found in table 3.3.

Because the model parameters are essentially part of the forward in-
ference algorithm they can be stored on flash memory. The 2 MB flash
memory of the STM32F469NI MCU are enough to store the acous-
tic CNN which needs about 1.73 MB as we have seen earlier. There
are, however, different variants of this MCU [16]. For example the
STM32F469NE MCU is very similar but features only 512 kB of flash
memory. The benefit of a smaller flash memory is that the area cost
is reduced which makes the MCU cheaper [17]. Here, we only use the
STM32F469NI for our investigations while in the end another version
may effectively be used. Therefore, it is still of great interest to reduce
the memory footprint of the acoustic CNN.
Considering the memory footprint of the forward inference the 320

kB SRAM is clearly too small to store the biggest intermediate result
on on-chip memory. Remember that our goal is to only use on-chip
SRAM because the use of off-chip SDRAM comes with two major draw-
backs. First, SDRAM must be continuously recharged which may cause
a lot of energy consumption. Second, during the recharge process
the memory cannot be accessed which may result in delays during
forward inference [18]. Additionally, SRAM accesses cost about two
orders of magnitude less energy than SDRAM accesses [6]. The chal-
lenge of reducing the inference memory footprint will be addressed
in section 4.3.
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M E T H O D S

We first use INQ to prepare a CNN in order to implement it with a
lowered memory footprint on a MCU. Once our INQ implementation
is verified we implement three code variants which will be optimized
with respect to inference time which is of utmost importance in real-
time applications.

The first variant uses floating-point arithmetic, thereby exploiting the
microcontroller’s FPU. Given that NNs are usually implemented with
32-bit floating-point data on general purpose CPUs, this variant addi-
tionally serves as a baseline to verify a correct implementation of the
complete algorithm.
Both other variants use fixed-point arithmetic which generally con-
sume lesser energy compared to floating-point operations[4]. The first
one takes advantage of the single-cycle MAC instruction provided by
the DSP unit of the MCU. The second one is designed to be executed
on the arithmetic logic unit (ALU). This version takes advantage of
INQ by using binary bit-shifting which may be more energy-efficient
than standard fixed-point multiplication [10]. Note that this is only
possible because INQ generates convolution filter coefficients that are
either powers of two or zero. Such an implementation may be of spe-
cial interest on more basic MCUs which do not feature a FPU or DSP

unit.
Throughout this work the three code variants will be referred to as
V0, V1 and V2 respectively.

Instead of using our target CNN (from section 3.1) to implement and
compare the three code variants we use an example network from
[19]. This CNN allows to ignore the problem of a too small SRAM in a
first step, as will be described below.
An evaluation of the inference time shows whether the necessary
MAC-speed for real-time processing can be achieved practically.

With an optimized implementation of the convolution algorithm we
address the memory problem that arises for the acoustic CNN. Here,
a measurement of the inference time will verify whether the real-time
constraints of the AE classification system can be met and a measure-
ment of the energy consumption will help estimating whether it is
worthwhile to perform the classification on the sensor node rather
than on the server.
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For the INQ-implementation we use Keras, one of the available ma-
chine learning frameworks written in python, together with Tensor-
flow as backend. If not stated otherwise, training and quantization of
the CNNs is performed on an Intel Core i7-4710MQ CPU on a lenovo
ThinkPad T440p machine, running ubuntu 16.04 LTS. Implementa-
tions on the MCU are made on Windows 10 OS using the Eclipse IDE
set up as described in [20].
The clock tree of the MCU is programmed with STMCube to provide
a 168 MHz CPU clock. The complete code is written in the popular
C programming language. For critical code sections, which must be
as efficiently as possible, we rely on the CMSIS drivers to manip-
ulate MCU registers. For other code sections we use the hardware
abstraction layer (HAL) and low level (LL) drivers which are not as
efficient but simplify programming substantially while making the
code portable to other devices.

4.1 inq-implementation

The python code is divided into three files. INQ.py is used to exe-
cute the usual functions like loading a model and dataset, data pre-
processing and controlling the training procedure of a given model.
Additionally, it features a function called customize_model() which
is used to customize a standard Keras model for our needs. Thereby,
the architecture of a given model is analyzed and both conv and fully
connected layers are replaced by custom layers which are defined in
INQ_layers.py. During this process it is important to keep the original
weights in order to not loose the accuracy of the pretrained CNN.
INQ_layers.py contains customized versions of the standard Conv2D
and Dense classes which are essentially the layers used to build a CNN

in Keras. Each of the customized classes provide two functions with
the names partitioning_weights() and quantize() which perform the
actual weight partitioning and quantization steps that were described
in section 2.2.
The last file is called INQ_model.py and defines a class that derives
from the Sequential class provided in Keras to define a model and
ist only used during the customization process and to easily loop
through all layers of the model during the quantization steps.

