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Abstract

Identification of seismic events from continuously recorded audio data is an extremely difficult
task. In spite of the vast amount of research in this field, the signal processing and event detection
algorithms have not yet been fully established. The main goal of this project is to develop a signal
processing method on a seismic event detection platform. This report presents several approaches
for detecting seismic events with a noisy background and evaluates their performance in different
scenarios.
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Chapter 1

Introduction

Recently, wireless sensor networks (WSN) with acoustic sensors are widely used in monitoring and
tracking seismic activities. Since the workplaces of these devices are usually energy limited, their
energy efficiency is significantly important. Due to the high sampling rate of the input data, the
transmission via WSN and its temporary storage on the node’s memory have a big influence on the
energy budget. Therefore, to reduce the energy consumption, unnecessary data transmissions and
storage should be avoided.

1.1 Motivation

In the PermaSense project a system was installed in the high-altitude Swiss Alps with a WSN
for collecting geophysical data [1]. This system aims to provide a long-term, high-quality wireless
sensing and data recovery solution with near complete recovery and near real-time delivery of the
data [2]. The sensor nodes of this system record and transmit continuous audio stream to a server
through WSN for further classification.

When using a sensor network for data gathering in extremely harsh environments, decreasing
energy consumption is of paramount importance. To enhance the energy efficiency of this system,
we developed a pre-classification method on the nodes to automatically discard the unwanted data.

To be more specifically, an event detection algorithm was implemented on an embedded platform,
which would serve as a node in WSN to filter out the uninteresting data before further processing.
Once any seismic event is observed, the event data will be further classified on this embedded
platform, which is challenging, since the processing capability and the memory size are limited.

Compared with the original design this new platform is not only able to improve the energy
efficiency, but also detect seismic events earlier. Instead of warning neighboring areas of urgent
seismic activities such as rockfalls after classification on the server, as shown in Figure 1.1, the
new platform in Figure 1.2 can detect and alarm on the nodes themselves. Furthermore, the pre-
classification on the nodes can reduce the amount of data transmitted to the server.
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2 1.2. Goal

Figure 1.1: In the current system, the event classification only runs on the server. Since the trans-
mission takes some time, there exists certain delay for mountaineers to receive an alarm from the
warning system and this delay may cause some damages.

Figure 1.2: In the new system the local nodes can also classify seismic event, making it possible to
warn mountaineers earlier and to prevent some potential damages.

1.2 Goal

The main goal of this project is to develop a signal processing method on a seismic event detection
platform. Compared with the original design in Figure 1.3, this platform should be able to record
seismic data, process it for transmission and perform pre-classification. Everything should run on
an embedded platform, as shown in Figure 1.4. The result would be a system, which is able to
perform multiple inter-dependent tasks and to stop the processing, if an intermediate result is
sufficient to make a decision.

Figure 1.3: When any seismic data is recorded by the Geophone sensors, our current platform
transmits the input data to the server directly via WSN. Once the audio data is classified as
urgent event, the reacting system will be informed and warn the neighboring area.
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Figure 1.4: The new embedded platform can pre-classify the input data. If the result is certainly
urgent, then the reacting system will be triggered directly by the embedded nodes. When the
result of the pre-classification is unclear, the data will be transmitted to the server for further
classification.

1.3 Outline

In the next Chapter 2, we will first describe the event detection algorithms for seismic research
that we are going to implement and evaluate. Then our system model and experimental setup will
be presented in Chapter 3. After the introduction of our system setup, the experimental results
will be demonstrated in Chapter 4, where we will evaluate the performance of each event detection
algorithm. Finally, we will conclude our works and further discuss about the future outlook in
Chapter 5.
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Chapter 2

Theory

Identification of seismic events from continuously recorded audio data is an extremely difficult
task. In spite of the vast amount of research in this field, the signal processing and event detection
algorithms have not yet been fully established. Until now, there exist a wide spectrum of triggering
algorithms, ranging from a very simple amplitude threshold type to sophisticated ones based on
pattern recognition approaches [3]. In this section, several approaches for detecting seismic events
with a noisy background are introduced and their performance will be evaluated in the following
chapters.