As explained in section 2.2 the model is retrained, once a given por-
tion of weights has been quantized. In order to avoid that Keras over-
writes the already quantized weights with re-trained values we chose
to adopt the computation graph illustrated in figure 4.1.
We defined three kernel variables. One is called kernel_nontrainable
which is used to store quantized weights during the quantization
procedure. This variable is saved as a non-trainable variable in the
Keras model. A second variable is called kernel_trainable. According
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to its name this variable is set as trainable in the Keras model and
is therefore updated with the retrained weights during backpropa-
gation. In order to provide the correct combination of trainable and
quantized weights for the forward inference during training, a mask
variable was introduced as illustrated in the figure. The mask has the
same shape as the two kernel variables. Its values are equal to one at
the indices where the weight is still trainable. At indices where the
kernel has already been quantized, however, its values are equal to
zero. Through the arithmetic operations shown in the computation
graph Keras uses the correct combination of trainable and quantized
weights for the forward inference.
According to [10] the weights of the layers are quantized separately.
The reason for this is that the dynamic range of the weight distribu-
tion may differ substantially in different layers. Thus, a quantization
over all layers together may result in a large quantization error.
However, no information was provided about the biases. Therefore,
in our implementation we decided to also quantize the biases sepa-
rated from the weights for the same reason.
Another difference to the original implementation is that we do not
make use of the pruning-inspired approach during the partitioning
step of INQ.

multiply

add

add

mask

kernel_trainable kernel_nontrainable

multiplymultiply

-1

1

kernel

inverse_mask

Figure 4.1: Illustration of the computation graph that was used to mask the
backpropagation updates during when performing INQ. The non-
trainable kernel is used to hold quantized weights. The trainable
kernel is updated with the gradients during model training. The
mask is used to provide the right combination of quantized and
trainable weights for the forward inference.

4.2 reducing the inference time

Once the INQ-algorithm is verified the three code variants V0 - V2 can
be implemented in order to optimize the inference time and compare
them in terms of energy consumption.
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Because our target CNN from section 3.1 is purely convolutional and
the convolution algorithm is essentially identical for every CNN we
use another network for this optimization task as mentioned above.
This network is designed for the CIFAR-10 dataset [21] and is one of
the example CNNs that can be found on the Keras website[19].
The architecture of the network is shown in table 4.1. With a maxi-
mum intermediate result of 128 kB we can allocate two static arrays
of this size on SRAM. This allows a very simple data flow. In particular,
the two arrays can be used as input and output buffers of any given
layer during forward inference. This approach enables us to neglect
the challenge of the inference memory footprint for now in order to
focus completely on optimizing the convolution algorithm.

As can be seen the number of parameters of the CIFAR-10 network is
1.3M which would actually require 4.96 MB of flash memory1. Here,
the power of INQ becomes evident. With a bit-width of b = 8 bits per
weight the model size is reduced to about 1.27 MB which easily fits
on our 2 MB flash memory.

The inference time in CNNs is usually dictated by the convolutional
layers due to there large number of MAC operations. This can be seen
when comparing the 19M MAC operations of the first network section
with the 6M MAC operations of the second section. Together with
the fact that our target CNN is fully convolutional we restrict the op-
timization of the three code variants to the implementation of the
convolution operation.

In case of V0 we implement the convolution according to the pseu-
docode shown in algorithm 1. Notice, that every filter channel is
loaded exactly once outside the two most inner loops, that is, the
respective filter coefficients are re-used as long as possible and only
the input channels are loaded inside the loops. This is very impor-
tant especially given the fact that the weights need to be determined
indirectly via a look-up table because of the encoding introduced by
INQ. That is, loading a weight essentially causes two memory accesses
while loading an input costs only one memory access.

As mentioned above, the two code variants V1 and V2 do not make
use of the FPU. Therefore, they do not have the extra register bank that
is available in the FPU (section 3.2). Instead, they must rely on the 12

general purpose registers of the CPU. One might think that 12 regis-
ters are enough to store 9 filter coefficients and only a single register
is needed to load the inputs sequentially. However, a certain amount
of registers is needed for other purposes like for example to store the

1 32-bit data
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layer type # params . # mac

conv 3, 1, 32 896 885k

max-pooling 0 0

conv 3, 1, 32 9.2k 8.3M

max-pooling 0 0

conv 3, 1, 64 18.5k 4.1M

max-pooling 0 0

conv 3, 1, 64 36.9k 6.2M

max-pooling 0 0

fc, 512 1.2M 1.2M

fc, 10 5.1k 5.1k

softmax 0 0

Total: 1.3M 20.7M

Table 4.1: Architecture, parameter count and number MAC operations of the
CIFAR-10-CNN that is used to optimize the convolution algorithm.

break conditions of the loops. Therefore, we split the two most inner
loops from algorithm 1 into three separate sections where the rows of
a given 3x3 kernel are loaded individually as shown in algorithm 2.
With this strategy we make sure that the filters are still loaded exactly
once outside the two most inner loops in order to avoid redundant
memory accesses.
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Algorithm 1 : Pseudocode for the floating-point version V0 show-
ing 2D convolution with 3x3 filter kernels. With the additional
register bank of the FPU it is possible to load all filter coefficients
two most inner loops.

initialize;
for each output channel do

for each input channel do
load 3x3 filter channel;
for each row do

for each column do
load 3x3 input fragment at the current position;
do convolution;
store result;

Algorithm 2 : Pseudocode for the fixed-point versions V1 and V2

showing 2D convolution with 3x3 filter kernels. With only 12 gen-
eral purpose register available in the CPU it is necessary to load
the filters row by row to avoid redundant load instructions within
the two most inner loops.

initialize;
for each output channel do

for each input channel do
load 1st 1x3 filter row;
for each row do

for each column do
load 1x3 input fragment at the current position;
do convolution;
store result;

load 2nd 1x3 filter row;
for each row do

for each column do
load 1x3 input fragment at the current position;
do convolution;
store result;

load 3rd 1x3 filter row;
for each row do

for each column do
load 1x3 input fragment at the current position;
do convolution;
store result;
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4.3 reducing the inference memory footprint

In section 3.2 we have seen that the SRAM of 320 kB is too small to
store a 6.25 MB intermediate result. One technique to reduce the nec-
essary memory is to use 16-bit instead of 32-bit data format which
effectively halves the necessary memory footprint. In our case, how-
ever, the data would still be too large to be stored on SRAM only.

A possible approach to overcome this problem is to store the input
on off-chip memory and employ a DMA controller to transfer the in-
put in smaller portions to the on-chip SRAM where it is efficiently
processed by the CPU. The computed partial intermediate results may
then be transferred back to the off-chip memory to provide space
for the next portion of the input. This technique, however, results in a
large memory-bandwidth on both SDRAM and SRAM which may cause
a considerable energy consumption.

In order to investigate for another strategy to effectively reduce the
inference memory footprint let us consider a very simple CNN. On the
left, figure 4.2 shows the common visualization of the forward infer-
ence in case of a CNN that consists of a single conv(3, 1, 1) layer with
ReLu activation. Now, assume that the input data is provided over a
certain period of time. In this case it would be nice to start the pro-
cess of forward inference already when only a fraction of the input is
stored in memory rather than waiting for the complete, possibly very
large, input. This scenario is illustrated on the right side of the figure.
Given that each output neuron has a RF of size three, an input buffer
with three elements is necessary. Starting at the top right in the image,
the input buffer is pre-initialized to zeros, waiting to be filled with the
input. Additionally, an output buffer with the expected output size
of four elements is also initialized with zeros. Having in mind that
the input vector is provided over a certain amount of time we can
imagine that it is shifted into the input buffer with a given update
rate. As the stride is equal to one in this example, the input is shifted
element by element through the input buffer.
With this process the first output neuron can be computed in the
fourth step, as indicated by the green numbers. From this moment
on, every new input element "pushes" the leftmost element out of the
input buffer like in a FIFO queue. Each such update allows to com-
pute another element of the output buffer. Note that in each step also
the computed output elements are shifted by one element which will
become clear below. This process is repeated until, in the last row, the
same output as on the left side of the figure is computed. Hence, in-
stead of storing the complete input of six elements, the correct output
was now computed by only storing three input elements at a time.
Note, that the second output element on the left is set to zero by
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ReLu activation which corresponds to the fifth step on the right. Note
also, that the amount by which the inference memory footprint is de-
creased depends on the length of the input vector. That is, the larger
the input vector on the left, the more memory is saved using the
buffer system on the right.

1 0 1 1 0 1

0 0 1 0

1 0 1 1 0 10 0 0 0 0 0 0

Input buffer L0

0 0 0 00 0 1 0 1 1 0 1

0 0 0 00 1 0 1 1 0 1

0 0 0 01 0 1 1 0 1

Kernel: 1 0 -1

0 0 0 01 0 1 1 0 1

0 0 0 11 0 1 1 0 1

0 0 1 01 0 1 1 0 1

Stride = 1

Figure 4.2: Illustration of the buffer system we use to run the forward infer-
ence only using on-chip memory. The inference for a conv(3,1,1)
single-layer CNN with ReLu activation is shown. The usual repre-
sentation on the left is compared with the buffered system on
the right.

With the same idea we can consider the CNN from the previous para-
graph but with the stride parameter increased to two. This scenario is
illustrated in figure 4.3. On the left, an input of nine is mapped to an
output of four elements. On the right, the output is again computed
step by step in the same manner as described before. Note that due
to the increased stride, however, two input elements are shifted into
the buffer at a time. For simplicity the input is not shown anymore.
There are two small differences compared to the previous example.
First, with a stride equal to two, the input buffer must consist of four
rather than three elements. Otherwise, the first input element would
be shifted out of the buffer before it has been utilized to compute the
corresponding output element. Second, there is only a single number
left at the end of the input stream because the input has an odd num-
ber of elements while it is always shifted in groups of two elements
into the buffer for a given step. Since the programmer of a CNN knows
the expected input shape for a given network layer it is easy to take
into account this edge effect by forcing an additional zero at the end
of the input.
Similar to the previous example, the necessary memory to store the
input is reduced but here, it consists of four rather than the previous
three elements.
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1 0 1 1 1 0

0 0

00 0 0 0 0 0 0

Input buffer L0

0 0 0 00 0 1 0

0 0 0 01 0 1 1

0 0 0 01 1 1 0

Kernel: 1 0 -1

0 0 0 11 0 0 0

0 0 1 00 0 0 0

Stride: 2

0 0 1

01

Figure 4.3: Illustration of the buffer system for a conv(3,2,1) single-layer CNN

with ReLu activation is shown. The usual representation on the
left is compared with the buffered system on the right.

In both examples we observe that the number of MAC operations does
not change when comparing the two different approaches to do the
forward inference.

In order to see what happens for multi-layer networks, consider fig-
ure 4.4 where the above two networks are stacked on each other.
Again, the output of the left scenario can be computed step by step
when using the correct buffer size for each layer.
In contrast to the first example, however, the input buffer consists of
four elements rather than three even though the first layers of both
networks have the same stride parameter. The reason for this can be
found when considering the RF of the output neurons in the left sce-
nario. The RF of the first output neuron consists of the first five input
elements as indicated by the red bounding box. The RF of the second
output neuron is indicated by the green bounding box which is es-
sentially a shifted version of the red RF with a shift amount of two
elements. More generally, the RFs of two successive output neurons
are shifted versions of each other with a shift amount of two in this
network. For the scenario on the right this means that, like in the pre-
vious example, two input elements are provided per step in order to
compute a new output neuron in every step. Because the first layer
has its stride parameter equal to one, however, two new values have
be computed per step in its output buffer. This explains why this
buffer has four elements rather than three.