2.1 Event Detection in Time Domain

2.1.1 Amplitude Threshold Triggering (ATT)

ATT detects seismic events by a user-defined threshold value. This algorithm simply compares the
signal amplitude with the threshold value. Once the value of an input signal exceeds the threshold,
the seismic event will be noticed.

The threshold value of ATT can be set according to the background noise level. Therefore, even
when the noise levels fluctuate, the algorithm will still be able to capture seismic events, without
triggering falsely due to noise signals.

2.1.2 STA/LTA Triggering

STA/LTA Triggering computes the average energy level within a short-term average (STA) leading
time window and the one in a long-term average (LTA) trailing time window, as shown in Figure
2.1. If the average value captured in the STA is larger than the background levels in the LTA, the
ratio STA/LTA will be greater than 1. While the ratio between the two averages is higher than a
specified threshold value, there will be a seismic event detected.

The advantage of the STA/LTA Triggering method is that high-amplitude signals may not trig-
ger, if the increase of amplitude is not significant compared with the past. For instance, when a
noisy background leads to a relatively large value of LTA, only an extraordinary increase of signal
amplitude can rise up the value of STA to trigger an alarm.
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6 2.1. Event Detection in Time Domain

Figure 2.1: This figure illustrates the working principle of STA/LTA Triggering. The orange block
reveals the short-term average (STA) leading window, while the yellow one is the long-term average
(LTA) trailing window.
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2.1.3 Z-detector

Z-detector indicates how many standard deviations σ a data point xi is away from the sample’s
mean µ, assuming a Gaussian distribution. After making appropriate transformations to the se-
lected feature space of the dataset, the z-detector of any data point can be calculated.[10] For
instance, if the threshold is set to 1, the data point, which is more than 1 standard deviation afar
from the mean value, will be considered as the start of a seismic event. As shown in Figure 2.2, if
the data point falls into the yellow regions, then a seismic event will be detected.

Figure 2.2: This figure illustrates the working principle of Z-detector. The red line is the threshold
and the yellow region displays the valid area, where seismic events will be detected.
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The advantage of Z-detector is that it is able to automatically adjust to variance of the background
noise level. If the background variance is small, a minor change in input can cause a major change
in output. If the background variance is large, a major output change requires a significant input
change.[4]

Zi “
xi ´ µ

σ
(2.3)

2.2 Event Detection in Frequency Domain

2.2.1 Power Spectral Density (PSD)

PSD reveals the amplitude of "power" as a function of frequency, where ’power’ is considered to be
the average of the square of FFT´s magnitude. In other words, PSD shows the strength distribution
of frequencies. Energy within a specific frequency range can be obtained by integrating PSD within
that frequency range.

To use PSD for event detection, individual segments of data are compared with an selected de-
tection threshold. The ability to detect individual frequency bands is an important alternative
over time-domain based methods, since it eliminates the need for an a priori band-pass filtering.
However, it also needs parameter settings, but may be able to detect more small events from a
noisy background.[5]

Power “
|amplitude of FFT |2

N
, where N : the normalization factor. (2.4)
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Chapter 3

System Overview

In past, seismologists used to continuously record the seismic signal with analog seismographs on
thermal ink paper. However, with the development of new measurement and digital techniques,
seismographs have progressed from simple analog recording to digital recording based on micropro-
cessors, micro-controller units (MCU), DSP and other advanced PC processors, making the signal
processing and analysis easier and seismic event detection more reliable [3]. In this section, we will
describe our experimental system. We developed an embedded platform for audio signal processing,
where several algorithms for event detection are implemented and evaluated.

3.1 System Model

Figure 3.1 displays the original system model, which consists of a geophone sensor, a ADC circuit,
an embedded platform, a WSN and a server. In the beginning, the analog voltage levels generated
by a geophone sensor are sampled as digital signals by the ADC circuit. Afterwards, the amplitude
of digital signals will be compared with a low threshold. If the data’s value exceeds said low
threshold, the digital signal will be fed into the embedded platform, which will then transmit the
recorded signal to the server via the WSN directly without any further signal processing.

Figure 3.1: The model of the current system, where the embedded platform sends the input signal
to the server without any further processing.

The new system model is shown in Figure 3.2, where two modules, namely signal processing and
pre-classification, are added. Instead of bypassing the digital signals to the server directly, the input
data will be further processed on the embedded platform.
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10 3.2. Experimental System Setup

Figure 3.2: The model of the new designed system, where two modules, namely signal processing
and pre-classification, are added.

In this project, we focus on signal processing module, where algorithms for event detection, Fast
Fourier Transform (FFT) and band energy are implemented, as shown in Figure 3.3. The sampled
digital signals will first pass through windowing scheme and then event detection triggering. Only
a signal that exceeds a certain threshold will be considered as a valid seismic event. The event data
will be on one hand stored in the on-chip memory and on the other hand subject to a FFT followed
by energy band to adjust frequency resolutions. The resulting spectrogram is then processed by
the pre-classification and the resulting decisions will be sent through the WSN.

Figure 3.3: The details of the signal processing step in the newly designed system

3.2 Experimental System Setup

To develop and evaluate the performance of the signal processing module, a system for experiments
is designed and can then be adopted on the edge nodes of the WSN. As shown in Figure 3.4, this
system is composed of a PC, a USB key, a micro-controller unit (MCU) and a 5V power supply.

At first, the seismic audio data is put into the USB key via the PC. During the experiment, the
MCU reads out the seismic audio data from the USB key and applies signal processing algorithms
on it. For evaluation purposes, the MCU was designed to write out the results in text files to the
USB key. Afterwards, we further analyze the results on PC with some Python programs.



Chapter 3. System Overview 11

Figure 3.4: The system setup for experiments

3.2.1 Seismic Dataset

The seismic data for experiments was collected in Dirruhorn mountain by 6 geophone sensors,
as shown in Figure 3.5. The dataset was collected from 10th July 2017 to 6th September 2017,
consisting of 73251 recorded seismic events. The threshold value for the amplitude triggering im-
plemented on the geophone sensors was about 20. Once the input data exceeded this threshold, the
recording started. Nevertheless, when this seismic dataset was collected, the system was designed
to trigger all sensors at the same time. Therefore, the lengths of data from these 6 channels are
the same. In other words, once a sensor was triggered, the other 5 sensors started to record, too.

Besides the audio data from geophone sensors, the rain information was also provided. The time
unit of recording is 2 minutes. This rain dataset contains information about the rain intensity,
the rain accumulation and the rain duration. In our experiment, we use the rain intensity as the
standard to label rainy or non-rainy events.

Figure 3.5: The picture of 6 geophone sensors distributed in Dirruhorn mountain
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3.2.2 Embedded Platform

To build the embedded platform, we chose an ARM Cortex-M4 core-based STM32F469NIH6 MCU,
which is integrated on the STM32F469I discovery board from STMicroelectronics, for the experi-
ments. This MCU contains a 32-bit Cortex-M4 CPU with 12 general purpose registers, a floating
point unit (FPU) with additional 32 single precision registers and a full set of DSP instructions
[6].

Since the ARM DSP provides a solid library, the CMSIS DSP Software Library [7], it makes
the implementation of FFT much easier. Furthermore, the library includes Low Layer (LL) and
Hardware Abstraction Layer (HAL) APIs that cover the microcontroller hardware, together with
an extensive set of examples running on STMicroelectronics boards, as shown in Figure 3.6. Our
experimental platform was adapted from one of the official example, namely "audio playback and
record" [8].

Figure 3.6: STM32CubeF4 firmware components



Chapter 4

Experimental Results

In the last chapter, the system setup for experiments is demonstrated. By analyzing offline data
collected on geophone sensors in a real-world environment, some interesting patterns can be seen.
This chapter reveals the results of experiments. Since every algorithm has their own features, they
may fit different criteria in certain scenarios individually. By observing their behaviors in various
scenes, their performances can then be evaluated.

4.1 Initialization

4.1.1 Selection of Algorithms’ Parameters

Since some event detection algorithm contain one or two tunable parameters, which influence the
results significantly, these parameters should be set before the experiment. According to [9], a
typical value of STA duration is between 1 and 2 second for regional events and a LTA duration
of 60 seconds is a common initial value. Therefore, we chose to set the length of STA as 1 second
and length of LTA as 60 seconds. Since to some extent the STA works like a signal filter, it makes
sense to select the windowing length of Z-detector and PSD the same as the length of STA. In the
end, the parameters were selected as shown in the Table 4.1.