In general the input must be shifted by the product of all layers’
stride parameters starting from the output layer. This observation can
be generalized to the input buffers of hidden layers as follows. The
shift amount at the input of a given layer is the product of the stride
parameters of all layers, starting from the network output up to the
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layer that is considered. This number describes by what amount the
local RF of two successive output neurons, seen in the input of the
considered layer, are shifted from each other.
Mathematically, this number can be expressed by equation 4.1 where
sl is the shift in layer l, L is the total number of weighted layers and
stri is the stride parameter in layer i. Note that layer indexing is from
zero to L − 1 rather than from 1 to L. In the present example this for-
mula evaluates to s0 = 2 · 1 = 2 and s1 = 2. The number of elements
that need not be computed but, instead, are only copied from the pre-
vious step is equal to k − 1 where k is the filter size of the succeeding
layer. In this example, k is equal to three in both layers, thus always
k − 1 = 2 elements are copied per step.
Hence, the parameters k and str of a given layer determines the shape
of its input buffer which is illustrated by the two colours in the re-
spective buffers. Note that the output buffer has always the size of
the expected output and only one element in this buffer is computed
per step which is equivalent to say that sL−1 = 1. Notice also that in
this example not only the memory, needed to store the input but also
the memory that is needed for the input of the second network layer
is reduced. In general, the size of every buffer except for the last one
can be reduced in this way.

1 0 0 1 1 1

0

00 0 0 0 0 0 0

Input buffer L0

0 0 0 00 0 1 0

0 0 1 01 0 0 1

1 0 0 00 1 1 1

Kernel: 1 0 -1

0 0 1 01 1 0 1

1 0 0 00 1 0 0

Strides = (1, 2)

0 1 0

01

0 0 0

L1

0 0 0

0 0 0

0 0 1

0 1 0

1 0 1

1 000000

1001

s0 = 2k0 = 2 s0 = 2k0 = 2 s1 = 2k1 = 2

Figure 4.4: Illustration of the buffer system for a two-layer NN consisting of
a conv(3,1,1) and conv(3,2,1) layer with ReLu activation.

sl = ∏L−1
i=l stri (4.1)

The same idea can be adopted for layers that produce more than a
single output channel.
One may also imagine the input to consist of multiple rows like in
an image. In this case all rows of the input are shifted together into
a buffer system of appropriate size similarly as described above. In
fact, the examples above can be considered to be a special case where
the inputs are images that consist of only a single row of pixels.
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If padding is applied in the layers, special attention must be paid at
the edges of the inputs. Apart from some small modifications, how-
ever, the same idea can still be applied.

The question arises whether we can use the above method to process
the FxT-Matrix which is the input in our target CNN as mentioned in
section 3.1. Note that the Mel-spectrogram of an acoustic signal can
also be interpreted as an image. The difference to an actual image,
however, is that the individual columns of the input are computed
sequentially over time which is exactly the input property we may
exploit with the buffer system introduced above. Therefore, we adopt
this idea for our acoustic CNN which will be described in section 5.3.4.
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E X P E R I M E N T S

5.1 inq verification

To verify the our INQ implementation the well known VGG16 image
classification CNN [22] was quantized similarly as described in [10].
A description of the dataset used to train VGG16 is provided in the
following section. The relevant quantization parameters are provided
in section 5.1.2.

5.1.1 Data Set

The VGG16 model was trained on the ImageNet 2012 dataset [23].
This data set consists 1.3 million images each containing one of 1000

object classes. The validation set consists of 50000 images.

5.1.2 Quantization

For quantization the nework was loaded from keras. Quantization
was performed with similar parameters as described in [10]. The bit-
width was chosen as b = 5. The model was retrained for one epoch
after each quantization step. The learning rate was chosen as 10−5

which is the final learning rate that was used during the initial train-
ing in [22]. The train batch size was set to 32 and the momentum to
0.9. The cumulative portion of quantized weights is set to [0.5, 0.75,
0.875, 1].

To provde the data using a custom ImageGenerator in keras, the
images were stored in a hdf5 ffile. To ease this process the origi-
nal images were first rescaled isotropically and then center cropped
to (256x256) images. During retraininig a random crop and during
evaluation a centercrop of size (224x224) was taken from the images
stored in the hdf5 file. Although the documented top5 accuracy in
keras is 90.1% the model achieved an accuarcy of 89% on the valida-
tion set. A possible explanation for this may be the way we stored the
data set in the hdf5 file. Because we only want to verify the correct
implementation of INQ, however, the accuracy is good enough. Data
preprocessing was performed as described in [22] but no RGB colour
shifts were applied to the images during training.

The quantization was performed on a NVIDIA TITAN X GPU fea-
turing 12 GB working memory.
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5.2 reducing inference time

Before the CIFAR-10-CNN can be implemented on the MCU it must
be trained and then quantized appropriately. The next two subsec-
tions describe the initial training and quantization procedures for this
network. Section 5.2.4 describes how the MCU implementation is ana-
lyzed.

5.2.1 Data Set

The data set consists of 60000 32x32 RGB images which contain one
of 10 classes [21]. The data set is split into a training set containing
50000 images and a test set with 10000 images.

5.2.2 Initial Training

For the training procedure the input images are normalized but no
further preprocessing of the data is done. The learning rate is 10−4

and the weight decay is set to 10−6. The train batch size is 32 images.

5.2.3 Quantization

The quantization process is performed with a bit-width of b = 8. The
accumulated portions of quantized weights is selected as [0.25, 0.5,
0.75, 0.875, 0.9, 1] and the number of epochs in each step is set to 2.
All other parameters are identical to the initial training parameters.

5.2.4 Experiments on the MCU

The network is implemented with the convolution algorithms de-
scribed in section 4.2. For the fixed-point versions V1 and V2 the
number of decimal places is set to 14.

The input data is streamed to the MCU through a UART connection.
A DMA controller is set up to move the received data from the UART

peripheral to a specified SRAM address. After a complete input image
has been received together with its label an interrupt is triggered for
the CPU to process the new input.