Table 4.1: The tunable parameters of event detection algorithms

ATT -
STA/LTA length of STA = 1 (sec) length of LTA = 60 (sec)
Z-detector length of windowing = 1 (sec)

PSD length of windowing = 1 (sec)

4.1.2 Selection of Experimental Thresholds

After fixing the parameters of algorithms, the thresholds to decide the triggering condition need to
be chosen, too. Figure 4.1 reveals the result of applying the event detection algorithms on a known
rockfall event. The output values from these algorithms are in very different ranges, which makes
them difficult to be compared under the same threshold. Therefore, we need to find several sets of
threshold with individual threshold values for each algorithm.

Due to the range of input data is from -2047 to 2047, we first directly picked 5 thresholds for ATT
as 250, 500, 1000, 1500 and 2000. Next, we tuned through all numbers to find the values, that
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14 4.2. Event Detection

make STA/LTA, Z-detector and PSD to generate the same number of total triggered events. Table
4.2 lists these 5 sets of the event detection algorithms’ thresholds.

Table 4.2: The tuned values of triggering thresholds

ATT STA/LTA Z-detector PSD
1st 250 1.1 1 700
2nd 500 2.7 1.7 2700
3rd 1000 6.5 3 13000
4th 1500 10 3.5 25000
5th 2000 13 4 40000

Figure 4.1: The result of applying event detection algorithms on a known rockfall event

4.2 Event Detection

4.2.1 The Analysis of Individual Detected Events

After setting the algorithms’ parameters and the experimental thresholds, we test the event de-
tection functions with the offline seismic data in all conditions of the 5 threshold sets. Figure 4.2,
for example, displays the result of a known rockfall event in the 2nd set of threshold. At first, the
input data and output values of the triggering functions are quite small. As the amplitude of input
signals increases, the values of the triggering functions also increase. The accumulating speed of
Z-detector is obviously the fastest and it detects this seismic event earliest within all triggering
algorithms at 5 seconds after the recording. STA/LTA is the next one to detect an event, namely
at 8 seconds. The detecting moments of ATT and PSD are close, i.e. at 15 seconds. In addition,
the shape of PSD values looks quite similar to the one of the input signal’s amplitude, since the
working principles of ATT and PSD are both based on the input signal’s energy.
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Figure 4.2: The analysis result of a known rockfall event under 2nd set of threshold. The red dots
label the moments where the signal exceeds the individual threshold value for every algorithm.

The Timing of Detection

In our system the recording of input data only starts after detecting a seismic event. As one of our
goals is to perceive an urgent seismic event as early as possible, the timing of detection is of great
importance. To evaluate the detecting speed, the differences of the point in time to detect seismic
events between ATT and other 3 algorithms are computed as shown in Figure 4.3 and averaged
over the whole dataset. The static results are illustrated in the Figure 4.4.

Compared with ATT, STA/LTA, Z-detector and PSD all more or less have a delay for the event
detection. In the beginning, the delays are all negligibly small. However, as the thresholds rise up,
they all increase significantly, especially for Z-detector. The reason for these 3 algorithms to cause
delays is understandable, since they all function like filters, making them good for de-noising but
bad for fast reacting. In conclusion, ATT is the fastest to detect seismic events, while Z-detector
is the slowest.
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Figure 4.3: This figure shows the way to compute the time differences between ATT and other 3
algorithms for the evaluation on their detecting speed.