First, the network implementation on the MCU is verified on the com-
plete CIFAR-10 test set. Then, the implementation is discussed on
assembly level and the number of clock cycles needed to execute the
most inner loop of the convolution algorithm is measured. Ultimately,
the inference time and energy consumption are measured as an av-
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erage over 100 input images. To measure these quantities we use a
RocketLogger [24] at a sampling rate of 1kHz.

5.3 reducing the inference memory footprint

5.3.1 Data Set

In order to train the acoustic CNN an AE data set was used that was
developed in [13]. It consists of 28 event types that are harvested from
a free online source. The total length of the 5223 audio files is 768.4
minutes sampled at 16 kHz. The data set is split into training and test
set with a ratio of 0.75.

5.3.2 Initial Training

For the training procedure of the acoustic CNN the above data set is
preprocessed as follows. The audio files of a given class are first nor-
malized and glued together to build a single file. The Mel-spectrogram
of this compound of AEs is then calculated with a window length of
32 ms, a hop size of 50% and 64 Mel-bins. Finally, this spectrogram is
divided into 64x400 matrices.
The network is trained for 21 epochs. The learning rate is set to 0.001.
The train batch size is 32.

5.3.3 Quantization

The acoustic CNN is quantized using INQ with the quantization bit
width set to b = 8. The cumulative portions of quantized weights is
set to [0.25, 0.5, 0.75, 0.875, 0.9, 0.95, 1]. All other training parame-
ters as well as data preprocessing are identical to the initial training
procedure.

5.3.4 Experiments on the MCU

In this experiment we adopt the buffer system that was introduced in
section 4.3 for our acoustic target CNN. The input data is again con-
tinuously streamed via a UART connection. In this scenario, however,
the input is processed in small fragments instead of waiting for the
complete input to be received. The DMA controller is programmed
to trigger an interrupt after each input fragment has been received.
Here, the baud-rate of the UART connection can be used to simulate
the real-time nature of our AE detection application.
Note that we only use microphone data for this experiment. Because
for geophone data the expected input shape is identical and only the
duration of an AE is different, the same measurements can be used to
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make statements about the system when considering geophone data.

The convolution is implemented using the floating-point implemen-
tation V0. First the prediction accuracy is verified. Then, the average
energy consumption and inference time as well as the effective MAC-
speed is analyzed.
Additionally, the average energy consumption over a set of three AEs

is measured to take into account the energy consumption during the
sleep cycles between the processing of the input fragments. This mea-
surement is used to estimate whether it is worthwhile to employ the
acoustic CNN on the sensor nodes of the WSN.
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R E S U LT S

6.1 inq verification

The figure shows the top1 and top5 validation accuracy during net-
work quantization. Starting with an initial top5 accuracy of 89% the
accuracy drops by about 1% in the first quantization step. After this
step the top5 accuracy stays at about the same level as the initial value
and the final accuarcy is 88.8%. As this experiment was only executed
for verification of our INQ implementation these results are satisfying.
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Figure 6.1: Top1 and top2 validation accuracy versus quantization steps for
the VGG16 CNN. At x = 0 the accuracy of the pre-trained network
is shown. The subsequent values show the network accuracy af-
ter quantization and retraining in an alternating manner.

6.2 reducing the inference time

6.2.1 Initial Training

Figure 6.2 shows the training progress of the CIFAR-10 CNN. Accord-
ing to [19] the network accuracy should achieve 79%. In our training
procedure, however the accuracy achieved 78.25%. The main reason
for this is that we did not perform any data augmentation.
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Figure 6.2: Training and test accuracy and loss versus training epochs of the
CIFAR-10-CNN.

6.2.2 Quantization

Figure 6.3 shows the quantization history of the CIFAR-10 CNN. Al-
though the network accuracy drops by about 6% and 8% during the
first and second quantization steps respectively it is successfully in-
creased during the following retraining steps. During later quanti-
zation and retraining steps the quantization error is much smaller
because smaller portions of weights are quantized. With a final accu-
racy of 78.1% the result is satisfying for our planned implementation
on the MCU.

6.2.3 Test on MCU

6.2.3.1 Network Accuracy

The three code variants V0, V1 and V2 all achieved an accuracy of
78.1% on the MCU which ensures that the implemented algorithms
are correct.

6.2.3.2 Clock Cycle Analysis

Recall that the convolution is implemented with four nested loops. Be-
cause the most inner loop computes the actual convolution it is this
code section which forms the bottleneck of execution time. Therefore,
we focus only on these code segments in the three implementations
here.
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Figure 6.3: Test accuracy versus quantization steps for CIFAR-10-CNN. At
x = 0 the the accuracy of the pre-trained model is shown. The
subsequent values show the network accuracy after quantization
and retraining in an alternating manner.

Disassembling the executable that was built for the floating-point im-
plementation results in the assembly code shown in listing 6.1. For
a given 3x3 filter kernel there are nine corresponding input elements
that must be loaded from SRAM. This is done by the vldr instrucions.
A tenth vldr instruction is necessary to load the content of the output
memory cell to which the current convolution result is added to. The
corresponding instruction can be seen in the second code line which
loads the content of the memory address stored in register r0 into
the FPU register s15. There are nine vfma.32 instructions perform the
actual MAC operations.
This implementation was found to consume the least number of CPU

clock cycles when using three pointer variables. Each one of them
contains the start address of one of the three rows in the current in-
put fraction. Incrementation of the pointers which is necessary for
the next loop cycle is done with the three adds instructions. The vst-
mia instruction at the bottom of the code stores the computed result
to SRAM. The cmp instruction checks the loop termination condition
and sets a hardware flag either to true or false. The final bne.n in-
struction checks this flag and jumps out of the loop if it is true, or to
the loop’s start address otherwise.