Figure 4.4: The average time delay for STA/LTA, Z-detector and PSD to detect seismic events
with respect to ATT

4.2.2 The Distribution of Detected Events

Figure 4.5 to Figure 4.9 demonstrate the result on 2017/7/18 under increasing thresholds from the
first set [250, 1.1, 1, 700] to the last set [2000, 13, 4, 40000] for ATT, STA/LTA, Z-detector and
PSD. As the thresholds rise up, the numbers of detected events of every algorithms decrease and
the distribution concentrates on the rainy period. It means most of seismic events are stimulated
by rain, which either directly hits on the sensor or indirectly causes rockfalls. While there are
still some events scattered in non-rainy period, they may have been generated by strong wind,
helicopters, mountaineers or rockfalls. Because at that time the data was collected, the recording
techniques were limited, we can not be sure about the exact reason.
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Figure 4.5: The distribution of the detected events by ATT, STA/LTA, Z-detector and PSD on
2017/7/18 in the first threshold set

Figure 4.6: The distribution of the detected events by ATT, STA/LTA, Z-detector and PSD on
2017/7/18 in the second threshold set
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Figure 4.7: The distribution of the detected events by ATT, STA/LTA, Z-detector and PSD on
2017/7/18 in the third threshold set

Figure 4.8: The distribution of the detected events by ATT, STA/LTA, Z-detector and PSD on
2017/7/18 in the forth threshold set
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Figure 4.9: The distribution of the detected events by ATT, STA/LTA, Z-detector and PSD on
2017/7/18 in the fifth threshold set

The Ability to De-noise

Inspired by the uneven distribution of the detected events, we further analyze the algorithms’
ability to de-noise. In this test, rain is regarded as the source of noise. Therefore, the methods that
generate the fewest events at rainy period are considered to be the one performing best against
noise. Figure 4.10 plots the proportion of the detected rainy events in all the detected events for
different algorithms. We can find the percentage value of ATT is the highest, which means ATT’s
ability to de-noise is the worst, while the Z-detector with lowest percentage value performs best.

The ratio of detected rainy events on rainy days “
The number of detected rainy events

The number of total detected events
(4.1)
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Figure 4.10: The ratio of detected rainy events and all the detected events on rainy days with
different thresholds

The Similarity of Algorithms

From the distribution of detected events, we can notice that there are some events only detected
by some algorithms instead of all. Figure 4.11, for example, demonstrates an event that STA/LTA,
Z-detector and PSD can detect, but ATT misses in the 2nd set of thresholds. Since the thresholds
of all algorithms are chosen under the same criterion, their results should be comparable.

Figure 4.11: Analysis result on an event with relatively small amplitude

Inspired by the fact that different events can only be detected by different algorithms, we would
like to further compute the similarity of these methods. First, we compute the common detected
rainy events between ATT and other algorithms as shown in Figure 4.12 and then divide it by
the total number of detected events. In the Figure 4.13, the overlapping ratios of detected events
with respect to the result of ATT under different thresholds is illustrated. The overlapping signals’
percentage between ATT and PSD is relatively high due to their same working principle, based
on signal’s energy. However, the similarity of Z-detector is significantly lower, which means many
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events detected by ATT will not be triggered by Z-detector. Therefore, if we would like to increase
the coverage of detection, i.e. reduce the number of seismic events that our current platform misses,
Z-detector may be a good candidate to be implemented on the embedded platform, since we already
have ATT on our current ADC circuit.

The overlapping ratio of X algorithm “
The number of detected events by ATT and X both

The number of detected events by ATT only
(4.2)

Figure 4.12: The common part between ATT and other algorithms

Figure 4.13: The overlapping ratios of detected events with respect to the result of ATT with
different thresholds

4.2.3 The Computational Time

In this part, we measured the computational time of each algorithms on our embedded platform.
The following Table 4.2 lists the result. Since in practice, the ATT is most likely to be implemented
on hardware, we only measured the time consumption for STA/LTA, Z-detector and PSD. Unsur-
prisingly, PSD needs the longest time to process, since one of its steps is FFT, whose computational
cost is very high. The average computational time of Z-detector is the shortest due to having a
simple program structure.
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Table 4.3: The average computational time of triggering algorithms on the embedded platform

ATT STA/LTA Z-detector PSD
Time(µs) 0 3.8 1.46 598.8



Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this project, we implemented and evaluated several event detection algorithms for seismic re-
search on an embedded platform. Table 5.1 lists the evaluation results from every tests.

At first, we have shown the simplest algorithm, ATT, is the fastest to detect seismic events within
the 4 algorithms, while there exist a relatively large delay for Z-detector. However, when it comes
to the ability to de-noise, Z-detector performs best and ATT is the worst one. In addition, the
detection result of Z-detector is the most different one from ATT, which means Z-detector is most
able to detect the events that ATT misses. In the computational speed test, PSD is the worst due
to the need of FFT and the Z-detector is the second best, a little slower than ATT, which will
probably be implemented on the ADC circuit.