The generated assembley instructions for the two fixed-point imple-
mentations are shown in listings 6.2 and 6.3 respectively. Remember
that the convolution filters are loaded row by row in both versions
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(algorithm 2).
Regarding the cycle count, the code is identical for all three rows of
a given filter. Thus, the code listings show only the code that pro-
cesses a single row. The ldr, str, cmp and bne instructions can be ex-
plained similarly as before. The difference of the two versions is that
V1 makes use of the MAC instruction (mla) while V2 uses the combi-
nation of a shift (asr or lsl) and add or subtract (sub) instruction.
Although the technical reference manual [25] provides a lot of infor-
mation about how many clock cycles a given instruction needs it is
difficult to take into account the effect of the pipeline and branch in-
structions. Fortunately, the MCU is equipped with a data watchpoint
trigger (DWT) which we used to measure the number of clock cycles
needed for the above code sections.
To run the respective code in V0 this measurement resulted in 45

clock cycles. For the two fixed-point versions V1 and V2 the number
of clock cycles was measured to be 13 and 18 respectively. However,
the fixed-point versions both contain the most inner loop three times.
Therefore these numbers can be multiplied by three which results in
39 and 54 clock cycles respectively. Hence, V1 should be the fastest
and V2 the slowest of the three implementations.

The main contributor to the smaller number of cycles needed in V1

is the single-cycle MAC instruction provided by the DSP unit. In con-
trast, the floating-point MAC instruction needs three clock cycles. The
drawback of V2 is obviously the additional add or sub instruction
involved after each binary bit-shift operation when compared to V1.
Compared V0, both fixed-point versions execute the fix costs of a
loop (cmp and bne) three times more often. Also, the two fixed-point
versions execute 3x more str instructions compared to V0.

6.2.3.3 Inference Time and Energy Consumption

The previous section indicated that V1 would be the fastest of the
three code variants. In the following, the duration for the three imple-
mentations to process a single CIFAR-10 image is analyzed. Remem-
ber that our acoustic target CNN is fully convolutional. Therefore, the
measurement is only performed for the conv section of the CIFAR-10

network here.
The results are listed in table 6.1. On average V1 needs 598 ms to
process an image which is about 13% faster compared to V0 which
needs 687 ms. V2 needs 763 ms and is clearly the slowest of the three.
These measurements are in agreement with the cycle counts from the
previous section. Given these numbers we can see that only very few
extra cycles inside the convolution algorithm can significantly slow
down the forward inference.
The effective MAC-speed for the different implementations can be
computed as 28.38M, 32.61M and 25.56M MACs/s. Therefore, on this
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MCU all three code variants satisfy the real-time constraints of the
geophone scenario with a large margin. For the microphone data,
however, a substantial speed-up is required.
Regarding the current consumption an average of 67.9 mA was mea-
sured for V1. Both V0 and V2 draw a little less current with 61.4 mA
and 65.8 mA respectively. To determine the energy that is consumed
purely by the respective algorithms, however, the current that is con-
sumed during sleep mode should be subtracted. During sleep mode
the Cortex-M4 core is disabled and hence this current amounts to the
energy that is consumed by the peripherals like SRAM, DMA controller
and UART and was measured to be 35.4 mA. Therefore, the currents
that are effectively drawn by V0, V1 and V2, when excluding the cur-
rent of the other peripherals, are 26 mA, 32.5 mA and 30.4 mA respec-
tively. With these currents and the respective execution times we see
that V0 is slightly more energy efficient than the other two versions as
shown in table 6.1. Since floating-point operations are considered to
be more power-hungry than fixed-point operations [17], these results
are unexpected.
However, the two fixed-point versions have the advantage that they
can use 16-bit or even 8-bit data. Working with 16-bit instead of 32-bit
data effectively reduces the memory bandwidth and hence the energy
consumed by load and store operations while not having a significant
effect on the prediction accuracy of CNNs. [17]
Additionally, V1 can exploit the parallel computing capabilities of the
microcontroller’s DSP unit. With the SMLAD instruction [26] two 16-
bit MAC operations are computed in parallel. Therefore, the inference
speed may be increased by about a factor 2x. However, single input
multiple data (SIMD) instructions require a dedicated data alignment
which can result in complex algorithms. Note that a speed-up by fac-
tor 2x would still not be enough to satisfy the real-time constraints of
the scenario with microphone data. Therefore, yet another speed-up
technique must be used. A possible approach is mentioned in section
8.

6.3 reducing the inference memory footprint

6.3.1 Initial Training

Figure 6.4 shows the training history of the acoustic CNN. The final
test accuracy is 86.6% which proves a successful training procedure.

6.3.2 Quantization

The quantization history of the acoustic CNN is shown in figure 6.5.
The final test accuracy is 86.9%. Hence, the network was successfully
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duration # macs/s current energy

V0 687 ms 28.38M 26 mA 58.9 mJ

V1 598 ms 32.61M 32.5 mA 64.1 mJ

V2 763 ms 25.56M 30.4 mA 76.5 mJ

Table 6.1: For V0, V1 and V2 the average duration and effective MAC-speed
are shown in the first two columns. V1 is the fastest and V2 the
slowest of the three code variants. The last two columns show the
effective current and energy consumption to process the convolu-
tional network section of the CIFAR-10 CNN for a single input im-
age. The floating-point version V0 consumes slightly less energy
than the two fixed-point versions.

quantized without loss in accuracy while reducing the memory foot-
print by factor 4x.

6.3.3 Test on MCU

6.3.3.1 Network Accuracy

The implementation on the MCU achieves a prediction accuracy of
87.2%. Note, however, that due to the long streaming process this test
was performed on a smaller test set that consists of only 179 AEs. This
explains the 0.3% increase compared to the 86.9% from the previous
section.
The results, however, verify the MCU implementation and the idea of
the buffer system that was introduced in section 4.3.

6.3.3.2 Inference Memory Footprint

Figure 6.6 shows the architecture of the buffer architecture that was
used in our implementation. Notice that the total memory is 230.3 kB
which is by factor 28x smaller than the 6.25 MB that would be needed
to store the largest intermediate result in memory1. Therefore, this
technique facilitates computing the complete forward inference on
SRAM without using any off-chip memory.
The number of MAC operations that must be be computed per input
fragment is about 12.26M. With 100 fragments per AE this results in
an overal 1226M MAC operations which shows that the number of
overall MAC operations has not been increased by the buffer system.
Notice that the slightly higher value in table 3.2 is due to the fact
that the intermediate number of MAC operations were rounded before
computing their sum. For each input fragment the processing time is
4 · thop, f f t because the shift parameter s0 = 4 in this CNN. Together
with the 12.26M MAC operations per fragment this leads to the same

1 In 32-bit format.
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Figure 6.4: Training and test accuracy and loss versus training epochs of the
acoustic target CNN.

real-time constraints as shown in 3.1.
Note that the buffer for network layer L0 has only a single green
column instead of two which is a result of padding that is applied in
the acoustic CNN.

6.3.3.3 Inference Time

Here we analyze the effect of the buffer system on the inference time
and energy consumption. Specifically, we compare these two quan-
tities with the corresponding results of the V0 implementation from
table 6.1.
The processing time for a single (64x4) input fragment is measured
as an average over two AEs. On average, the processing needs 521 ms.
With 12.26M MAC operations per input fragment, the average MAC-
speed is found to be 23.5M MACs/s. This is about 5M MACs/s slower
compared to the V0 implementation with the CIFAR-10 CNN. This
may be explained by the fact that, in our implementation, we copy
the memory contents as illustrated in section 4.3. An improvement of
the implementation may therefore include the use of circular buffers
to reduce the possibly redundant memory accesses. However, the real-
time constraint for the geophone data scenario is still satisfied.

In our acoustic CNN the data was zero padded in every layer. Con-
sidering that the last layer before softmax activation is a global avg-
pooling the responsivity of the system may be increased from about
205 s to 4 · thop, f tt, that is 2.048 s for geophone data. This may be
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Figure 6.5: Test accuracy versus quantization steps for the acoustic target
CNN. At x=0 the accuracy of the pre-trained network is shown.
The subsequent values show the network accuracy after quanti-
zation and retraining in an alternating manner.

achieved by avoiding any zero padding within the network. This ap-
proach would guarantee that the contents of the "Average(F)" buffer
in figure 6.6 would never be corrupted by zero-padding and, hence,
the output of the "Average(T)" buffer could be computed in every
single step.

6.3.3.4 Energy Consumption

The MCU current that is drawn at 3.3 V during forward inference is
shown in figure 6.7. At them moment where an input fragment is
processed the momentary average current of the MCU is at 59 mA.
However, between two successive input fragments the MCU is set to
sleep mode to save power. During sleep mode the MCU consumes no
more than 35.4 mA when only the UART and DMA peripherals are
enabled. The overall average current is thus only 41.5 mA.

6.3.3.5 Comparison to the Current System

To make a rough estimation whether it is worthwhile to adopt the
acoustic CNN on the sensor nodes of the WSN the scenarios illustrated
in figure 6.8 are considered.
A CentAUR data acquisition system is sampling a geophone signal
during 24 hours.
In scenario (a) the sampled data is continuously streamed through
the WSN by a core station. This is the current state of the WSN. With
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an average current consumption of approximately 390 mA at 14.27 V
the core station consumes about 480.8 kJ per day.
In the second scenario the data is processed in real-time on the MCU

and per AE only a label that consists of say one byte is passed to
the SX1211 transceiver. With an AE duration of 205.312 s (section 3.1)
there are about 421 events within 24 hours. Thus, 421 labels are com-
puted per day which may for example be sent with the energy ef-
ficient SX1211 transceiver using the the Dozer networking protocol
[27]. With this protocol a one byte payload may be sent together with
a seven byte header. At a bit rate of 100 kbit/s sending the 8 bytes
would take 0.64 ms. However an additional startup and shut down
time of 2 ms each should be included, that is, the SX1211 transceiver
is active for 4.64 ms to send a single label. At an average current of
15.5 mA at 3.3 V sending 421 labels would thus cost about 100 mJ.
However, the classification task must also be included in this estima-
tion. With an average current of 41.5 mA at 3.3 V from the previous
section, running the MCU costs about 11.8 kJ per day. Note that the
energy consumed by the CenAUR station is the same for both scenar-
ios and can thus be neglected.
Note that the above calculations are only showing the general trend
as, for example, we have not considered the energy that is consumed
to compute the Mel-spectrogram. Given that the energy consump-
tion in scenario (a) is higher by about factor 40x, however, it may be
that deploying the CNN on the sensor node may improve the energy-
efficiency of the sensor nodes considerably.
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Listing 6.1: Assembly code of the floating point baseline implementation V0.
Only the code segment of the most inner loop is shown.