Although there is no perfect algorithm and every algorithm has their advantages and disadvantages,
we can trade some function off for the more important one. For example, if detecting seismic events
earlier or saving energy consumption is the most important factor, then we may need to select ATT.
However, if eliminating the influence by noise is the first priority, Z-detector may be the best choice.
While in the cases that these 2 factors are the same important, the balanced solution, STA/LTA
Triggering, will be a good candidate.

Figure 5.1: The table lists all the results from the experiments

23
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5.2 Outlook

Based on the contribution of this project, in order to detect seismic events more accurately and
efficiently, there are several directions able to be further explored in the future.

- Improve the recording coverage of event detection:

Since currently the data recording only replies on the hardware amplitude triggering on ADC
circuit, there may be some events missed. Using different algorithms may increase the accu-
racy of event detection.

- Eliminate the influence of noise:

Due to ATT’s high sensitivity to noise, there are plenty of events with a short recored period.
Since every detected event costs energy to process and even transmit, implementing other
event detection methods, which can adjust to the noise level in the background, to de-noise
is of paramount importance.



Reference

[1] Igor Talzi, Andreas Hasler, Stephan Gruber, and Christian Tschudin. "PermaSense: Investigat-
ing Permafrost with a WSN in the Swiss Alps.”, In: Proceedings of the 4th Workshop on Embedded
Networked Sensors

[2] Jan Beutel et al, "PermaDAQ: A Scientific Instrument for Precision Sensing and Data Recovery
in Environmental Extremes", In: Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks

[3] B. K. Sharma, Amod Kumar and V. M. Murthy, "Evaluation of Seismic Events Detection
Algorithms", In: Journal Geological Society Of India Vol.75, March 2010, pp.533-538

[4] Mitchell Withers*, Richard Aster and Christopher Young et al, "A Comparison of Select Trig-
ger Algorithms for Automated Global Seismic Phase and Event Detection", In: Bulletin of the
Seismological Society of America, Vol. 88, No. 1, pp. 95-106, February 1998

[5] Yoones Vaezi and Mirko van der Baan, "Analysis of instrument self-noise and microseismic
event detection using power spectral density estimates", In: SEG Houston 2013 Annual Meeting

[6] "STM32F469 data sheet", In: http://www.st.com/content/st_com/ en/support/resources/resource-
selector.html?querycriteria= productId=LN1876$$resourceCategory=technical_literature$ $resource-
Type=datasheet.

[7] "CMSIS DSP Software Library", In: http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

[8] "Audio playback and recording using the STM32F4DISCOVERY", In: http://www.st.com/resource/en/application_note/dm00040802.pdf

[9] Amadej Trnkoczy (formerly Kinemetrics SA), "Understanding and parameter setting of STA/LTA
trigger algorithm", In: ftp://hazards.cr.usgs.gov/Eq_Effects/GeekPack/Procedures-Configs-Info/1_Dataloggers/K2-
Altus/Sta-Lta.PDF

[10] Sergio Santoyo, "A Brief Overview of Outlier Detection Techniques", In: https://towardsdatascience.com/a-
brief-overview-of-outlier-detection-techniques-1e0b2c19e561

25


	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Theory
	2.1 Event Detection in Time Domain
	2.1.1 Amplitude Threshold Triggering (ATT)
	2.1.2 STA/LTA Triggering
	2.1.3 Z-detector

	2.2 Event Detection in Frequency Domain
	2.2.1 Power Spectral Density (PSD)


	3 System Overview
	3.1 System Model
	3.2 Experimental System Setup
	3.2.1 Seismic Dataset
	3.2.2 Embedded Platform


	4 Experimental Results
	4.1 Initialization
	4.1.1 Selection of Algorithms' Parameters
	4.1.2 Selection of Experimental Thresholds

	4.2 Event Detection
	4.2.1 The Analysis of Individual Detected Events
	4.2.2 The Distribution of Detected Events
	4.2.3 The Computational Time


	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Outlook

	Untitled