080013a4: vldr s14, [r3]

080013a8: vldr s15, [r0]

080013ac: vldr s7, [r3, #4]

080013b0: vldr s8, [r3, #8]

080013b4: vldr s9, [r1]

080013b8: vldr s12, [r2]

080013bc: vldr s10, [r1, #4]

080013c0: vldr s11, [r1, #8]

080013c4: vldr s13, [r2, #4]

080013c8: vfma.f32 s15, s17, s14

080013cc: adds r3, #4

080013ce: adds r1, #4

080013d0: adds r2, #4

080013d2: vfma.f32 s15, s16, s7

080013d6: cmp r4, r3

080013d8: vldr s14, [r2, #4]

080013dc: vfma.f32 s15, s0, s8

080013e0: vfma.f32 s15, s1, s9

080013e4: vfma.f32 s15, s2, s10

080013e8: vfma.f32 s15, s3, s11

080013ec: vfma.f32 s15, s4, s12

080013f0: vfma.f32 s15, s5, s13

080013f4: vfma.f32 s15, s6, s14

080013f8: vstmia r0!, {s15}

080013fc: bne.n 0x80013a4

Listing 6.2: Assembly code of the fixed-point implementation V1. Only the
code segment of the most inner loop is shown.

08001370: ldr r3, [r1, #0]

08001372: ldr r4, [r0, #0]

08001374: ldr.w r2, [r1, #4]!

08001378: mla r4, r3, r12, r4

0800137c: ldr r3, [r1, #4]

0800137e: mla r2, r2, r7, r4

08001382: mla r3, r3, r6, r2

08001386: cmp r5, r1

08001388: str.w r3, [r0], #4

0800138c: bne.n 0x8001370
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Listing 6.3: Assembly code of the fixed-point implementation V2. Only the
code segment of the most inner loop is shown.

0800203a: ldr.w r0, [lr]

0800203e: ldr.w r6, [lr, #4]!

08002042: asr.w r11, r0, r3

08002046: ldr.w r0, [r8]

0800204a: asr.w r10, r6, r4

0800204e: ldr.w r6, [lr, #4]

08002052: sub.w r0, r0, r11

08002056: add r0, r10

08002058: asrs r6, r5

0800205a: add r0, r6

0800205c: cmp r9, lr

0800205e: str.w r0, [r8], #4

08002062: bne.n 0x800203a



7
C O N C L U S I O N

Using INQ we have successfully reduced the memory footprint of the
acoustic CNN by a factor 4x without loss in classification accuracy.

The network was efficiently implemented on the STM32F469NI MCU.
In order to achieve a maximum inference speed we reduced the num-
ber of clock cycles needed to execute the time consuming convolution.
At a clock frequency of 168 MHz an effective MAC-speed of 32.61M
MACs/s was achieved with a fixed-point implementation that uses a
single-cycle MAC instruction. We have shown the importance to take
into account the available number of CPU registers during algorithm
design in order to avoid possibly redundant CPU instructions.

The necessary memory to store intermediate results was reduced by
more than factor 27x using a pipelining-like data movement strategy.
This enables to compute the forward inference using only the SRAM

memory of the device and thus increases the energy-efficiency be-
cause no power-hungry off-chip memory is necessary. With this data
flow an average power consumption of about 137 mW was achieved
in a floating-point baseline implementation.

Although real-time processing of geophone data can be established
with our implementation, a large speed-up is needed to do the same
with microphone data. Suggestions on how to accomplish further ac-
celerations are presented in section 8.

A first estimation indicates that performing the classification on the
sensor nodes may help to reduce the energy consumption by a factor
of about 40x.
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F U T U R E W O R K

In this project we implemented the acoustic CNN on the STM32F469NI
MCU. Although the implementation allows to perform AE classifica-
tion in real-time for geophone data it is still too slow to process the
audio signals from a microphone. This section presents some ideas
how to speed-up the forward inference.

The current implementation of the acoustic CNN is only a baseline
implementation that uses floating-point arithmetic. That is, the con-
volution algorithm is implemented using the code variant V0. In sec-
tion 6.2.3.3 we have shown that the fixed-point version V1 is faster
than V0. Therefore, a first way to decrease the inference time is to
implement the convolution of the acoustic CNN according to V1.
Additionally, V1 can exploit the parallel computing capabilities of the
microcontroller’s DSP unit. With the SMLAD instruction [26] two 16-
bit MAC operations can be computed in parallel, thereby only using a
single clock cycle. Therefore, the inference speed may be increased by
about a factor 2x. However, SIMD instructions require a dedicated data
alignment which can result in very complex algorithms. Given that a
speed-up by factor 2x would not be enough to satisfy the real-time
constraints of microphone data, yet another speed-up is necessary.
A possible technique may be pruning where a large number of synapses
are removed from the CNN by setting the corresponding weights to
zero [11]. This essentially reduces the number of weights and thus
also the number of MAC operations that need to be performed which,
ultimately, results in a faster forward inference. In order to exploit the
resulting zeros, however, dedicated hardware is necessary which is
not present on general MCUs. Therefore, the idea of structured prun-
ing [28] is particularly interesting. With this approach the weights
may be pruned in such a way that for a given 9x9 kernel the zeros
build a structure like a 3x1 row or column for example.
Using the implementation V1, which loads the individual rows sep-
arately, the benefit of this idea is that filter rows that contain only
zero-elements can be detected and the computationally intensive con-
volution can be omitted. Instead, the algorithm can immediately load
the next filter row.
Together with SIMD instructions this technique may decrease the time
that is needed for classification such that even microphone data can
be processed in real-time.

The above mentioned techniques mainly address the problem of a
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too slow forward inference. Note however, that using SIMD instruc-
tions may also improve the energy-efficiency of the classification be-
cause only a single memory access is needed to load two 16-bit inputs
while two memory accesses are necessary to load two 32-bit inputs.
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